US20090252203A1 - Wireless communications network comprising multi-hop relay stations - Google Patents

Wireless communications network comprising multi-hop relay stations Download PDF

Info

Publication number
US20090252203A1
US20090252203A1 US12/419,580 US41958009A US2009252203A1 US 20090252203 A1 US20090252203 A1 US 20090252203A1 US 41958009 A US41958009 A US 41958009A US 2009252203 A1 US2009252203 A1 US 2009252203A1
Authority
US
United States
Prior art keywords
relay station
station
relay
sub
subscriber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/419,580
Inventor
Mariana Goldhamer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sparkmotion Inc
Original Assignee
Alvarion Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alvarion Ltd filed Critical Alvarion Ltd
Assigned to ALVARION LTD. reassignment ALVARION LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOLDHAMER, MARIANA
Publication of US20090252203A1 publication Critical patent/US20090252203A1/en
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY AGREEMENT Assignors: ALVARION LTD
Assigned to ALVARION LTD. reassignment ALVARION LTD. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SILICON VALLEY BANK
Assigned to SPARKMOTION INC. reassignment SPARKMOTION INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALVARION LTD.
Priority to US14/157,380 priority Critical patent/US20140161021A1/en
Assigned to ALVARION LTD. reassignment ALVARION LTD. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SILICON VALLEY BANK
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays

