US9712313B2 - Systems for multi-peak-filter-based analog self-interference cancellation - Google Patents

Systems for multi-peak-filter-based analog self-interference cancellation Download PDF

Info

Publication number
US9712313B2
US9712313B2 US14/931,669 US201514931669A US9712313B2 US 9712313 B2 US9712313 B2 US 9712313B2 US 201514931669 A US201514931669 A US 201514931669A US 9712313 B2 US9712313 B2 US 9712313B2
Authority
US
United States
Prior art keywords
signal
filter
analog
filters
signal path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/931,669
Other versions
US20160127112A1 (en
Inventor
Joseph Shalizi
Mayank Jain
Jung-Il Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Kumu Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumu Networks Inc filed Critical Kumu Networks Inc
Priority to US14/931,669 priority Critical patent/US9712313B2/en
Assigned to Kumu Networks, Inc. reassignment Kumu Networks, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, JUNG-IL, JAIN, MAYANK, SHALIZI, Joseph
Publication of US20160127112A1 publication Critical patent/US20160127112A1/en
Application granted granted Critical
Publication of US9712313B2 publication Critical patent/US9712313B2/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Kumu Networks, Inc.
Assigned to Kumu Networks, Inc. reassignment Kumu Networks, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHALIZI, Joseph
Assigned to Kumu Networks, Inc. reassignment Kumu Networks, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, JUNG IL
Assigned to Kumu Networks, Inc. reassignment Kumu Networks, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JAIN, MAYANK
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • This invention relates generally to the wireless communications field, and more specifically to new and useful systems for multi-peak-filter-based analog self-interference cancellation.
  • FIG. 1 is a schematic representation of a full-duplex transceiver
  • FIG. 2 is a schematic representation of a system of a preferred embodiment
  • FIG. 3 is a schematic representation of a receiver of a system of a preferred embodiment
  • FIG. 4 is a schematic representation of a transmitter of a system of a preferred embodiment
  • FIGS. 5A and 5B are schematic representations of signal couplers of a system of a preferred embodiment
  • FIG. 6 is a schematic representation of an analog self-interference canceller of a system of a preferred embodiment
  • FIG. 7 is an example view of a desired self-interference canceller frequency response
  • FIGS. 8A, 8B, and 8C are example views of frequency responses of a set of basis filters of a system of a preferred embodiment
  • FIG. 9 is an example view of frequency responses and time delays of a set of basis filters of a system of a preferred embodiment.
  • FIG. 10 is a schematic representation of an analog self-interference canceller of a system of a preferred embodiment.
  • Wireless communications systems have revolutionized the way the world communicates, and the rapid growth of communication using such systems has provided increased economic and educational opportunity across all regions and industries.
  • the wireless spectrum required for communication is a finite resource, and the rapid growth in wireless communications has also made the availability of this resource ever scarcer.
  • spectral efficiency has become increasingly important to wireless communications systems.
  • full-duplex wireless communications systems have substantial value to the wireless communications field, such systems have been known to face challenges due to self-interference; because reception and transmission occur at the same time on the same channel, the received signal at a full-duplex transceiver may include undesired signal components from the signal being transmitted from that transceiver. As a result, full-duplex wireless communications systems often include analog and/or digital self-interference cancellation circuits to reduce self-interference.
  • Full-duplex transceivers preferably sample transmission output as baseband digital signals, intermediate frequency (IF) analog signals, or as radio-frequency (RF) analog signals, but full-duplex transceivers may additionally or alternatively sample transmission output in any suitable manner (e.g., as IF digital signals). This sampled transmission output may be used by full-duplex transceivers to remove interference from received wireless communications data (e.g., as RF/IF analog signals or baseband digital signals).
  • an analog self-interference cancellation system is paired with a digital self-interference cancellation system.
  • the analog self-interference cancellation system removes a first portion of self-interference by summing delayed, phase shifted and scaled versions of the RF transmit signal to create an RF self-interference cancellation signal, which is then subtracted from the RF receive signal.
  • the analog cancellation system may perform similar tasks at an intermediate frequency. After the RF (or IF) receive signal has the RF/IF self-interference cancellation signal subtracted, it passes through an analog-to-digital converter of the receiver (and becomes a digital receive signal). After this stage, a digital self-interference cancellation signal (created by transforming a digital transmit signal) is then subtracted from the digital receive signal.
  • the systems described herein may increase performance of full-duplex transceivers as shown in FIG. 1 (and other applicable systems) by enabling highly effective analog self-interference cancellation while reducing self-interference cancellation circuit complexity and/or cost.
  • This reduction may be enabled by the use of multi-peak filters in the analog self-interference cancellation circuit, which may both allow a reduction in the number of signal components necessary to generate an effective self-interference cancellation signal (by enabling the formation of an efficient basis set of signal components) and a reduction in the number of delays (or delay length) used in the circuit (by designing the multi-peak filters to have inherent delay).
  • applicable systems include active sensing systems (e.g., RADAR), wired communications systems, wireless communications systems, channel emulators, reflectometers, PIM analyzers and/or any other suitable system, including communication systems where transmit and receive bands are close in frequency, but not overlapping.
  • a system 100 for self-interference canceller tuning includes a receiver 110 , a transmitter 120 , a signal coupler 130 , an analog self-interference canceller 140 , and a tuning circuit 160 .
  • the system may additionally or alternatively include a digital self-interference canceller 150 .
  • the system 100 functions to increase the performance of full-duplex transceivers (or other applicable systems) via implementation of a multi-peak filters in the analog self-interference canceller 140 .
  • the system 100 may perform self-interference cancellation by performing analog and/or digital self-interference cancellation based on any number of sampled analog and/or digital transmit signals.
  • the digital self-interference canceller 160 may sample a digital transmit signal, as shown in FIG. 2 , but the digital self-interference canceller 160 may additionally or alternatively sample an analog transmit signal (e.g., through an ADC coupled to the analog transmit signal).
  • the system 100 preferably performs analog and digital self-interference cancellation simultaneously and in parallel, but may additionally or alternatively perform analog and/or digital self-interference cancellation at any suitable times and in any order.
  • the system 100 is preferably implemented using both digital and analog circuitry.
  • Digital circuitry is preferably implemented using a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) and/or any suitable processor(s) or circuit(s).
  • Analog circuitry is preferably implemented using analog integrated circuits (ICs) but may additionally or alternatively be implemented using discrete components (e.g., capacitors, resistors, transistors), wires, transmission lines, waveguides, digital components, mixed-signal components, or any other suitable components.
  • the system 100 preferably includes memory to store configuration data, but may additionally or alternatively be configured using externally stored configuration data or in any suitable manner.
  • the receiver 110 functions to receive analog receive signals transmitted over a communications link (e.g., a wireless channel, a coaxial cable).
  • a communications link e.g., a wireless channel, a coaxial cable.
  • the receiver 110 preferably converts analog receive signals into digital receive signals for processing by a communications system, but may additionally or alternatively not convert analog receive signals (passing them through directly without conversion).
  • the receiver 110 is preferably a radio-frequency (RF) receiver, but may additionally or alternatively be any suitable receiver.
  • RF radio-frequency
  • the receiver 110 is preferably coupled to the communications link by a duplexer-coupled RF antenna, but may additionally or alternatively be coupled to the communications link in any suitable manner. Some examples of alternative couplings include coupling via one or more dedicated receive antennas. In another alternative coupling, the receiver 110 may be coupled to the communications link by a circulator-coupled RF antenna.
  • the receiver 110 preferably includes an analog-to-digital converter (ADC) 111 and a frequency downconverter 112 , as shown in FIG. 3 .
  • the receiver 110 may additionally include a low-noise amplifier 113 .
  • the receiver 110 may additionally or alternatively include amplifiers, filters, signal processors and/or any other suitable components.