Definitions

  • the present invention relates in general to telecommunication systems and methods for efficient utilization thereof, and particularly to systems to relay transmissions in wireless networks.
  • relays in wireless networks have gained some further popularity in the recent years with the introduction of broadband systems, having physical limitation of the cell size.
  • Classical relays operate at the radio level, by amplifying the received signal and re-transmitting it, generally at a different frequency.
  • Newer relays sometimes referred to as Layer 2 relays, decode the signal and re-transmit it at a different point in time.
  • U.S. Pat. No. 5,883,884 describes a wireless communication system in which a base unit transmits outgoing TDM signals within a base transmission coverage area at a first frequency. Repeaters in the base coverage area receive the outgoing signal and retransmit it within respective repeater coverage areas at respective frequencies, maintaining the same time slot orientation in TDM format, where several levels of repeaters form a hierarchy covering the expanded range.
  • the remote subscriber units located in a coverage area receive the strongest outgoing frequency signal from a repeater/base unit in a time slot assigned to that unit for a particular call. Incoming TDMA signals from remote units use the same time slots used in received outgoing signals.
  • Each repeater receives outgoing signals from a lower level repeater (or from the base unit) at the transmission frequency of the lower level repeater, and immediately retransmits the signal in its own coverage at a different frequency.
  • the solution provided by this publication to reduce interruption during communications is that the repeaters and remote units switch between repeaters to communicate with the base unit depending upon received signal strength.
  • U.S. Pat. No. 7,386,036 discloses a wireless multi-hop system in which radio links between relays and users are optimized separately from the links between relays and base stations and in which multiple simultaneous data streams between relays and base stations are created.
  • the system includes a base station (BS) connected to the core network with a link of wire line quality, relay stations (RS) connected to the BS with a first radio interface, and to subscriber stations (SS), with a second radio interface.
  • the first and second radio interfaces can operate, at least in part, using the same frequency bandwidth, and the SS can also connect directly to the BS using the second radio interface if the BS is closer than any RS.
  • U.S. Pat. No. 7,218,891 describes a multi-hop relaying method for use in a frequency division duplexing based wireless in a cellular network.
  • the multi-hop transmission scheme utilizes relays within a conventional cellular system by selecting the strongest pilot signal from among the base stations and the relays, reporting such to the base station, distributing an active user list to the relays along with scheduling and routing information via a relay control channel, and transmitting data according to a respective active user based upon the pilot signal strength to maximize coverage and capacity over the cellular system.
  • a method for conveying wireless communications in a wireless communications network comprising at least one base station, at least one first relay station and a plurality of subscriber stations, and wherein the at least one first relay station is operative to simultaneously transmit communications to or receive communications from at least two recipients along a shared frequency channel and wherein the at least two recipients are wireless network entities selected from among:
  • the present invention naturally encompasses cases where the at least one first relay station communicates with more than two such recipients in accordance with the method described above.
  • the at least one first relay station may communicate with the base station, with one or more other relay stations and with at least one subscriber station.
  • the wireless communications network further comprises at least one second relay station, and wherein the at least one second relay station is operative to simultaneously transmit communications to or receive communications from at least two recipients along a shared frequency channel, and wherein the at least two recipients are wireless network entities selected from among:
  • the at least one third relay station is not operative to exchange communications directly with either with the base station nor with the at least one first relay station.
  • At least one member of the group consisting of: the base station, the at least one first relay station and the at least one second relay station is operative to simultaneously transmit or receive communications directed to/from different recipients by transmitting/receiving the communications along at least one sub-channel selected from among a plurality of OFDMA sub-channels or along at least one sub-carrier selected from among a plurality of sub-carriers.
  • the at least one sub-channel or the at least one sub-carrier is used simultaneously by two members of the group consisting of:
  • the transmission and reception intervals for at least one subscriber station to communicate with the base station, and for at least one other subscriber station to communicate with the first relay station are scheduled at different time intervals.
  • the transmission and reception intervals for at least one subscriber station to communicate with the first relay station and for at least one other subscriber station to communicate with the second relay station are scheduled at different time intervals.
  • At least one relay station is operative in accordance with a TDD or FDD modes of operation.
  • the at least one relay station is operative during at least one interval while using two different frequency channels for simultaneously transmit or simultaneously receive communications to/from at least two wireless network entities.
  • FIG. 1 illustrates implementation of prior art sub-frame concept for use in a wireless network comprising relays
  • FIG. 2 demonstrates areas of interferences to a subscriber station caused by the use of relays
  • FIG. 3 illustrates an example for aggressive frequency segment reuse
  • FIG. 4 presents usage of dedicated and shared frequency segments in relay operation
  • FIG. 5 illustrates operation during time partition 1 when a relay in an odd hop receives transmissions from its neighbors
  • FIG. 6 illustrates operation during time partition 2 when a relay in an odd hop sends transmissions to its neighbors
  • FIG. 7 presents a frame structure for IEEE 802.16m relay TDD—according to an embodiment of the invention
  • FIG. 8 presents a TDD Frame structure in accordance with another embodiment of the invention.
  • FIG. 9 illustrates operation in FDD frequency arrangement during time partition 1 , when the relays located at odd hops receive transmissions from their respective neighbors and relays in even hops transmit to their neighbors;
  • FIG. 10 illustrates operation in FDD frequency arrangement during time partition 2 , when the relays located in odd hops send transmissions to their respective neighbors and relays in even hops receive from their neighbors;
  • FIG. 11 presents an FDD Frame structure in accordance with another embodiment of the invention.
  • FIG. 12 illustrates operation with no interference separation in the time domain
  • FIGS. 13 to 15 illustrate 3 examples of operation with interference separation in the time domain.
  • FIG. 1 presents a representative example of a prior art solution where a communication frame which complies with the draft P802.16j/D3 submitted for the IEEE Recommendation 802.16j, is illustrated as having time division for enabling operation of a relay station.
  • FIG. 1A illustrates the BS part and the relay part of frame J
  • FIG. 1B illustrates the continuation of these two parts of frame J.
  • the frame comprises two separated time intervals dedicated to relay-BS communication per MAC frame.
  • SDD System Description Document
  • time separation and the short MAC frame duration impose certain limitations.
  • the limitation, system wise, is generated by having too many features that should be supported in the time domain. Many of these features did not exist at the time when 802.16e was drafted.
  • Some examples of features that are supported by an 802.16e system that evolved to the 802.16m are the following:
  • the solution provided by a preferred embodiment of the present invention to this problem is, to transfer part of the time-separated activities into the sub carriers domain (e.g. into the OFDMA domain), as will be further discussed hereinafter.
  • the relay operation consists of a number (e.g. 4 as illustrated in FIG. 1A ) of different time intervals in a single frame. If we were to consider for example a partition of sub-frames with the a frame compatible with the 802.16m SDD Recommendation, the embodiment of the proposed solution would become clearer when taken in conjunction with FIG. 1 :
  • MIMO multiple-input-multiple-output
  • a Relay Station will have a number of RS surrounding it, which, for the highest range and data traffic, should be separated in frequency domain.
  • Layer 2 relays i.e. which decode the signal received and re-transmit it at a different point in time
  • the interference that would be created to one SS located at the cell edge are illustrated in FIG. 2 . If in such an example omni antennas are used, there would be also 4 interfering cells.
  • frequency segment as used throughout the specification and claims or “segment” is used to denote a group of sub-channels, whereas the term “sub-channel” is used to denote a logical entity formed by a number of sub-carriers.
  • the sub-carriers may be OFDM/OFDMA sub-carriers or individual carriers.
  • FIG. 3 a possible SDD deployment scenario is illustrated in FIG. 3 .
  • This “aggressive” deployment scenario suffers from interference at the intersection of the coverage prints of different relays, which lead to low data rate or lack of coverage.
  • FIG. 4 there are areas around the RS cell center which may be reused in parallel. The reused spectrum can be appreciated from the illustration provided in FIG. 4 .
  • the use of the shared segment may significantly increase the spectral efficiency, whereas the use of the dedicated segments will increase the cell size.
  • the relay access operation is associated with the frequency channel used by the BS, and instead of having the partition between the BS operation and the relay operation in the time domain it is preferably done in the OFDMA domain.
  • a TDD relay will not both transmit (Tx) and receive (Rx) at the same time.
  • the MAC entity may communicate with different segments; for example, two time-domain partitions of the 802.16m frame, as follows:
  • Time Partition 1 (BS-Tx, RS Rx)
  • This time partition may include the following segments:
  • This segment may either be split into dedicated and shared sub-channel groups or alternatively different segments may be allocated to the dedicated and shared UL RS traffic.
  • BS downlink traffic may also be scheduled during the shared part of the relay segment, if it does not create interference.
  • the RS is isolated in the access activity (RS-MS) from the BS due to the different sub-channel segment used and the significant distance between the RS and the BS.
  • the isolation may further be increased by using directional antenna for the relay access operation and the feeding link (BS-RS link).
  • Time Partition 2 (BS Rx, RS Tx)
  • This time partition may include the following segments:
  • this segment may carry at least two different
  • STC modes one for the BS-SS communications (sub-channel group for the BS access mode) and one for the BS-RS communications. Different sub-channel groups are allocated for this activity.
  • the RS is in transmitting mode.
  • the possible isolation for the first scenario is the SS-SS separation (90-100 dB in NLOS for 100 m) and the segment separation (25 dB while using adjacent carriers and 40 dB while using alternate carriers). If the interference is not overcome, the scheduling of the interfering SSs shall be carried out in such a way that they are separated in the time domain, even if the penalty is some delay for such SS. Another possibility could be to schedule the interfering SSs in different frames. Example 2 discussed hereinbelow resolves this potential interference.
  • FIG. 6 describes the functional operation during time partition 2 .
  • the relay is presented as the central transmitting point.
  • FIG. 7 demonstrates a functional description of the BS/Relay operation according to some embodiments of the present invention.
  • the BS is considered to be located at HOP 0
  • the first relay is located at HOP 1 .
  • the frame partition starts with the BS DL, which is also relevant for relay stations located at HOP 2 n .
  • the left time partition corresponds to time partition 1
  • the right time partition corresponds to time partition 2 .
  • a relay transmits in two different directions at the same time. Each transmission uses the suitable segments associated with a specific antenna.
  • UL and DL activities are mixed within the frame.
  • the permutations used for UL and DL are compatible, but not necessary identical.
  • the Frame Control Header is sent in all DL segments which are intended for different MIMO/STC modes or for different antennae.
  • the FCH may be sent at the start of a multi-frame only. Preambles are sent in DL but can be sent also in up-link.
  • the above described scheme has the advantage of minimizing the number of switching points in the relay operation and allows the same sub-frame duration as in regular TDD operation.
  • FIG. 8 is an example of such a frame structure, in which there is a separation in the time domain of the SS receiving and transmitting activities.
  • Table 1 illustrates the multi-hop operation for 6 Hops.
  • the propagation time from BS to RS 6 is only 3 MAC frames.
  • the FDD operation makes use of the frequency f 1 for Tx of the BS and frequency f 2 for Tx of the SS, where typically f 1 >f 2 .
  • FIG. 10 An example of operating in time partition 1 is presented in FIG. 10 whereas operating in time partition 2 is illustrated in FIG. 11 .
  • the relay may transmit on both f 1 and f 2 , while during time partition 2 the relay receives on both f 1 and f 2 .
  • a duplexer is not needed, because there is no simultaneous reception and transmission on different frequencies.
  • the time separation for the SS transmission and reception is generally not necessary in FDD mode, because the separation is done in the frequency domain by using different receiving and transmitting frequencies.
  • the BS may operate in a full duplex mode.
  • the FDD frame structure is illustrated in FIG. 11 .
  • the operation on frequency channels f 1 and f 2 is illustrated by using a common frame structure.
  • the segments which are used only for f 1 shall be extended so as to occupy the full channel operating on f 1 .
  • the segments which are used only for f 2 shall be extended so as to occupy the full channel operating on f 2 .
  • FIGS. 12 to 15 demonstrate different concepts of time separation which are helpful for reducing the SS-SS interference, without creating additional time partitions for the relay feeding traffic (BS-RS or RS 1 -RS 2 ).
  • the operation of the BS, RS in odd-hop and RS in even hop on different rows There are only two time partitions, with a gap corresponding to Tx-Rx or Rx-Tx transition.
  • the MSs may be either in a Tx or Rx state during the same time partition.
  • the MS transmissions and receptions to/from the BS and RSs can be time separated.
  • the MS connected to BS and RS in even hop receives traffic at the beginning of the frame (time partition 1 ), while the transmission of the MS to the RS at odd hop is scheduled after ending the previous receiving activity.
  • time partition 1 receives traffic at the beginning of the frame
  • time partition 2 receives traffic at the beginning of the frame
  • the receiving activity of the MS from the RS at odd hop is scheduled after ending the previous transmitting activity.
  • the activity along the feeding link (BS-RS) can take place in parallel with the access activity, having no reciprocal interference.
  • the time separation is extended for separating the interfering receiving and transmitting activities of relays in different hops.
  • the access activities are totally separated from the feeding activities.
  • the relays and BS transmit to MS at the same time.

Abstract

A method is provided for conveying wireless communications in a radio network using OFDMA or multi-carrier technologies. The wireless network comprises a first relay station and a subscriber station that is operative to communicate with that first relay station. The first relay station is operative to simultaneously transmit to or receive communications from at least two recipients along a shared frequency channel. The two recipients are wireless network entities selected from among: the base station and a subscriber station; or another relay station and a subscriber station; or the base station and another relay station. According to an embodiment of the invention the wireless communications network further comprises a second relay station, which is operative to simultaneously transmit to or receive communications from at least two recipients along a shared frequency channel. The two recipients are wireless network entities selected from among: the first relay station and a subscriber stations, or a third relay station and a subscriber station, or the first relay station and a third relay station, wherein a third relay station is a relay station that does not exchange communications directly with either the base station nor the first relay station.

Description

    FIELD OF THE INVENTION
  • The present invention relates in general to telecommunication systems and methods for efficient utilization thereof, and particularly to systems to relay transmissions in wireless networks.
  • BACKGROUND OF THE INVENTION
  • The well known use of relays in wireless networks has gained some further popularity in the recent years with the introduction of broadband systems, having physical limitation of the cell size. Classical relays operate at the radio level, by amplifying the received signal and re-transmitting it, generally at a different frequency. Newer relays, sometimes referred to as Layer 2 relays, decode the signal and re-transmit it at a different point in time.
  • U.S. Pat. No. 5,883,884 describes a wireless communication system in which a base unit transmits outgoing TDM signals within a base transmission coverage area at a first frequency. Repeaters in the base coverage area receive the outgoing signal and retransmit it within respective repeater coverage areas at respective frequencies, maintaining the same time slot orientation in TDM format, where several levels of repeaters form a hierarchy covering the expanded range. The remote subscriber units located in a coverage area receive the strongest outgoing frequency signal from a repeater/base unit in a time slot assigned to that unit for a particular call. Incoming TDMA signals from remote units use the same time slots used in received outgoing signals. Each repeater receives outgoing signals from a lower level repeater (or from the base unit) at the transmission frequency of the lower level repeater, and immediately retransmits the signal in its own coverage at a different frequency. Incoming signals transmitted to any particular repeater from a remote unit in its coverage area, or from a higher level repeater, are at the outgoing transmission frequency for that repeater. The solution provided by this publication to reduce interruption during communications is that the repeaters and remote units switch between repeaters to communicate with the base unit depending upon received signal strength.
  • U.S. Pat. No. 7,386,036 discloses a wireless multi-hop system in which radio links between relays and users are optimized separately from the links between relays and base stations and in which multiple simultaneous data streams between relays and base stations are created. The system includes a base station (BS) connected to the core network with a link of wire line quality, relay stations (RS) connected to the BS with a first radio interface, and to subscriber stations (SS), with a second radio interface. The first and second radio interfaces can operate, at least in part, using the same frequency bandwidth, and the SS can also connect directly to the BS using the second radio interface if the BS is closer than any RS.
  • U.S. Pat. No. 7,218,891 describes a multi-hop relaying method for use in a frequency division duplexing based wireless in a cellular network. The multi-hop transmission scheme utilizes relays within a conventional cellular system by selecting the strongest pilot signal from among the base stations and the relays, reporting such to the base station, distributing an active user list to the relays along with scheduling and routing information via a relay control channel, and transmitting data according to a respective active user based upon the pilot signal strength to maximize coverage and capacity over the cellular system.
  • Still, it is required to provide an improved solution for spectral efficiency based on the utilization of dedicated as well as shared allocations of resources used while operating under access mode (BS/RS to SS) operation.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide improved methods and means for using relays in a multi-hop wireless communications network.
  • It is a further object of the present invention to provide methods for allocating OFDMA/multi-carrier resources to achieve the foregoing.
  • Other objects of the invention will become apparent as the description of the invention proceeds.
  • In accordance with an embodiment of the present invention, there is provided a method for conveying wireless communications in a wireless communications network comprising at least one base station, at least one first relay station and a plurality of subscriber stations, and wherein the at least one first relay station is operative to simultaneously transmit communications to or receive communications from at least two recipients along a shared frequency channel and wherein the at least two recipients are wireless network entities selected from among:
      • the base station and at least one subscriber station selected from among the plurality of subscriber stations; or
      • at least one other relay station and at least one subscriber station selected from among the plurality of subscriber stations; or
      • the base station and at least one other relay station.
  • As will be appreciated by those skilled in the art, the present invention naturally encompasses cases where the at least one first relay station communicates with more than two such recipients in accordance with the method described above. For example, the at least one first relay station may communicate with the base station, with one or more other relay stations and with at least one subscriber station.
  • According to another embodiment of the invention, the wireless communications network further comprises at least one second relay station, and wherein the at least one second relay station is operative to simultaneously transmit communications to or receive communications from at least two recipients along a shared frequency channel, and wherein the at least two recipients are wireless network entities selected from among:
      • the at least one first relay station and at least one subscriber station selected from among the plurality of subscriber stations; or
      • at least one third relay station and at least one subscriber station selected from among the plurality of subscriber stations; or
      • the at least one first relay station and at least one third relay station,
  • and wherein the at least one third relay station is not operative to exchange communications directly with either with the base station nor with the at least one first relay station.
  • In accordance with another embodiment of the invention, at least one member of the group consisting of: the base station, the at least one first relay station and the at least one second relay station, is operative to simultaneously transmit or receive communications directed to/from different recipients by transmitting/receiving the communications along at least one sub-channel selected from among a plurality of OFDMA sub-channels or along at least one sub-carrier selected from among a plurality of sub-carriers.
  • By yet another embodiment of the invention, the at least one sub-channel or the at least one sub-carrier is used simultaneously by two members of the group consisting of:
      • at least two subscriber stations each connected either to a different relay station or connected to a base station and a relay station, or
      • a relay station and the base station; or
      • two relay stations.
  • According to still another embodiment of the invention, the transmission and reception intervals for at least one subscriber station to communicate with the base station, and for at least one other subscriber station to communicate with the first relay station, are scheduled at different time intervals.
  • In accordance with another embodiment of the invention the transmission and reception intervals for at least one subscriber station to communicate with the first relay station and for at least one other subscriber station to communicate with the second relay station, are scheduled at different time intervals.
  • By still another embodiment of the invention, at least one relay station is operative in accordance with a TDD or FDD modes of operation. Preferably, the at least one relay station is operative during at least one interval while using two different frequency channels for simultaneously transmit or simultaneously receive communications to/from at least two wireless network entities.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates implementation of prior art sub-frame concept for use in a wireless network comprising relays;