  • the receiver 110 includes only analog processing circuitry (e.g., amplifiers, filters, attenuators, delayers). The receiver may function to scale, shift, and/or otherwise modify the receive signal.
  • the downconverter 112 functions to downconvert the analog receive signal from RF (or any other suitable frequency) to a baseband analog receive signal
  • the analog-to-digital converter (ADC) 111 functions to convert the baseband analog receive signal to a digital receive signal.
  • the ADC 111 may be any suitable analog-to-digital converter; e.g., a direct-conversion ADC, a flash ADC, a successive-approximation ADC, a ramp-compare ADC, a Wilkinson ADC, an integrating ADC, a delta-encoded ADC, a time-interleaved ADC, or any other suitable type of ADC.
  • a direct-conversion ADC e.g., a flash ADC, a successive-approximation ADC, a ramp-compare ADC, a Wilkinson ADC, an integrating ADC, a delta-encoded ADC, a time-interleaved ADC, or any other suitable type of ADC.
  • the frequency downconverter 112 functions to downconvert the carrier frequency of the analog receive signal to baseband, preparing it for conversion to a digital receive signal.
  • the downconverter 112 preferably accomplishes signal downconversion using heterodyning methods, but may additionally or alternatively use any suitable upconversion methods.
  • the downconverter 112 preferably includes a local oscillator (LO), a mixer, and a baseband filter.
  • the local oscillator functions to provide a frequency shift signal to the mixer; the mixer combines the frequency shift signal and the analog receive signal to create (usually two) frequency shifted signals, one of which is the baseband signal, and the baseband filter rejects signals other than the baseband analog receive signal.
  • the local oscillator is preferably a digital crystal variable-frequency oscillator (VFO) but may additionally or alternatively be an analog VFO or any other suitable type of oscillator.
  • VFO digital crystal variable-frequency oscillator
  • the local oscillator preferably has a tunable oscillation frequency but may additionally or alternatively have a static oscillation frequency.
  • the mixer is preferably an active mixer, but may additionally or alternatively be a passive mixer.
  • the mixer may comprise discrete components, analog ICs, digital ICs, and/or any other suitable components.
  • the mixer preferably functions to combine two or more electrical input signals into one or more composite outputs, where each output includes some characteristics of at least two input signals.
  • the baseband filter is preferably a lowpass filter with a tunable low-pass frequency. Additionally or alternatively, the baseband filter may be a lowpass filter with a set low-pass frequency, or any other suitable type of filter.
  • the baseband filter is preferably a passive filter, but may additionally or alternatively be an active filter.
  • the baseband filter is preferably implemented with analog circuit components, but may additionally or alternatively be digitally implemented.
  • the transmitter 120 functions to transmit signals of the communications system over a communications link to a second communications system.
  • the transmitter 120 preferably converts digital transmit signals into analog transmit signals.
  • the transmitter 120 is preferably a radio-frequency (RF) transmitter, but may additionally or alternatively be any suitable transmitter.
  • RF radio-frequency
  • the transmitter 120 is preferably coupled to the communications link by a duplexer-coupled RF antenna, but may additionally or alternatively be coupled to the communications link in any suitable manner. Some examples of alternative couplings include coupling via one or more dedicated transmit antennas. In another alternative coupling, the transmitter 120 may be coupled to the communications link by a duplexer-coupled RF antenna.
  • the transmitter 120 preferably includes a digital-to-analog converter (DAC) 121 and a frequency upconverter 122 , as shown in FIG. 4 .
  • the transmitter 120 may additionally include a power amplifier 123 .
  • the transmitter 120 may additionally or alternatively include amplifiers, filters, signal processors and/or any other suitable components.
  • the transmitter 120 may function to scale, shift, and/or otherwise modify the transmit signal.
  • the digital-to-analog converter (DAC) 121 functions to convert the digital transmit signal to a baseband analog transmit signal
  • the upconverter 122 functions to upconvert the baseband analog transmit signal from baseband to RF (or any other intended transmission frequency).
  • the DAC 121 may be any suitable digital-to-analog converter; e.g., a pulse-width modulator, an oversampling DAC, a binary-weighted DAC, an R-2R ladder DAC, a cyclic DAC, a thermometer-coded DAC, or a hybrid DAC.
  • a pulse-width modulator e.g., a pulse-width modulator, an oversampling DAC, a binary-weighted DAC, an R-2R ladder DAC, a cyclic DAC, a thermometer-coded DAC, or a hybrid DAC.
  • the frequency upconverter 122 functions to upconvert the carrier frequency of the baseband analog transmit signal to a radio frequency, preparing it for transmission over the communications link.
  • the upconverter 122 preferably accomplishes signal upconversion using heterodyning methods, but may additionally or alternatively use any suitable upconversion methods.
  • the upconverter 122 preferably includes a local oscillator (LO), a mixer, and an RF filter.
  • the local oscillator functions to provide a frequency shift signal to the mixer; the mixer combines the frequency shift signal and the baseband analog transmit signal to create (usually two) frequency shifted signals, one of which is the RF analog transmit signal, and the RF filter rejects signals other than the RF analog transmit signal.
  • the local oscillator is preferably a digital crystal variable-frequency oscillator (VFO) but may additionally or alternatively be an analog VFO or any other suitable type of oscillator.
  • VFO digital crystal variable-frequency oscillator
  • the local oscillator preferably has a tunable oscillation frequency but may additionally or alternatively have a static oscillation frequency.
  • the mixer is preferably an active mixer, but may additionally or alternatively be a passive mixer.
  • the mixer may comprise discrete components, analog ICs, digital ICs, and/or any other suitable components.
  • the mixer preferably functions to combine two or more electrical input signals into one or more composite outputs, where each output includes some characteristics of at least two input signals.
  • the RF filter is preferably a bandpass filter centered around a tunable radio frequency. Additionally or alternatively, the RF filter may be a bandpass filter centered around a set radio frequency, or any other suitable type of filter.
  • the RF filter is preferably a passive filter, but may additionally or alternatively be an active filter.
  • the RF filter is preferably implemented with analog circuit components, but may additionally or alternatively be digitally implemented.
  • the signal coupler 130 functions to allow signals to be split and/or joined.
  • the signal coupler 130 may be used to provide a sample of the analog transmit signal for the analog canceller 140 and/or the digital canceller 160 , as shown in FIG. 5A ; that is, the signal coupler 130 may serve as a transmit coupler.
  • the signal coupler 130 may also be used to combine one or more analog self-interference cancellation signals (from analog/digital cancellers) with the analog receive signal, as shown in FIG. 5B ; that is, the signal coupler 130 may serve as a receive coupler. Additionally or alternatively, the signal coupler 130 may be used for any other purpose.
  • the signal coupler 130 is preferably directly coupled to the transmitter 120 , but may additionally or alternatively be coupled indirectly to the transmitter 120 and/or be coupled to another suitable RF transmission source.
  • the signal coupler 130 preferably has at least two outputs; one coupled to antenna(e) (directly or indirectly) and another coupled to one or more of the analog canceller 140 and the digital canceller 150 .
  • the signal coupler 130 preferably routes the majority of input power to the antenna(e) output port, but may additionally or alternatively route power in any suitable manner (e.g., routing the majority of power to other output ports).
  • the signal coupler 130 may have any number of input and output ports, including bidirectional input/output ports.
  • the receive coupler 130 is preferably directly coupled to the receiver 110 , but may additionally or alternatively be coupled indirectly to the receiver 110 and/or be coupled to another suitable RF receiver.
  • the signal coupler 130 preferably has at least two inputs, one coupled to antenna(e) of the full-duplex radio (directly or indirectly) and another coupled to one or more of the analog canceller 140 and the digital canceller 150 .