  • FIG. 2 demonstrates areas of interferences to a subscriber station caused by the use of relays;
  • FIG. 3 illustrates an example for aggressive frequency segment reuse;
  • FIG. 4 presents usage of dedicated and shared frequency segments in relay operation;
  • FIG. 5 illustrates operation during time partition 1 when a relay in an odd hop receives transmissions from its neighbors;
  • FIG. 6 illustrates operation during time partition 2 when a relay in an odd hop sends transmissions to its neighbors;
  • FIG. 7 presents a frame structure for IEEE 802.16m relay TDD—according to an embodiment of the invention;
  • FIG. 8 presents a TDD Frame structure in accordance with another embodiment of the invention;
  • FIG. 9 illustrates operation in FDD frequency arrangement during time partition 1, when the relays located at odd hops receive transmissions from their respective neighbors and relays in even hops transmit to their neighbors;
  • FIG. 10 illustrates operation in FDD frequency arrangement during time partition 2, when the relays located in odd hops send transmissions to their respective neighbors and relays in even hops receive from their neighbors;
  • FIG. 11 presents an FDD Frame structure in accordance with another embodiment of the invention;
  • FIG. 12 illustrates operation with no interference separation in the time domain; and
  • FIGS. 13 to 15 illustrate 3 examples of operation with interference separation in the time domain.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention will be understood and appreciated more fully from the following detailed examples taken in conjunction with the drawings.
  • Let us consider now FIG. 1 which presents a representative example of a prior art solution where a communication frame which complies with the draft P802.16j/D3 submitted for the IEEE Recommendation 802.16j, is illustrated as having time division for enabling operation of a relay station. FIG. 1A illustrates the BS part and the relay part of frame J, and FIG. 1B illustrates the continuation of these two parts of frame J. The frame comprises two separated time intervals dedicated to relay-BS communication per MAC frame. However, if such a solution were to be adopted for the IEEE 802.16m System Description Document (“SDD”) Recommendation, due to the limitation which stems from the small number of available sub-frames in the IEEE 802.16m SDD such an approach might have serious performance limitations. Additionally, it is highly desired to use the MIMO technology for the RS-BS or RS-RS communications, which would not be applicable if this solution is to be adopted, as the number of possible sub-frames and consequently the zones in a MAC frame is highly limited. Therefore, this solution is practically impossible for incorporating the use MIMO while having a relay allocation of resources.
  • Scarcity of Sub-Frames
  • As will be appreciated by those skilled in the art, the usage of time separation and the short MAC frame duration impose certain limitations. The limitation, system wise, is generated by having too many features that should be supported in the time domain. Many of these features did not exist at the time when 802.16e was drafted. Some examples of features that are supported by an 802.16e system that evolved to the 802.16m are the following:
      • Permutations and Reuse factor:
        • Partial Usage of Channels sub-carrier permutation (PUSC) (Reuse 3)
        • Adjacent sub-carrier permutation (AMC)
        • PUSC with all subchannels permutation (Reuse 1)
      • Multicast/Broadcast Zone
      • MIMO Zone
        • AMC permutation
        • Diversity permutation
        • Diversity MAP (diversity combined control information sent from multiple antennae)
        • Not-diversity MAP (control information sent from a single antenna)
        • Matrix A (MIMO pre-coding)
        • Matrix B (combined pre-coding)
        • Matrix C (beam-forming pre-coding)
        • ⅔ antennae
      • Relays
      • Legacy support
      • Coexistence with Bluetooth
      • Coexistence with 802.11
      • Coexistence with UMTS/LTE.
  • Therefore, the solution provided by a preferred embodiment of the present invention to this problem, is, to transfer part of the time-separated activities into the sub carriers domain (e.g. into the OFDMA domain), as will be further discussed hereinafter.
  • The relay operation consists of a number (e.g. 4 as illustrated in FIG. 1A) of different time intervals in a single frame. If we were to consider for example a partition of sub-frames with the a frame compatible with the 802.16m SDD Recommendation, the embodiment of the proposed solution would become clearer when taken in conjunction with FIG. 1:
      • 3 sub-frames for BS DL (3*3=9 slots), access mode; includes the forward Relay Station (RS) feeding
      • 2 sub-frames for RS-DL (2*3=6 slots), access mode
      • 2 sub-frames for BS-UL (2*2=4 slots), access mode, for the relay backward traffic
      • 1 sub-frame for RS-UL, access mode (2 slots, which is not sufficient, but is the whole resource that remains available).
  • Such a partition would lead to a poor spectral efficiency, especially in the up-link direction, where the MAC and fragmentation headers of every UL (uplink) transmission take a considerable portion of the 4 available slots in the BS UL operation in the above example. For the relay operation it would become even worse, because there are only two available UL slots. Additionally, due to the excessive segmentations, there are important overheads in both DL (downlink) and UL control messages (MAPs).
  • The addition of MIMO (multiple-input-multiple-output) Zones suitable for BS-RS communication would therefore become impossible due to the small number of sub-frames (available symbols).
  • Interference MAP
  • In the general case, a Relay Station (RS) will have a number of RS surrounding it, which, for the highest range and data traffic, should be separated in frequency domain. Let us consider for example a case where Layer 2 relays, (i.e. which decode the signal received and re-transmit it at a different point in time) have sector antennas in the access mode. In such a configuration the interference that would be created to one SS located at the cell edge are illustrated in FIG. 2. If in such an example omni antennas are used, there would be also 4 interfering cells.
  • The term “frequency segment” as used throughout the specification and claims or “segment” is used to denote a group of sub-channels, whereas the term “sub-channel” is used to denote a logical entity formed by a number of sub-carriers. The sub-carriers may be OFDM/OFDMA sub-carriers or individual carriers.
  • In order to separate the 4 interfering cells, 4 segments (sub-channel groups) are required in the OFDMA domain. These segments enable the use of a maximum cell size and will be used essentially for increasing the SINR (signal to interference and noise ratio) of specific users, typically those located at the cell's margin. A better spectral efficiency will be obtained if those links which do not interfere to others will be grouped in a “shared” allocation built from sub-channels dedicated for this type of usage.
  • For example, a possible SDD deployment scenario is illustrated in FIG. 3. This “aggressive” deployment scenario suffers from interference at the intersection of the coverage prints of different relays, which lead to low data rate or lack of coverage.
  • A better spectral efficiency and coverage may be obtained if both dedicated and shared segments are introduced. In FIG. 4 there are areas around the RS cell center which may be reused in parallel. The reused spectrum can be appreciated from the illustration provided in FIG. 4.
  • If we take the simplified assumption that used spectrum is reflected by the coverage, the use in FIG. 4 is of 9*2=18 squares while in FIG. 3—1+1+5=7 squares are used, representing a 18/7=250% better spectrum efficiency of the FIG. 4 configuration over that of FIG. 3.
  • Therefore, as a may easily be understood from the above, the use of the shared segment may significantly increase the spectral efficiency, whereas the use of the dedicated segments will increase the cell size.
  • Relay Support in Frame Structure
  • Let us consider now the following examples illustrating several embodiments of carrying out the present invention.
  • Relay Operation
  • The relay access operation is associated with the frequency channel used by the BS, and instead of having the partition between the BS operation and the relay operation in the time domain it is preferably done in the OFDMA domain.
  • TDD Operation
  • Typically, a TDD relay will not both transmit (Tx) and receive (Rx) at the same time.
  • According to some embodiments of the present invention, the MAC entity may communicate with different segments; for example, two time-domain partitions of the 802.16m frame, as follows:
  • Time Partition 1 (BS-Tx, RS Rx)
  • This time partition may include the following segments:
      • One DL Segment for carrying the BS traffic. This segment will be able to carry at least two different STC (space-time coding)/MIMO modes: one for BS-SS communications and one for BS-RS communications. To accommodate these different STC modes, this segment may preferably be split into two smaller segments, each one using a different STC/MIMO mode. During the BS DL transmissions, the RS is in receiving mode.
      • One UL Relay Segment for carrying:
        • Up-link traffic from the subscribers (relay access mode)
        • Backward link of the next hop RS.
  • This segment may either be split into dedicated and shared sub-channel groups or alternatively different segments may be allocated to the dedicated and shared UL RS traffic. BS downlink traffic may also be scheduled during the shared part of the relay segment, if it does not create interference.