  • the signal coupler 130 preferably couples the majority of power from both input ports to the receiver output port; this coupling preferably results in the receiver output port outputting a sum of one or more self-interference cancellation signals (generated by cancellers 140 / 150 ) and the RF receive signal (received at the antenna(e)). Additionally or alternatively, the signal coupler 130 may couple or route power in any suitable manner.
  • the signal coupler 130 may have any number of input and output ports, including bidirectional input/output ports.
  • the signal coupler 130 is preferably a short section directional transmission line coupler, but may additionally or alternatively be any power divider, power combiner, directional coupler, or other type of signal splitter.
  • the signal coupler 130 is preferably a passive coupler, but may additionally or alternatively be an active coupler (for instance, including power amplifiers).
  • the signal coupler 130 may comprise a coupled transmission line coupler, a branch-line coupler, a Lange coupler, a Wilkinson power divider, a hybrid coupler, a hybrid ring coupler, a multiple output divider, a waveguide directional coupler, a waveguide power coupler, a hybrid transformer coupler, a cross-connected transformer coupler, a resistive tee, and/or a resistive bridge hybrid coupler.
  • the output ports of the signal coupler 130 are preferably phase-shifted by ninety degrees, but may additionally or alternatively be in phase or phase shifted by a different amount (e.g., zero degrees, 180 degrees).
  • the system 100 preferably includes two signal couplers 130 (a transmit and a receive coupler); these signal couplers 130 preferably connect to a single antenna through a duplexer or circulator, but may additionally or alternatively connect to multiple antennae.
  • the transmit coupler and receive coupler connect to two separate antennae (e.g., a transmit antenna and a receive antenna); in another example, the transmit coupler and receive coupler both connect to the same two antennae.
  • the transmit coupler and receive coupler may additionally or alternatively connect to any suitable RF transmit and RF receive sources (e.g., an RF signal transmitted solely over coaxial cable). There may additionally or alternatively be filters, power amplifiers, and/or any other RF signal modifying components between the couplers 130 and antennae.
  • the analog self-interference canceller 140 functions to produce an analog self-interference cancellation signal from the analog transmit signal that can be combined with the analog receive signal to reduce self-interference present in the analog receive signal.
  • the analog self-interference canceller 140 is preferably designed to operate at a single radio frequency (RF) band, but may additionally or alternatively be designed to operate at multiple RF bands, at one or multiple intermediate frequency (IF) bands, or at any suitable frequency band.
  • RF radio frequency
  • IF intermediate frequency
  • the analog self-interference canceller 140 is preferably implemented as an analog circuit that transforms an RF transmit signal into an analog self-interference cancellation signal by combining a set of filtered, scaled, and/or delayed versions of the RF transmit signal, but may additionally or alternatively be implemented as any suitable circuit.
  • the analog self-interference canceller 140 may perform a transformation involving only a single version or copy of the RF transmit signal.
  • the transformed signal (the analog self-interference cancellation signal) preferably represents at least a part of the self-interference component received at the receiver 110 .
  • the analog self-interference canceller 140 is preferably adaptable to changing self-interference parameters in addition to changes in the analog transmit signal; for example, RF transceiver temperature, ambient temperature, antenna configuration, humidity, and RF transmitter power. Adaptation of the analog self-interference canceller 140 is preferably performed by the tuning circuit 160 , but may additionally or alternatively be performed by a control circuit or other control mechanism included in the canceller 140 or any other suitable controller.
  • the analog self-interference canceller 140 includes a signal divider 141 , scalers 142 , phase shifters 143 , delayers 144 , filters 145 , and signal combiners 146 , as shown in FIG. 6 .
  • the analog self-interference canceller 140 splits the transmit signal using the divider 141 , and transforms each signal path individually before recombining them at the signal combiner 146 .
  • the analog self-interference canceller 140 preferably transforms each signal path by scaling (with the scaler 142 ), phase shifting (with the phase shifter 143 ) and/or delaying (with the delayer 144 ) the signal paths, in addition to filtering each signal path with a filter 145 .
  • a plurality of the filters 145 are multi-peak filters, but filters 145 may additionally or alternatively be single-peak filters or any other suitable filter.
  • the filter 145 output is coupled to the scaler 142 input, the scaler 142 output is coupled to the phase shifter 143 input, and the phase shifter 143 output is coupled to the delayer 144 input.
  • the scaler 142 output is coupled to the phase shifter 143 input, and the phase shifter 143 output is coupled to the delayer 144 input, and the delayer 144 output is coupled to the filter 145 input.
  • each signal path (i.e., each path associated with a different filter 145 ) includes all three of a scaler 142 , a phase shifter 143 , and a delayer 144 ; in an alternate implementation, signal paths may include any subset of a scaler 142 , a phase shifter 143 , and a delayer 144 , or signal paths may included none of the set.
  • the signal divider 141 functions to split the transmit signal into multiple transmit signal paths, each preferably associated with a filter 145 . Alternatively, some signal paths may not comprise a filter 145 .
  • the signal divider 141 preferably splits the transmit signal into multiple transmit signals having substantially the same waveform as the input transmit signal and equal power; the signal divider 141 may additionally or alternatively split the transmit signal into multiple transmit signals having different power levels and/or containing different waveforms than the input transmit signal.
  • the signal divider 141 is preferably a transmission line power divider, but may additionally or alternatively be any suitable power divider, splitter, or coupler.
  • the signal divider 141 may additionally contain any suitable electronics for pre-processing the transmit signal; for example, the signal divider 141 may contain an amplifier to increase the power contained in one or more of the output transmit signals.
  • the scalers 142 function to scale transmit signal components; specifically, the scalers 142 effectively multiply the transmit signal components by a scale factor. For example, an attenuation of 34% might be represented as a scale factor of 0.66; a gain of 20% might be represented as a scale factor of 1.20; and an attenuation of 10% and a phase inversion might be represented as a scale factor of ⁇ 0.90.
  • Scale factors may be complex; for example, a scale factor of
  • the scalers 142 provide the weighting for the combination of self-interference components at the signal combiner 146 (e.g., a signal with scale factor 2 is weighted twice as heavily as one with a scale factor of 1).
  • the scalers 142 may include attenuators, amplifiers, phase inverters, and/or any other suitable components for scaling transmit signal components.
  • Attenuators may be resistive attenuators (T pad, Pi pad), amplifiers with less than unity gain, or any other suitable type of attenuator.
  • Amplifiers may be transistor amplifiers, vacuum tube amplifiers, op-amps, or any other suitable type of amplifier.
  • Phase inverters may be any phase inversion devices, including NPN/PNP phase inversion circuits and/or inverting amplifiers.
  • the scalers 142 preferably are capable of attenuation, gain, and phase inversion, but may alternatively be capable only of a subset of said capabilities.
  • Each scaler 142 preferably includes all three capabilities in a single device (e.g., an amplifier with tunable gain and two outputs, one inverted and one non-inverted) but may additionally or alternatively separate capabilities into different sections (e.g., an amplifier with tunable gain but no inversion capability, along with a separate phase inversion circuit).
  • the scalers 142 are preferably controlled by the tuning circuit 160 , but may additionally or alternatively be controlled in any suitable manner.
  • the tuning circuit 160 preferably controls scalers 142 by dynamically setting scale factors for each scaler 142 , but may additionally or alternatively control scalers 142 in any suitable manner.
  • Each phase shifter 143 functions to shift the phase of a signal path of the analog self-interference canceller 140 .
  • Phase shifters 143 can allow the self-interference cancellation signal to reflect the contributions of multiple signal components with offset phases.
  • Each phase shifter 143 preferably includes an impedance matching network at its input and output that compensates for variations in the phase shifter 143 input and output impedance (and/or phase shift amount) due to changes in signal component frequency or simply transforms the impedance to and from a suitable impedance level for the core of the phase shifter to a standardized impedance level (50 ohms).
  • the phase shifter 143 may not include impedance matching networks.