  • The RS is isolated in the access activity (RS-MS) from the BS due to the different sub-channel segment used and the significant distance between the RS and the BS. The isolation may further be increased by using directional antenna for the relay access operation and the feeding link (BS-RS link).
  • The functional description of the BS/Relay during time partition 1 is demonstrated in FIG. 5, where the relay is the focal point of the receiving (Rx) activity.
  • Time Partition 2 (BS Rx, RS Tx)
  • This time partition may include the following segments:
      • BS UL Segment carrying:
        • BS access traffic (SS transmissions).
        • BS-RS backward link
  • According to one embodiment of the present invention, this segment may carry at least two different
  • STC modes: one for the BS-SS communications (sub-channel group for the BS access mode) and one for the BS-RS communications. Different sub-channel groups are allocated for this activity.
  • During the BS UL transmissions, the RS is in transmitting mode.
      • DL Relay Segment carrying:
        • Downlink RS access traffic to the SSs associated with that RS. This segment may be split into dedicated and shared segments or different segments may be allocated for the dedicated and shared DL RS traffic. The shared segment may also be used by the up-link BS activity as long as it does not create interference to the operation of the relays.
        • Forward link to the next hop RS.
        • There is interference potential between:
        • 1. Transmission of communications from the SS to the BS and the reception of communications sent from the relay to the SS (SS to SS interference);
        • 2. Transmission of communications from the SS to the relay and to the BS (SS to BS interference). This scenario is less problematic, due to the higher separation distance.
  • The possible isolation for the first scenario is the SS-SS separation (90-100 dB in NLOS for 100 m) and the segment separation (25 dB while using adjacent carriers and 40 dB while using alternate carriers). If the interference is not overcome, the scheduling of the interfering SSs shall be carried out in such a way that they are separated in the time domain, even if the penalty is some delay for such SS. Another possibility could be to schedule the interfering SSs in different frames. Example 2 discussed hereinbelow resolves this potential interference.
  • FIG. 6 describes the functional operation during time partition 2. The relay is presented as the central transmitting point.
  • Example 1 Frame Structure
  • FIG. 7 demonstrates a functional description of the BS/Relay operation according to some embodiments of the present invention. The BS is considered to be located at HOP 0, while the first relay is located at HOP 1. The frame partition starts with the BS DL, which is also relevant for relay stations located at HOP 2 n. In FIG. 7 the left time partition corresponds to time partition 1, whereas the right time partition corresponds to time partition 2.
  • For each functional behavior a segment in the OFDMA domain is allocated.
  • A relay transmits in two different directions at the same time. Each transmission uses the suitable segments associated with a specific antenna.
  • UL and DL activities are mixed within the frame. The permutations used for UL and DL are compatible, but not necessary identical.
  • The Frame Control Header (FCH) is sent in all DL segments which are intended for different MIMO/STC modes or for different antennae. The FCH may be sent at the start of a multi-frame only. Preambles are sent in DL but can be sent also in up-link.
  • The above described scheme has the advantage of minimizing the number of switching points in the relay operation and allows the same sub-frame duration as in regular TDD operation.
  • Example 2 Frame Structure
  • In this example the transmitting activity for BS/RS in HOP 2 n is separated in the time domain from the receiving activity of the relay located at HOP 2 n+1. FIG. 8 is an example of such a frame structure, in which there is a separation in the time domain of the SS receiving and transmitting activities.
  • Multi Hop-Operation
  • The following Table 1 illustrates the multi-hop operation for 6 Hops.
  • TABLE 1
    Propagation times
    Frame
    1, Frame 1, Frame 2, Frame 2, Frame 3, Frame 3, Frame 4,
    BS DL BS UL BS DL BS UL BS DL BS UL BS DL
    BS −> RS1 RS1 −> BS RS2 −> RS1 RS3 −> RS2 RS4 −> RS3 RS5 −> RS4 RS6 −> RS5
    RS1 −> RS2 RS2 −> RS3 RS3 > RS4 RS4 −> RS5 RS5 > RS6
  • As can be seen from the above table, the propagation time from BS to RS6 is only 3 MAC frames.
  • FDD Operation
  • The FDD operation makes use of the frequency f1 for Tx of the BS and frequency f2 for Tx of the SS, where typically f1>f2.
  • An example of operating in time partition 1 is presented in FIG. 10 whereas operating in time partition 2 is illustrated in FIG. 11.
  • During time partition 1, the relay may transmit on both f1 and f2, while during time partition 2 the relay receives on both f1 and f2. According to some embodiments of the present invention, a duplexer is not needed, because there is no simultaneous reception and transmission on different frequencies. The time separation for the SS transmission and reception is generally not necessary in FDD mode, because the separation is done in the frequency domain by using different receiving and transmitting frequencies. The BS may operate in a full duplex mode.
  • FDD Frame Structure
  • The FDD frame structure is illustrated in FIG. 11. In order to ease the understanding of the reader, the operation on frequency channels f1 and f2 is illustrated by using a common frame structure. However, in practice, the segments which are used only for f1 shall be extended so as to occupy the full channel operating on f1. Similarly, the segments which are used only for f2 shall be extended so as to occupy the full channel operating on f2.
  • The main advantages of the solution proposed by this embodiment of the present invention are:
      • Lower MAC overheads;
      • Better granularity for resource allocations (as opposed to the time domain where the resources' allocation is more or less fixed by the sub-frame size and number);
      • Support for MIMO in BS-RS communication;
        • Significant lower data traffic forward delays. Only one frame is needed for 2 hops; and
      • Better spectral efficiency resulting from the usage of “shared segments”.
  • It should be understood that various embodiments of the present invention may relate to any OFDMA/multi-carrier based systems such as LTE.
  • FIGS. 12 to 15 demonstrate different concepts of time separation which are helpful for reducing the SS-SS interference, without creating additional time partitions for the relay feeding traffic (BS-RS or RS1-RS2).
  • In the example presented in FIG. 12 the operation of the BS, RS in odd-hop and RS in even hop on different rows. There are only two time partitions, with a gap corresponding to Tx-Rx or Rx-Tx transition. The MSs may be either in a Tx or Rx state during the same time partition.
  • In FIG. 13, the MS transmissions and receptions to/from the BS and RSs can be time separated. The MS connected to BS and RS in even hop, receives traffic at the beginning of the frame (time partition 1), while the transmission of the MS to the RS at odd hop is scheduled after ending the previous receiving activity. In a similar mode, during time partition 2, the MS connected to BS and RS at even hop transmits traffic at the beginning of the frame; the receiving activity of the MS from the RS at odd hop is scheduled after ending the previous transmitting activity. The activity along the feeding link (BS-RS) can take place in parallel with the access activity, having no reciprocal interference.
  • In FIG. 14 the time separation is extended for separating the interfering receiving and transmitting activities of relays in different hops.
  • In FIG. 15 the access activities are totally separated from the feeding activities. In addition, the relays and BS transmit to MS at the same time.
  • Although the present invention has been demonstrated particularly as a solution for IEEE 802.16m, still it should be appreciated by those skilled in the art that the present invention should be understood to encompass all similar systems where OFDMA sub-channel partitions or multi-carriers may be used.
  • It is to be understood that the present invention has been described using non-limiting detailed descriptions of embodiments thereof that are provided by way of example and are not intended to limit the scope of the invention. It should be understood that features and/or steps described with respect to one embodiment may be used with other embodiments and that not all embodiments of the invention have all of the features and/or steps shown in a particular figure or described with respect to one of the embodiments. Variations of embodiments described will occur to persons of the art.
  • It is noted that some of the above described embodiments describe the best mode contemplated by the inventors and therefore include structure, acts or details of structures and acts that may not be essential to the invention and which are described as examples. Structure and acts described herein are replaceable by equivalents which perform the same function, even if the structure or acts are different, as known in the art. Therefore, the scope of the invention is limited only by the elements and limitations as used in the claims. When used in the following claims, the terms “comprise”, “include”, “have” and their conjugates mean “including but not limited to”