  • the impedance matching networks are preferably tunable (e.g., continuously or discretely variable) but may additionally or alternatively be static (i.e., the impedance transformation achieved by using the network is not variable).
  • the phase shifter 143 is preferably separated into a set of phase shifting stages. These phase shifting stages preferably may be switched ‘on’ (e.g., in signal path) or ‘off’ (e.g., bypassed, out of signal path), depending on control signals.
  • the resulting phase shift is determined by which stages are on and which stages are off; for example, a phase shifter 143 with a 900 degree phase shifting stage and a to degree phase shifting stage ‘on’ might cause a shift of 100 degrees in signal phase.
  • phase shifting stages preferably causes a set amount (i.e., non-variable amount) of phase shift.
  • phase shifting stages may include tunable phase-shift elements.
  • a phase shifting stage may include a varactor; by changing a control voltage of the varactor, the varactor's capacitance (and thus the amount of phase shift experienced by a signal passing through the stage) may be varied.
  • the phase shifters 143 are preferably controlled by the tuning circuit 160 , but may additionally or alternatively be controlled in any suitable manner.
  • the tuning circuit 160 preferably controls scalers 143 by dynamically setting phase shifts for each scaler 142 , but may additionally or alternatively control scalers 142 in any suitable manner.
  • the delayers 144 function to delay transmit signal components, preferably to match corresponding delays in received self-interference.
  • the delay introduced by each delayer 144 (also referred to as a delayer delay) is preferably fixed (i.e., the delayer 144 is a fixed delayer), but delayers 144 may additionally or alternatively introduce variable delays.
  • the delayer 144 is preferably implemented as an analog delay circuit (e.g., a bucket-brigade device, a long transmission line, a series of RC networks) but may additionally or alternatively be implemented in any other suitable manner. If the delayer 144 is a variable delayer, the delay introduced is preferably set by the tuning circuit 160 , but may additionally or alternatively be set in any suitable manner.
  • transmit signal components After transformation by a scaler 142 , phase shifter 143 , and/or a delayer 144 and filtering by a filter 145 , transmit signal components are transformed into self-interference cancellation signal components, which may be combined to form an self-interference cancellation signal.
  • any of the functions of the scaler 142 , phase shifter 143 , and delayer 144 may be performed by a combined circuit (e.g., the scaler 142 and phase shifter 143 may be integrated into a single circuit). Also note that while the scaler 142 , phase shifter 143 , and delayer 144 are shown within individual signal paths (i.e., between divider 141 and combiner 146 ) these components may additionally or alternatively be placed before the divider 141 or after the combiner 146 ; this is discussed in greater detail later in the present application.
  • Each filter 145 functions to transform transmit signal components according to the response of the filter, which may introduce a change in signal magnitude, signal phase, and/or signal delay.
  • the filters 145 preferably work in combination to create a set of signal components that may be weighted (using scalers 142 , phase shifters 143 , and/or delayers 144 ) to form a self-interference cancellation signal (i.e., a basis set).
  • the filters 145 may additionally be used to introduce delays to signal components passing through the filters 145 .
  • the filter 145 may produce both significant time delay and magnitude change for a given signal.
  • the filters 145 are preferably multi-peak bandpass filters formed from a combination (e.g., in series and/or in parallel) of resonant elements.
  • Resonant elements of the filters 145 are preferably formed by lumped elements, but may additionally or alternatively be distributed element resonators, ceramic resonators, SAW resonators, crystal resonators, cavity resonators, or any suitable resonators.
  • the filters 145 are preferably tunable such that one or more peaks of the filter 145 may be shifted.
  • one or more resonant elements of the filter 145 may include a variable shunt capacitance (e.g., a varactor or a digitally tunable capacitor) that enables filter peaks to be shifted.
  • filters 145 may be tunable by quality factor (i.e., Q may be modified by altering circuit control values), or filters 145 may be not tunable.
  • Filters 145 may include, in addition to resonant elements, delayers, phase shifters, and/or scaling elements.
  • the filters 145 are preferably passive filters, but may additionally or alternatively be active filters.
  • the filters 145 are preferably implemented with analog circuit components, but may additionally or alternatively be digitally implemented.
  • the center frequency of any tunable peak of a filter 145 is preferably controlled by the tuning circuit 160 , but may additionally or alternatively be controlled by any suitable system (including manually controlled, e.g. as in a mechanically tuned capacitor).
  • the filters 145 preferably form a basis set for a desired or predicted transformation function; that is, the spectral properties of filters 145 are preferably configured such that the number of signal paths required to produce a self-interference cancellation signal from a given analog transmit signal is reduced compared to a combination of simple (e.g., single peak) bandpass filters.
  • a basis set of filter responses may include one or more un-filtered signal components (e.g., one or more of the signal paths between the divider 141 and the combiner 146 have no filter 145 ).
  • a set of filters 145 is configured to have a single-peak filter and a plurality of multi-peak filters, such that all filters 145 of the set operate on the same frequency band (i.e., the outermost edges of all filters appear at roughly the same frequencies), but the frequencies are subdivided by an integer number of filter peaks, as shown in FIG. 9 .
  • the operable bandwidth may be defined from o to f.
  • the single peak-filter is centered at f/2, while the two-peak filter has peaks centered at f/4 and 3f/4, the three peak filter has peaks centered at f/6, f/2, and 5f/6.
  • the frequency relationship between the single-peak and two-peak filter may be alternatively stated as: the single-peak filter has a peak centered at a first frequency; wherein the two-peak filter has exactly two peaks centered at a second frequency and a third frequency respectively; the first frequency is twice the second frequency; the third frequency is three times the second frequency.
  • the three-peak filter (with peaks at fourth, fifth, and sixth frequencies) may be related as follows: the first frequency is three times the fourth frequency, the fifth frequency is three times the fourth frequency (i.e., is the same as the first frequency), and the sixth frequency is five times the fourth frequency.
  • center frequencies of an n-peak filter may be defined as
  • f n , i f 2 ⁇ n + i ⁇ f n , i ⁇ ⁇ 0 , n - 1 ⁇
  • Such filters 145 may be configured to have related time delays associated with the filters 145 ; for example, if a single peak filter has a delay D 0 +D for frequencies of the frequency band (in the previous example, between o and f), a two peak filter may be configured to have a delay of D 0 +2D; an n-peak filter may be configured to have a delay of D 0 +ND. In such a configuration, an unfiltered path may be configured to have a delay of D 0 .
  • Basis sets of filters as described above may be grouped and paired with static delayers 144 to create larger sets of potential delays.
  • one basis set of two filters 144 (and one unfiltered path) may be combined with the same basis set with the addition of a single delayer 144 having a delay of 3D to create a set of six signal components with delays ⁇ Do, Do+D, Do+2D, Do+3D, Do+4D, Do+5D ⁇ , as shown in FIG. 10 . Note that this is an arithmetic sequence of delays.
  • a scaler 142 may be configured to amplify a signal to counteract signal attenuation incurred by passing through the filter 145 .
  • a scaler 142 may be configured to attenuate a signal on a first signal path to match signal attenuation incurred by a signal passing through a filter on a second signal path.
  • the signal combiner 146 functions to combine the self-interference cancellation signal components into an analog self-interference cancellation signal; the analog self-interference cancellation signal may then be combined with an analog receive signal to remove self-interference.
  • the signal combiner 146 preferably combines self-interference cancellation signal components (resulting from multiple signal paths) and outputs the resulting analog self-interference cancellation signal.
  • the signal combiner 146 is preferably a transmission line coupler, but may additionally or alternatively be any suitable type of coupler (described in the signal coupler 130 sections).
  • the signal combiner 146 may additionally contain any suitable electronics for post-processing the self-interference cancellation signal before outputting it; for example, the signal combiner 146 may contain an amplifier to increase the power of the self-interference cancellation signal.
  • the self-interference canceller 140 may include multiple signal dividers 141 and/or combiners 146 , as shown in FIG. 10 .
  • the analog self-interference canceller 140 may perform self-interference cancellation at either or both of IF or RF bands. If the analog self-interference canceller 140 performs cancellation at IF bands, the analog self-interference canceller 140 preferably includes downconverters and upconverters (substantially similar to the downconverter 112 and upconverter 122 respectively).
  • the system 100 may include multiple analog self-interference cancellers operating in different frequency bands.
  • the digital self-interference canceller 150 functions to produce a digital self-interference cancellation signal from a digital transmit signal.
  • the digital self-interference cancellation signal is preferably converted to an analog self-interference cancellation signal (by a DAC) and combined with the analog self-interference cancellation signals to further reduce self-interference present in the RF receive signal at the receiver 110 . Additionally or alternatively, the digital self-interference cancellation signal may be combined with a digital receive signal.
  • the digital self-interference canceller 150 preferably samples the RF transmit signal of the transmitter 120 using an ADC (additionally or alternatively, the canceller 150 may sample the digital transmit signal or any other suitable transmit signal) and transforms the sampled and converted RF transmit signal to a digital self-interference signal based on a digital transform configuration.
  • the digital transform configuration preferably includes settings that dictate how the digital self-interference canceller 150 transforms the digital transmit signal to a digital self-interference signal (e.g. coefficients of a generalized memory polynomial used to transform the transmit signal to a self-interference signal).
  • the digital self-interference canceller 150 may be implemented using a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) and/or any suitable processor(s) or circuit(s).
  • the digital self-interference canceller 150 preferably includes memory to store configuration data, but may additionally or alternatively be configured using externally stored configuration data or in any suitable manner.
  • the digital self-interference canceller 150 is substantially similar to the digital self-interference canceller of U.S. patent application Ser. No. 14/456,320, filed 11 Aug. 2014, which is incorporated in its entirety by this reference.
  • the digital self-interference canceller 150 may couple to transmit and receive signals in a number of ways.
  • the digital self-interference canceller 150 may use a converted RF transmit signal as input as well as provide a converted digital self-interference cancellation signal as output.
  • the digital self-interference canceller 150 may use the digital transmit signal as input as a well as provide a digital self-interference cancellation signal as output (directly to the digital receive signal).
  • the digital self-interference canceller may additionally or alternatively couple to transmit signals in any combination of digital and analog receive signals.
  • the digital self-interference canceller 150 may additionally or alternatively couple to IF transmit signals and/or IF self-interference cancellation signals.
  • the tuning circuit 160 functions to control the configuration parameters of the analog canceller 140 .
  • the tuning circuit 160 may additionally or alternatively provide input to or control configuration parameters of the digital canceller 150 .
  • Configuration parameters may include pre-processing settings (at signal dividers 141 ), filter center frequency and/or Q factor (at filters 145 ), scale factor (at the scalers 142 ), phase change (at the phase shifters 143 ), delay (at the delayers 144 ), post-processing settings (at the signal combiner 146 ) and/or any other suitable configuration parameters.
  • the tuning circuit 160 preferably controls filter 145 center frequencies, scaler 142 scale factors (including gain/attenuation/phase inversion), phase shifter 143 phase shifts, and delayer 144 delays to create RF and/or IF self-interference cancellation signals that reflect some or all of the self-interference contained within received signals.
  • the tuning circuit 160 preferably sets the configuration state of the analog canceller 140 (where the state includes settings for each variable setting controlled by the tuning circuit 160 ) based upon the received RF/IF transmit signals, but may additionally or alternatively set the configuration state based on any other suitable input.
  • Suitable input may include signal data (e.g. IF transmit signal, digital transmit signal, RF receive signal), full-duplex radio settings (e.g. RF transmitter power, antenna position), full-duplex radio characteristics (e.g. receiver operating characteristics, transmitter operating characteristics), environmental data (e.g., transceiver temperature, ambient temperature, ambient humidity), and/or any other input relating to self-interference present in the receive signal.
  • the tuning circuit 160 preferably sets configuration states based on an algorithm responsive to input. This may include a state-choosing algorithm that selects from a set of pre-chosen states based on some input parameter set, a dynamic algorithm that generates states based on the input parameter set (as opposed to choosing from a limited state set), or any other suitable algorithm. Additionally or alternatively, the tuning circuit 160 may set configuration states in any suitable manner.
  • the tuning circuit 160 may adapt configuration states and/or configuration state generating/choosing algorithms using analytical methods, online gradient-descent methods (e.g., LMS, RLMS), and/or any other suitable methods.
  • the tuning circuit 160 may additionally or alternatively adapt configuration states and/or configuration state generating/choosing algorithms based on test input scenarios (e.g. scenarios when the signal received by the receiver 110 is known), scenarios where there is no input (e.g. the only signal received at the receiver 110 is the signal transmitted by the transmitter 120 ), or scenarios where the received signal is unknown. In cases where the received signal is an unknown signal, the tuning circuit 160 may perform adaptation based on historical received data (e.g. what the signal looked like ten seconds in the past) or any other suitable information.
  • the tuning circuit 160 may additionally or alternatively perform adaptation based on the content of RF and/or IF transmit signals; for instance, if the RF transmit signal is modulated in a particular way, the tuning circuit may perform adaptation such that when the RF self-interference signal is combined with the RF receive signal the detected modulation (as an indicator of self-interference) is reduced.
  • the tuning circuit 160 is preferably implemented as a programmable digital circuit, but may additionally or alternatively be implemented in any suitable digital or analog circuit, including implementation as software in a general purpose computing device.
  • cancellers 140 / 150 are preferably coupled to signal couplers 130 located after transmitter 120 outputs and before receiver 110 inputs, the cancellers 140 / 150 may additionally or alternatively be coupled to intermediate outputs and/or inputs (e.g., an output before the transmitter 120 output or an input after the receiver 110 input).

Abstract

A system for multi-peak filter-based analog self-interference cancellation includes a transmit coupler that samples the analog transmit signal to create a sampled analog transmit signal; an analog self-interference canceller, using multi-peak filters, that generates an analog self-interference cancellation signal; and a receive coupler that combines the analog self-interference cancellation signal with the analog receive signal.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application Ser. No. 62/074,512, filed on 3 Nov. 2014, which is incorporated in its entirety by this reference.
TECHNICAL FIELD
This invention relates generally to the wireless communications field, and more specifically to new and useful systems for multi-peak-filter-based analog self-interference cancellation.
BACKGROUND
Traditional wireless communication systems are half-duplex; that is, they are not capable of transmitting and receiving signals simultaneously on a single wireless communications channel. Recent work in the wireless communications field has led to advancements in developing full-duplex wireless communications systems; these systems, if implemented successfully, could provide enormous benefit to the wireless communications field. For example, the use of full-duplex communications by cellular networks could cut spectrum needs in half. One major roadblock to successful implementation of full-duplex communications is the problem of self-interference. While progress has been made in this area, many of the solutions intended to address self-interference are non-ideal; specifically, many self-interference cancellation solutions require a large number of self-interference signal components to generate effective self-interference cancellation signals, and thus require a large number of signal taps, increasing cancellation circuit cost, size, and complexity. Many of these same solutions also make use of delay circuits capable of generating long time delays, which also increase circuit cost, size, and complexity. Thus, there is a need in the wireless communications field to create new and useful systems for multi-peak-filter-based analog self-interference cancellation. This invention provides such new and useful systems.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 is a schematic representation of a full-duplex transceiver;
FIG. 2 is a schematic representation of a system of a preferred embodiment;
FIG. 3 is a schematic representation of a receiver of a system of a preferred embodiment;
FIG. 4 is a schematic representation of a transmitter of a system of a preferred embodiment;
FIGS. 5A and 5B are schematic representations of signal couplers of a system of a preferred embodiment;
FIG. 6 is a schematic representation of an analog self-interference canceller of a system of a preferred embodiment;
FIG. 7 is an example view of a desired self-interference canceller frequency response;
FIGS. 8A, 8B, and 8C are example views of frequency responses of a set of basis filters of a system of a preferred embodiment;
FIG. 9 is an example view of frequency responses and time delays of a set of basis filters of a system of a preferred embodiment; and
FIG. 10 is a schematic representation of an analog self-interference canceller of a system of a preferred embodiment.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
1. Full-Duplex Wireless Communication Systems
Wireless communications systems have revolutionized the way the world communicates, and the rapid growth of communication using such systems has provided increased economic and educational opportunity across all regions and industries. Unfortunately, the wireless spectrum required for communication is a finite resource, and the rapid growth in wireless communications has also made the availability of this resource ever scarcer. As a result, spectral efficiency has become increasingly important to wireless communications systems.