Claims (9)

1. A method for conveying wireless communications in a wireless communications network comprising at least one base station, at least one first relay station and a plurality of subscriber stations, and wherein said at least one first relay station is operative to simultaneously transmit communications to or receive communications from at least two recipients along a shared frequency channel and wherein said at least two recipients are wireless network entities selected from among:
said base station and at least one subscriber station selected from among said plurality of subscriber stations; or
at least one other relay station and at least one subscriber station selected from among said plurality of subscriber stations; or
said base station and at least one other relay station.
2. A method according to claim 1, wherein said wireless communications network further comprises at least one second relay station, and wherein said at least one second relay station is operative to simultaneously transmit communications to or receive communications from at least two recipients along a shared frequency channel, and wherein said at least two recipients are wireless network entities selected from among:
said at least one first relay station and at least one subscriber station selected from among said plurality of subscriber stations; or
at least one third relay station and at least one subscriber station selected from among said plurality of subscriber stations; or
said at least one first relay station and at least one third relay station,
and wherein said at least one third relay station is not operative to exchange communications directly with either one of said base station and said at least one first relay station.
3. A method according to claim 1, wherein at least one member of the group consisting of: said base station, said at least one first relay station and said at least one second relay station, is operative to simultaneously transmit or receive communications directed to/from different recipients by transmitting/receiving said communications along at least one sub-channel selected from among a plurality of OFDMA sub-channels or along at least one sub-carrier selected from among a plurality of sub-carriers.
4. A method according to claim 3, wherein said at least one sub-channel or said at least one sub-carrier is used simultaneously by two members of the group consisting of:
at least two subscriber stations each connected either to a different relay station or connected to a base station and a relay station, or
a relay station and said base station; or
two relay stations.
5. A method according to claim 1, wherein transmission and reception intervals for at least one subscriber station to communicate with said base station, and for at least one other subscriber station to communicate with said first relay station, are scheduled at different time intervals.
6. A method according to claim 2, wherein transmission and reception intervals for at least one subscriber station to communicate with said first relay station and for at least one other subscriber station to communicate with said second relay station, are scheduled at different time intervals.
7. A method according to claim 1, wherein at least one relay station is operative in accordance with a TDD or FDD modes of operation.
8. A method according to claim 7, wherein said at least one relay station is operative during at least one interval while using two different frequency channels for simultaneously transmit or simultaneously receive communications to/from at least two wireless network entities.
9. A method according to claim 2, wherein at least one member of the group consisting of: said base station, said at least one first relay station and said at least one second relay station, is operative to simultaneously transmit or receive communications directed to/from different recipients by transmitting/receiving said communications along at least one sub-channel selected from among a plurality of OFDMA sub-channels or along at least one sub-carrier selected from among a plurality of sub-carriers.
US12/419,580 2008-04-07 2009-04-07 Wireless communications network comprising multi-hop relay stations Abandoned US20090252203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/157,380 US20140161021A1 (en) 2008-04-07 2014-01-16 Wireless communications network comprising multi-hop relay stations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IL190659A IL190659A0 (en) 2008-04-07 2008-04-07 Wireless communication network with relay stations
IL190659 2008-07-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/157,380 Division US20140161021A1 (en) 2008-04-07 2014-01-16 Wireless communications network comprising multi-hop relay stations

Publications (1)

Publication Number Publication Date
US20090252203A1 true US20090252203A1 (en) 2009-10-08

Family

ID=40933599

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/419,580 Abandoned US20090252203A1 (en) 2008-04-07 2009-04-07 Wireless communications network comprising multi-hop relay stations
US12/495,975 Expired - Fee Related US7929468B2 (en) 2008-04-07 2009-07-01 Method for improving coexistence between adjacent TDD and FDD wireless networks
US14/157,380 Abandoned US20140161021A1 (en) 2008-04-07 2014-01-16 Wireless communications network comprising multi-hop relay stations

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/495,975 Expired - Fee Related US7929468B2 (en) 2008-04-07 2009-07-01 Method for improving coexistence between adjacent TDD and FDD wireless networks
US14/157,380 Abandoned US20140161021A1 (en) 2008-04-07 2014-01-16 Wireless communications network comprising multi-hop relay stations

Country Status (3)

Country Link
US (3) US20090252203A1 (en)
EP (1) EP2109334A3 (en)
IL (1) IL190659A0 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098037A1 (en) * 2008-10-20 2010-04-22 Qinghua Li Apparatus,systems and methods adapted for opportunistic forwarding of uplink short messages in wireless metropolitan area networks
US20110170460A1 (en) * 2010-01-10 2011-07-14 Alvarion Ltd. Apparatus and system for using relay station in a tdd wireless network
WO2011052964A3 (en) * 2009-10-28 2011-10-20 Lg Electronics Inc. Method for transmitting and receiving signal of relay in radio communication system supporting multiple carriers
US20120082071A1 (en) * 2009-06-12 2012-04-05 Huawei Technologies Co., Ltd. System Compatibility Method and Apparatus
US20140269560A1 (en) * 2013-03-15 2014-09-18 Robert Bosch Gmbh Method for Robust Real-Time Wireless Industrial Communication
US9949134B2 (en) 2011-02-18 2018-04-17 Zte Corporation Method and system for providing service from TDD cell to terminal