One promising solution for increasing spectral efficiency is found in full-duplex wireless communications systems; that is, wireless communications systems that are able to transmit and receive wireless signals at the same time on the same wireless channel. This technology allows for a doubling of spectral efficiency compared to standard half-duplex wireless communications systems.
While full-duplex wireless communications systems have substantial value to the wireless communications field, such systems have been known to face challenges due to self-interference; because reception and transmission occur at the same time on the same channel, the received signal at a full-duplex transceiver may include undesired signal components from the signal being transmitted from that transceiver. As a result, full-duplex wireless communications systems often include analog and/or digital self-interference cancellation circuits to reduce self-interference.
Full-duplex transceivers preferably sample transmission output as baseband digital signals, intermediate frequency (IF) analog signals, or as radio-frequency (RF) analog signals, but full-duplex transceivers may additionally or alternatively sample transmission output in any suitable manner (e.g., as IF digital signals). This sampled transmission output may be used by full-duplex transceivers to remove interference from received wireless communications data (e.g., as RF/IF analog signals or baseband digital signals). In many full-duplex transceivers, an analog self-interference cancellation system is paired with a digital self-interference cancellation system. The analog self-interference cancellation system removes a first portion of self-interference by summing delayed, phase shifted and scaled versions of the RF transmit signal to create an RF self-interference cancellation signal, which is then subtracted from the RF receive signal. Alternatively, the analog cancellation system may perform similar tasks at an intermediate frequency. After the RF (or IF) receive signal has the RF/IF self-interference cancellation signal subtracted, it passes through an analog-to-digital converter of the receiver (and becomes a digital receive signal). After this stage, a digital self-interference cancellation signal (created by transforming a digital transmit signal) is then subtracted from the digital receive signal.
The systems described herein may increase performance of full-duplex transceivers as shown in FIG. 1 (and other applicable systems) by enabling highly effective analog self-interference cancellation while reducing self-interference cancellation circuit complexity and/or cost. This reduction may be enabled by the use of multi-peak filters in the analog self-interference cancellation circuit, which may both allow a reduction in the number of signal components necessary to generate an effective self-interference cancellation signal (by enabling the formation of an efficient basis set of signal components) and a reduction in the number of delays (or delay length) used in the circuit (by designing the multi-peak filters to have inherent delay).
In addition to full-duplex wireless communication systems, applicable systems include active sensing systems (e.g., RADAR), wired communications systems, wireless communications systems, channel emulators, reflectometers, PIM analyzers and/or any other suitable system, including communication systems where transmit and receive bands are close in frequency, but not overlapping.
2. System for Multi-Peak-Filter-Based Analog Self-Interference Cancellation
As shown in FIG. 2, a system 100 for self-interference canceller tuning includes a receiver 110, a transmitter 120, a signal coupler 130, an analog self-interference canceller 140, and a tuning circuit 160. The system may additionally or alternatively include a digital self-interference canceller 150.
The system 100 functions to increase the performance of full-duplex transceivers (or other applicable systems) via implementation of a multi-peak filters in the analog self-interference canceller 140.
The system 100 may perform self-interference cancellation by performing analog and/or digital self-interference cancellation based on any number of sampled analog and/or digital transmit signals. For example, the digital self-interference canceller 160 may sample a digital transmit signal, as shown in FIG. 2, but the digital self-interference canceller 160 may additionally or alternatively sample an analog transmit signal (e.g., through an ADC coupled to the analog transmit signal).
The system 100 preferably performs analog and digital self-interference cancellation simultaneously and in parallel, but may additionally or alternatively perform analog and/or digital self-interference cancellation at any suitable times and in any order.
The system 100 is preferably implemented using both digital and analog circuitry. Digital circuitry is preferably implemented using a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) and/or any suitable processor(s) or circuit(s). Analog circuitry is preferably implemented using analog integrated circuits (ICs) but may additionally or alternatively be implemented using discrete components (e.g., capacitors, resistors, transistors), wires, transmission lines, waveguides, digital components, mixed-signal components, or any other suitable components. The system 100 preferably includes memory to store configuration data, but may additionally or alternatively be configured using externally stored configuration data or in any suitable manner.
The receiver 110 functions to receive analog receive signals transmitted over a communications link (e.g., a wireless channel, a coaxial cable). The receiver 110 preferably converts analog receive signals into digital receive signals for processing by a communications system, but may additionally or alternatively not convert analog receive signals (passing them through directly without conversion).
The receiver 110 is preferably a radio-frequency (RF) receiver, but may additionally or alternatively be any suitable receiver.
The receiver 110 is preferably coupled to the communications link by a duplexer-coupled RF antenna, but may additionally or alternatively be coupled to the communications link in any suitable manner. Some examples of alternative couplings include coupling via one or more dedicated receive antennas. In another alternative coupling, the receiver 110 may be coupled to the communications link by a circulator-coupled RF antenna.
The receiver 110 preferably includes an analog-to-digital converter (ADC) 111 and a frequency downconverter 112, as shown in FIG. 3. The receiver 110 may additionally include a low-noise amplifier 113. The receiver 110 may additionally or alternatively include amplifiers, filters, signal processors and/or any other suitable components. In one variation of a preferred embodiment, the receiver 110 includes only analog processing circuitry (e.g., amplifiers, filters, attenuators, delayers). The receiver may function to scale, shift, and/or otherwise modify the receive signal. The downconverter 112 functions to downconvert the analog receive signal from RF (or any other suitable frequency) to a baseband analog receive signal, and the analog-to-digital converter (ADC) 111 functions to convert the baseband analog receive signal to a digital receive signal.
The ADC 111 may be any suitable analog-to-digital converter; e.g., a direct-conversion ADC, a flash ADC, a successive-approximation ADC, a ramp-compare ADC, a Wilkinson ADC, an integrating ADC, a delta-encoded ADC, a time-interleaved ADC, or any other suitable type of ADC.
The frequency downconverter 112 functions to downconvert the carrier frequency of the analog receive signal to baseband, preparing it for conversion to a digital receive signal. The downconverter 112 preferably accomplishes signal downconversion using heterodyning methods, but may additionally or alternatively use any suitable upconversion methods.
The downconverter 112 preferably includes a local oscillator (LO), a mixer, and a baseband filter. The local oscillator functions to provide a frequency shift signal to the mixer; the mixer combines the frequency shift signal and the analog receive signal to create (usually two) frequency shifted signals, one of which is the baseband signal, and the baseband filter rejects signals other than the baseband analog receive signal.
The local oscillator is preferably a digital crystal variable-frequency oscillator (VFO) but may additionally or alternatively be an analog VFO or any other suitable type of oscillator. The local oscillator preferably has a tunable oscillation frequency but may additionally or alternatively have a static oscillation frequency.
The mixer is preferably an active mixer, but may additionally or alternatively be a passive mixer. The mixer may comprise discrete components, analog ICs, digital ICs, and/or any other suitable components. The mixer preferably functions to combine two or more electrical input signals into one or more composite outputs, where each output includes some characteristics of at least two input signals.
The baseband filter is preferably a lowpass filter with a tunable low-pass frequency. Additionally or alternatively, the baseband filter may be a lowpass filter with a set low-pass frequency, or any other suitable type of filter. The baseband filter is preferably a passive filter, but may additionally or alternatively be an active filter. The baseband filter is preferably implemented with analog circuit components, but may additionally or alternatively be digitally implemented.
The transmitter 120 functions to transmit signals of the communications system over a communications link to a second communications system. The transmitter 120 preferably converts digital transmit signals into analog transmit signals.
The transmitter 120 is preferably a radio-frequency (RF) transmitter, but may additionally or alternatively be any suitable transmitter.
The transmitter 120 is preferably coupled to the communications link by a duplexer-coupled RF antenna, but may additionally or alternatively be coupled to the communications link in any suitable manner. Some examples of alternative couplings include coupling via one or more dedicated transmit antennas. In another alternative coupling, the transmitter 120 may be coupled to the communications link by a duplexer-coupled RF antenna.
The transmitter 120 preferably includes a digital-to-analog converter (DAC) 121 and a frequency upconverter 122, as shown in FIG. 4. The transmitter 120 may additionally include a power amplifier 123. The transmitter 120 may additionally or alternatively include amplifiers, filters, signal processors and/or any other suitable components. The transmitter 120 may function to scale, shift, and/or otherwise modify the transmit signal. The digital-to-analog converter (DAC) 121 functions to convert the digital transmit signal to a baseband analog transmit signal, and the upconverter 122 functions to upconvert the baseband analog transmit signal from baseband to RF (or any other intended transmission frequency).
The DAC 121 may be any suitable digital-to-analog converter; e.g., a pulse-width modulator, an oversampling DAC, a binary-weighted DAC, an R-2R ladder DAC, a cyclic DAC, a thermometer-coded DAC, or a hybrid DAC.
The frequency upconverter 122 functions to upconvert the carrier frequency of the baseband analog transmit signal to a radio frequency, preparing it for transmission over the communications link. The upconverter 122 preferably accomplishes signal upconversion using heterodyning methods, but may additionally or alternatively use any suitable upconversion methods.
The upconverter 122 preferably includes a local oscillator (LO), a mixer, and an RF filter. The local oscillator functions to provide a frequency shift signal to the mixer; the mixer combines the frequency shift signal and the baseband analog transmit signal to create (usually two) frequency shifted signals, one of which is the RF analog transmit signal, and the RF filter rejects signals other than the RF analog transmit signal.
The local oscillator is preferably a digital crystal variable-frequency oscillator (VFO) but may additionally or alternatively be an analog VFO or any other suitable type of oscillator. The local oscillator preferably has a tunable oscillation frequency but may additionally or alternatively have a static oscillation frequency.
The mixer is preferably an active mixer, but may additionally or alternatively be a passive mixer. The mixer may comprise discrete components, analog ICs, digital ICs, and/or any other suitable components. The mixer preferably functions to combine two or more electrical input signals into one or more composite outputs, where each output includes some characteristics of at least two input signals.
The RF filter is preferably a bandpass filter centered around a tunable radio frequency. Additionally or alternatively, the RF filter may be a bandpass filter centered around a set radio frequency, or any other suitable type of filter. The RF filter is preferably a passive filter, but may additionally or alternatively be an active filter. The RF filter is preferably implemented with analog circuit components, but may additionally or alternatively be digitally implemented.
The signal coupler 130, as shown in FIGS. 5A and 5B, functions to allow signals to be split and/or joined. The signal coupler 130 may be used to provide a sample of the analog transmit signal for the analog canceller 140 and/or the digital canceller 160, as shown in FIG. 5A; that is, the signal coupler 130 may serve as a transmit coupler. The signal coupler 130 may also be used to combine one or more analog self-interference cancellation signals (from analog/digital cancellers) with the analog receive signal, as shown in FIG. 5B; that is, the signal coupler 130 may serve as a receive coupler. Additionally or alternatively, the signal coupler 130 may be used for any other purpose.
If the signal coupler 130 is used as a transmit coupler (which is assumed for the remainder of this paragraph), the signal coupler 130 is preferably directly coupled to the transmitter 120, but may additionally or alternatively be coupled indirectly to the transmitter 120 and/or be coupled to another suitable RF transmission source. The signal coupler 130 preferably has at least two outputs; one coupled to antenna(e) (directly or indirectly) and another coupled to one or more of the analog canceller 140 and the digital canceller 150. The signal coupler 130 preferably routes the majority of input power to the antenna(e) output port, but may additionally or alternatively route power in any suitable manner (e.g., routing the majority of power to other output ports). The signal coupler 130 may have any number of input and output ports, including bidirectional input/output ports.
If the signal coupler 130 is used as a receive coupler (which is assumed for the remainder of this paragraph), the receive coupler is preferably directly coupled to the receiver 110, but may additionally or alternatively be coupled indirectly to the receiver 110 and/or be coupled to another suitable RF receiver. The signal coupler 130 preferably has at least two inputs, one coupled to antenna(e) of the full-duplex radio (directly or indirectly) and another coupled to one or more of the analog canceller 140 and the digital canceller 150. The signal coupler 130 preferably couples the majority of power from both input ports to the receiver output port; this coupling preferably results in the receiver output port outputting a sum of one or more self-interference cancellation signals (generated by cancellers 140/150) and the RF receive signal (received at the antenna(e)). Additionally or alternatively, the signal coupler 130 may couple or route power in any suitable manner. The signal coupler 130 may have any number of input and output ports, including bidirectional input/output ports.
The signal coupler 130 is preferably a short section directional transmission line coupler, but may additionally or alternatively be any power divider, power combiner, directional coupler, or other type of signal splitter. The signal coupler 130 is preferably a passive coupler, but may additionally or alternatively be an active coupler (for instance, including power amplifiers). For example, the signal coupler 130 may comprise a coupled transmission line coupler, a branch-line coupler, a Lange coupler, a Wilkinson power divider, a hybrid coupler, a hybrid ring coupler, a multiple output divider, a waveguide directional coupler, a waveguide power coupler, a hybrid transformer coupler, a cross-connected transformer coupler, a resistive tee, and/or a resistive bridge hybrid coupler. The output ports of the signal coupler 130 are preferably phase-shifted by ninety degrees, but may additionally or alternatively be in phase or phase shifted by a different amount (e.g., zero degrees, 180 degrees).
The system 100 preferably includes two signal couplers 130 (a transmit and a receive coupler); these signal couplers 130 preferably connect to a single antenna through a duplexer or circulator, but may additionally or alternatively connect to multiple antennae. In one example, the transmit coupler and receive coupler connect to two separate antennae (e.g., a transmit antenna and a receive antenna); in another example, the transmit coupler and receive coupler both connect to the same two antennae. The transmit coupler and receive coupler may additionally or alternatively connect to any suitable RF transmit and RF receive sources (e.g., an RF signal transmitted solely over coaxial cable). There may additionally or alternatively be filters, power amplifiers, and/or any other RF signal modifying components between the couplers 130 and antennae.
The analog self-interference canceller 140, as shown in FIG. 6, functions to produce an analog self-interference cancellation signal from the analog transmit signal that can be combined with the analog receive signal to reduce self-interference present in the analog receive signal. The analog self-interference canceller 140 is preferably designed to operate at a single radio frequency (RF) band, but may additionally or alternatively be designed to operate at multiple RF bands, at one or multiple intermediate frequency (IF) bands, or at any suitable frequency band.