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056425A1 (en) * 2006-11-10 2008-05-15 Fujitsu Limited Wireless communication system and wireless terminal device
US8730853B2 (en) * 2008-09-05 2014-05-20 Mediatek Inc. Methods for responding to co-located coexistence (CLC) request from a mobile electronic device and communications apparatuses capable of controlling multi-radio coexistence
US9055105B2 (en) * 2009-05-29 2015-06-09 Nokia Technologies Oy Method and apparatus for engaging in a service or activity using an ad-hoc mesh network
KR101666009B1 (en) * 2009-10-22 2016-10-14 삼성전자주식회사 Communication system of detecting victim terminal and performing interference coordination in multi-cell environments
US20110142028A1 (en) * 2009-12-10 2011-06-16 Nokia Corporation Synchronization via additional beacon transmission
US8842605B2 (en) * 2009-12-10 2014-09-23 Nokia Corporation Network discovery in wireless communication systems
US8774021B2 (en) 2009-12-10 2014-07-08 Nokia Corporation Data-related task support in wireless communication systems
GB2478810B (en) * 2009-12-31 2012-03-21 Intel Corp Distributed simultaneous transmit and receive relay system
US9420599B2 (en) * 2010-03-24 2016-08-16 Mediatek Inc. Synchronized activity bitmap generation method for co-located coexistence (CLC) devices
US20110250919A1 (en) * 2010-04-13 2011-10-13 Qualcomm Incorporated Cqi estimation in a wireless communication network
US8451789B2 (en) * 2010-06-15 2013-05-28 Nokia Corporation Method to request resources in TV white spaces type environment
CN102387506B (en) * 2010-08-30 2015-06-03 中兴通讯股份有限公司 Physical resource configuring and signal transmitting method and system when communication systems coexist
US8412247B2 (en) 2010-09-03 2013-04-02 Nokia Corporation Method for generating a coexistence value to define fair resource share between secondary networks
US8385286B2 (en) 2010-09-03 2013-02-26 Nokia Corporation Resource sharing between secondary networks
US8681660B2 (en) * 2010-10-01 2014-03-25 Clearwire Ip Holdings Llc Enabling coexistence between FDD and TDD wireless networks
US8908571B2 (en) * 2010-10-01 2014-12-09 Clearwire Ip Holdings Llc Enabling coexistence between wireless networks
US8363602B2 (en) 2011-01-14 2013-01-29 Nokia Corporation Method, apparatus and computer program product for resource allocation of coexistent secondary networks
US8514802B2 (en) 2011-05-04 2013-08-20 Nokia Corporation Method to evaluate fairness of resource allocations in shared bands
US8711740B2 (en) * 2011-06-23 2014-04-29 Qualcomm Incorporated Multi-radio coexistence
US8929831B2 (en) 2011-07-18 2015-01-06 Nokia Corporation Method, apparatus, and computer program product for wireless network discovery based on geographical location
US8804589B2 (en) 2011-10-14 2014-08-12 Nokia Corporation Adaptive awake window
US10880907B2 (en) 2011-11-04 2020-12-29 Sharp Kabushiki Kaisha In-device coexistence interference avoidance (IDC)
US9019909B2 (en) 2011-12-06 2015-04-28 Nokia Corporation Method, apparatus, and computer program product for coexistence management
GB2498924A (en) * 2012-01-05 2013-08-07 Renesas Mobile Corp Allocating resources between two wireless networks on an unlicensed band
US8909274B2 (en) 2012-03-12 2014-12-09 Nokia Corporation Method, apparatus, and computer program product for resource allocation conflict handling in RF frequency bands
US9473946B2 (en) 2012-03-12 2016-10-18 Nokia Technologies Oy Method, apparatus, and computer program product for temporary release of resources in radio networks
US9504057B2 (en) * 2012-05-11 2016-11-22 Apple Inc. Methods and apparatus for in-device coexistence detection and mitigation
US8942701B2 (en) 2012-08-14 2015-01-27 Nokia Corporation Method, apparatus, and computer program product for transferring responsibility between network controllers managing coexistence in radio frequency spectrum
US9107089B2 (en) 2012-11-09 2015-08-11 Nokia Technologies Oy Method, apparatus, and computer program product for location based query for interferer discovery in coexistence management system
US9426662B2 (en) 2013-06-26 2016-08-23 Cable Television Laboratories, Inc. Capacity sharing between wireless systems
US10091769B2 (en) 2014-07-29 2018-10-02 Cable Television Laboratories, Inc. LTE signaling in RF bands with competing communication systems
US9894669B2 (en) 2014-08-26 2018-02-13 Sprint Spectrum L.P. Quality of service enhancement for wireless relay networks
CN107534896B (en) 2015-05-14 2021-09-14 有线电视实验室公司 Hybrid automatic repeat request (HARQ) in listen-before-talk systems
CN108924899B (en) * 2018-06-28 2021-10-26 太原科技大学 Double-relay selection method of two-hop multi-relay system
CN111726311B (en) * 2019-03-18 2021-10-22 华为技术有限公司 Data channel transmission method and device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883884A (en) * 1996-04-22 1999-03-16 Roger F. Atkinson Wireless digital communication system having hierarchical wireless repeaters with autonomous hand-off
US6061356A (en) * 1996-11-25 2000-05-09 Alcatel Internetworking, Inc. Method and apparatus for switching routable frames between disparate media
US6970682B2 (en) * 2001-04-27 2005-11-29 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US20070086368A1 (en) * 2005-10-18 2007-04-19 Samsung Electronics Co., Ltd. Apparatus and method for supporting multiple links in a network using frequency bands
US7218891B2 (en) * 2003-03-31 2007-05-15 Nortel Networks Limited Multi-hop intelligent relaying method and apparatus for use in a frequency division duplexing based wireless access network
US20070155315A1 (en) * 2006-01-03 2007-07-05 Samsung Electronics Co., Ltd. Apparatus and method for transparent relaying in a multi-hop relay cellular network
US20070217367A1 (en) * 2006-03-03 2007-09-20 Samsung Electronics Co., Ltd. Apparatus and method for supporting relay service in a multi-hop relay broadband wireless access communication system
US20070280188A1 (en) * 2006-05-11 2007-12-06 Samsung Electronics Co., Ltd. Apparatus and method for providing relay link zone information in a multi-hop relay Broadband Wireless Access communication system
US20080045139A1 (en) * 2006-08-18 2008-02-21 Wei-Peng Chen System and Method for Reusing Wireless Resources in a Wireless Network
US7386036B2 (en) * 2003-12-31 2008-06-10 Spyder Navigations, L.L.C. Wireless multi-hop system with macroscopic multiplexing
US20080227386A1 (en) * 2007-03-16 2008-09-18 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
US20080242291A1 (en) * 2007-03-27 2008-10-02 Samsung Electronics Co., Ltd. Method and system for transmitting/receiving data in communication system
US20090130975A1 (en) * 2006-03-31 2009-05-21 Matsushita Electric Industrial Co., Ltd. Radio communication apparatus and radio communication method
US20100296475A1 (en) * 2006-11-06 2010-11-25 Motorola, Inc. Method and apparatus for determining an appropriate link path in a multi-hop communication system
US20110110284A1 (en) * 2007-11-02 2011-05-12 Fujitsu Limited Network coding method and network coding apparatus
US7962091B2 (en) * 2008-03-14 2011-06-14 Intel Corporation Resource management and interference mitigation techniques for relay-based wireless networks

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732076A (en) * 1995-10-26 1998-03-24 Omnipoint Corporation Coexisting communication systems
US7177598B2 (en) * 2000-11-15 2007-02-13 Wi-Lan, Inc. Method and system for reducing channel interference in a frame-synchronized wireless communication system
GB2376602B (en) * 2001-06-15 2003-06-18 Motorola Inc A method for providing a communication channel in time division duplexing (TDD) mode between a TDD mobile and a TDD base station
GB2376607B (en) * 2001-06-15 2003-06-18 Motorola Inc A method for reducing interference to communications in time division duplexing (TDD) mode between a TDD mobile and a TDD base station
JP3938853B2 (en) * 2001-07-17 2007-06-27 株式会社エヌ・ティ・ティ・ドコモ Time slot allocation method, signal transmission method, radio base station controller, radio base station, and mobile station in mobile communication system
WO2004110091A1 (en) * 2003-06-05 2004-12-16 Keio University Radio communication apparatus, radio communication method, communication channel assigning method and assigning apparatus
IL160832A (en) * 2004-03-11 2009-02-11 Alvarion Ltd Spectrum sharing between wireless systems
PL1808038T3 (en) * 2004-10-20 2013-09-30 Deutsche Telekom Ag Cellular wide-area radio communications system with relay-enhanced cells
DE102005007326A1 (en) * 2005-02-17 2006-09-07 Siemens Ag Dynamic allocation of radio resources in a multi-carrier communication system
WO2007037636A2 (en) * 2005-09-28 2007-04-05 Lg Electronics Inc. A method of identifying a space-time encoded signal in a wireless communication system
US8774019B2 (en) * 2005-11-10 2014-07-08 Apple Inc. Zones for wireless networks with relays
US20080165881A1 (en) * 2007-01-08 2008-07-10 Zhifeng Tao Method for Accessing Channels in OFDMA Mobile Multihop Relay Networks

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883884A (en) * 1996-04-22 1999-03-16 Roger F. Atkinson Wireless digital communication system having hierarchical wireless repeaters with autonomous hand-off
US6061356A (en) * 1996-11-25 2000-05-09 Alcatel Internetworking, Inc. Method and apparatus for switching routable frames between disparate media
US6970682B2 (en) * 2001-04-27 2005-11-29 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US7218891B2 (en) * 2003-03-31 2007-05-15 Nortel Networks Limited Multi-hop intelligent relaying method and apparatus for use in a frequency division duplexing based wireless access network
US7386036B2 (en) * 2003-12-31 2008-06-10 Spyder Navigations, L.L.C. Wireless multi-hop system with macroscopic multiplexing
US20070086368A1 (en) * 2005-10-18 2007-04-19 Samsung Electronics Co., Ltd. Apparatus and method for supporting multiple links in a network using frequency bands
US20070155315A1 (en) * 2006-01-03 2007-07-05 Samsung Electronics Co., Ltd. Apparatus and method for transparent relaying in a multi-hop relay cellular network
US20070217367A1 (en) * 2006-03-03 2007-09-20 Samsung Electronics Co., Ltd. Apparatus and method for supporting relay service in a multi-hop relay broadband wireless access communication system
US20090130975A1 (en) * 2006-03-31 2009-05-21 Matsushita Electric Industrial Co., Ltd. Radio communication apparatus and radio communication method
US20070280188A1 (en) * 2006-05-11 2007-12-06 Samsung Electronics Co., Ltd. Apparatus and method for providing relay link zone information in a multi-hop relay Broadband Wireless Access communication system
US20080045139A1 (en) * 2006-08-18 2008-02-21 Wei-Peng Chen System and Method for Reusing Wireless Resources in a Wireless Network
US20100296475A1 (en) * 2006-11-06 2010-11-25 Motorola, Inc. Method and apparatus for determining an appropriate link path in a multi-hop communication system
US20080227386A1 (en) * 2007-03-16 2008-09-18 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
US20080242291A1 (en) * 2007-03-27 2008-10-02 Samsung Electronics Co., Ltd. Method and system for transmitting/receiving data in communication system
US20110110284A1 (en) * 2007-11-02 2011-05-12 Fujitsu Limited Network coding method and network coding apparatus
US7962091B2 (en) * 2008-03-14 2011-06-14 Intel Corporation Resource management and interference mitigation techniques for relay-based wireless networks

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098037A1 (en) * 2008-10-20 2010-04-22 Qinghua Li Apparatus,systems and methods adapted for opportunistic forwarding of uplink short messages in wireless metropolitan area networks
US8134912B2 (en) * 2008-10-20 2012-03-13 Intel Corporation Apparatus, systems and methods adapted for opportunistic forwarding of uplink short messages in wireless metropolitan area networks
US20120082071A1 (en) * 2009-06-12 2012-04-05 Huawei Technologies Co., Ltd. System Compatibility Method and Apparatus
US9173227B2 (en) * 2009-06-12 2015-10-27 Huawei Technologies Co., Ltd. System compatibility method and apparatus
WO2011052964A3 (en) * 2009-10-28 2011-10-20 Lg Electronics Inc. Method for transmitting and receiving signal of relay in radio communication system supporting multiple carriers
US8737289B2 (en) 2009-10-28 2014-05-27 Lg Electronics Inc. Method for transmitting and receiving signal of relay in radio communication system supporting multiple carriers
US20110170460A1 (en) * 2010-01-10 2011-07-14 Alvarion Ltd. Apparatus and system for using relay station in a tdd wireless network
US8483204B2 (en) 2010-01-10 2013-07-09 Alvarion Ltd. Apparatus and system for using relay station in a TDD wireless network
US9949134B2 (en) 2011-02-18 2018-04-17 Zte Corporation Method and system for providing service from TDD cell to terminal
US20140269560A1 (en) * 2013-03-15 2014-09-18 Robert Bosch Gmbh Method for Robust Real-Time Wireless Industrial Communication
US9439194B2 (en) * 2013-03-15 2016-09-06 Robert Bosch Gmbh Method for robust real-time wireless industrial communication

Also Published As

Publication number Publication date
US20140161021A1 (en) 2014-06-12
US7929468B2 (en) 2011-04-19
US20100002608A1 (en) 2010-01-07
IL190659A0 (en) 2008-12-29
EP2109334A3 (en) 2012-08-29
EP2109334A2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
US20140161021A1 (en) Wireless communications network comprising multi-hop relay stations
EP2127157B1 (en) Radio resource management in wireless cellular networks having multi-hop relay stations
EP2239898B1 (en) Pilot transmission by relay stations in a multihop relay communication system
EP1942588B1 (en) Apparatus and method for transmitting frame information in multi-hop relay broadband wireless communication system
US8824355B2 (en) Communication system, communication apparatus, communication method and computer program product
KR101511786B1 (en) Wireless communication system having frequency division duplex relay station and method for utilizing radio resources for the wireless communication system
EP1890402B1 (en) Apparatus and method for providing relay service in multi-hop relay broadband wireless access communication system
KR101169541B1 (en) Method of transmitting downlink data in multi-cell cooperative wireless communication system
EP2471326B1 (en) Wireless communication device and method
US8265044B2 (en) Method, system and base station using frame configuration which supports relay for wireless transmission
US20110243059A1 (en) Apparatus and method for interleaving data in a relay physical downlink control channel (r-pdcch)
US20070081502A1 (en) Apparatus and method for constructing a frame to support multilink in multi-hop relay cellular network
JP5191202B2 (en) Wireless communication system, method, and data structure
EP2255569B1 (en) Method and base station with relays in multi-user mimo systems
US9083396B2 (en) OFDMA-based operation of a wireless subscriber terminal in a plurality of cells
US8509177B2 (en) Method for transmitting communications in a wireless network using different re-use schemes
KR20070090432A (en) Communication method via relay station and data frame therefor in mobile communications system
US8767613B2 (en) Method and apparatus for allocating wireless resource in wireless communication system including relay station
Izumikawa et al. MAP multiplexing in IEEE 802.16 mobile multi-hop relay
KR20130038784A (en) Method for transmitting control channel and relay system for the same
Muñoz et al. Resource Management for Relay-Enhanced WiMax: OFDM and OFDMA

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALVARION LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOLDHAMER, MARIANA;REEL/FRAME:022861/0504

Effective date: 20090420

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:ALVARION LTD;REEL/FRAME:027355/0203

Effective date: 20110621

AS Assignment

Owner name: SPARKMOTION INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALVARION LTD.;REEL/FRAME:029713/0717

Effective date: 20120928

Owner name: ALVARION LTD., ISRAEL

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:029712/0807

Effective date: 20120928

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ALVARION LTD., ISRAEL

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:042459/0026

Effective date: 20170309