The analog self-interference canceller 140 is preferably implemented as an analog circuit that transforms an RF transmit signal into an analog self-interference cancellation signal by combining a set of filtered, scaled, and/or delayed versions of the RF transmit signal, but may additionally or alternatively be implemented as any suitable circuit. For instance, the analog self-interference canceller 140 may perform a transformation involving only a single version or copy of the RF transmit signal. The transformed signal (the analog self-interference cancellation signal) preferably represents at least a part of the self-interference component received at the receiver 110.
The analog self-interference canceller 140 is preferably adaptable to changing self-interference parameters in addition to changes in the analog transmit signal; for example, RF transceiver temperature, ambient temperature, antenna configuration, humidity, and RF transmitter power. Adaptation of the analog self-interference canceller 140 is preferably performed by the tuning circuit 160, but may additionally or alternatively be performed by a control circuit or other control mechanism included in the canceller 140 or any other suitable controller.
In one implementation of a preferred embodiment, the analog self-interference canceller 140 includes a signal divider 141, scalers 142, phase shifters 143, delayers 144, filters 145, and signal combiners 146, as shown in FIG. 6.
In this implementation, the analog self-interference canceller 140 splits the transmit signal using the divider 141, and transforms each signal path individually before recombining them at the signal combiner 146. The analog self-interference canceller 140 preferably transforms each signal path by scaling (with the scaler 142), phase shifting (with the phase shifter 143) and/or delaying (with the delayer 144) the signal paths, in addition to filtering each signal path with a filter 145. A plurality of the filters 145 are multi-peak filters, but filters 145 may additionally or alternatively be single-peak filters or any other suitable filter.
In one implementation of the analog self-interference canceller 140, the filter 145 output is coupled to the scaler 142 input, the scaler 142 output is coupled to the phase shifter 143 input, and the phase shifter 143 output is coupled to the delayer 144 input. In another implementation of the analog self-interference canceller 140, the scaler 142 output is coupled to the phase shifter 143 input, and the phase shifter 143 output is coupled to the delayer 144 input, and the delayer 144 output is coupled to the filter 145 input. These two example implementations are a small subset of the total number of configurations possible for the analog self-interference canceller 140. The components of the analog self-interference canceller 140 may be coupled in any manner that enables analog self-interference cancellation for the system 100. In one implementation of the analog self-interference canceller 140, each signal path (i.e., each path associated with a different filter 145) includes all three of a scaler 142, a phase shifter 143, and a delayer 144; in an alternate implementation, signal paths may include any subset of a scaler 142, a phase shifter 143, and a delayer 144, or signal paths may included none of the set.
The signal divider 141 functions to split the transmit signal into multiple transmit signal paths, each preferably associated with a filter 145. Alternatively, some signal paths may not comprise a filter 145. The signal divider 141 preferably splits the transmit signal into multiple transmit signals having substantially the same waveform as the input transmit signal and equal power; the signal divider 141 may additionally or alternatively split the transmit signal into multiple transmit signals having different power levels and/or containing different waveforms than the input transmit signal. The signal divider 141 is preferably a transmission line power divider, but may additionally or alternatively be any suitable power divider, splitter, or coupler. The signal divider 141 may additionally contain any suitable electronics for pre-processing the transmit signal; for example, the signal divider 141 may contain an amplifier to increase the power contained in one or more of the output transmit signals.
The scalers 142 function to scale transmit signal components; specifically, the scalers 142 effectively multiply the transmit signal components by a scale factor. For example, an attenuation of 34% might be represented as a scale factor of 0.66; a gain of 20% might be represented as a scale factor of 1.20; and an attenuation of 10% and a phase inversion might be represented as a scale factor of −0.90. Scale factors may be complex; for example, a scale factor of
e i π 2
might be represented as a phase shift of ninety degrees. The scalers 142 provide the weighting for the combination of self-interference components at the signal combiner 146 (e.g., a signal with scale factor 2 is weighted twice as heavily as one with a scale factor of 1).
The scalers 142 may include attenuators, amplifiers, phase inverters, and/or any other suitable components for scaling transmit signal components. Attenuators may be resistive attenuators (T pad, Pi pad), amplifiers with less than unity gain, or any other suitable type of attenuator. Amplifiers may be transistor amplifiers, vacuum tube amplifiers, op-amps, or any other suitable type of amplifier. Phase inverters may be any phase inversion devices, including NPN/PNP phase inversion circuits and/or inverting amplifiers.
The scalers 142 preferably are capable of attenuation, gain, and phase inversion, but may alternatively be capable only of a subset of said capabilities. Each scaler 142 preferably includes all three capabilities in a single device (e.g., an amplifier with tunable gain and two outputs, one inverted and one non-inverted) but may additionally or alternatively separate capabilities into different sections (e.g., an amplifier with tunable gain but no inversion capability, along with a separate phase inversion circuit). The scalers 142 are preferably controlled by the tuning circuit 160, but may additionally or alternatively be controlled in any suitable manner. The tuning circuit 160 preferably controls scalers 142 by dynamically setting scale factors for each scaler 142, but may additionally or alternatively control scalers 142 in any suitable manner.
Each phase shifter 143 functions to shift the phase of a signal path of the analog self-interference canceller 140. Phase shifters 143 can allow the self-interference cancellation signal to reflect the contributions of multiple signal components with offset phases.
Each phase shifter 143 preferably includes an impedance matching network at its input and output that compensates for variations in the phase shifter 143 input and output impedance (and/or phase shift amount) due to changes in signal component frequency or simply transforms the impedance to and from a suitable impedance level for the core of the phase shifter to a standardized impedance level (50 ohms). Alternatively, the phase shifter 143 may not include impedance matching networks. The impedance matching networks are preferably tunable (e.g., continuously or discretely variable) but may additionally or alternatively be static (i.e., the impedance transformation achieved by using the network is not variable).
The phase shifter 143 is preferably separated into a set of phase shifting stages. These phase shifting stages preferably may be switched ‘on’ (e.g., in signal path) or ‘off’ (e.g., bypassed, out of signal path), depending on control signals. The resulting phase shift is determined by which stages are on and which stages are off; for example, a phase shifter 143 with a 900 degree phase shifting stage and a to degree phase shifting stage ‘on’ might cause a shift of 100 degrees in signal phase.
Each phase shifting stage preferably causes a set amount (i.e., non-variable amount) of phase shift. Alternatively, phase shifting stages may include tunable phase-shift elements. For example, a phase shifting stage may include a varactor; by changing a control voltage of the varactor, the varactor's capacitance (and thus the amount of phase shift experienced by a signal passing through the stage) may be varied.
The phase shifters 143 are preferably controlled by the tuning circuit 160, but may additionally or alternatively be controlled in any suitable manner. The tuning circuit 160 preferably controls scalers 143 by dynamically setting phase shifts for each scaler 142, but may additionally or alternatively control scalers 142 in any suitable manner.
The delayers 144 function to delay transmit signal components, preferably to match corresponding delays in received self-interference. The delay introduced by each delayer 144 (also referred to as a delayer delay) is preferably fixed (i.e., the delayer 144 is a fixed delayer), but delayers 144 may additionally or alternatively introduce variable delays. The delayer 144 is preferably implemented as an analog delay circuit (e.g., a bucket-brigade device, a long transmission line, a series of RC networks) but may additionally or alternatively be implemented in any other suitable manner. If the delayer 144 is a variable delayer, the delay introduced is preferably set by the tuning circuit 160, but may additionally or alternatively be set in any suitable manner.
After transformation by a scaler 142, phase shifter 143, and/or a delayer 144 and filtering by a filter 145, transmit signal components are transformed into self-interference cancellation signal components, which may be combined to form an self-interference cancellation signal.
Note that any of the functions of the scaler 142, phase shifter 143, and delayer 144 may be performed by a combined circuit (e.g., the scaler 142 and phase shifter 143 may be integrated into a single circuit). Also note that while the scaler 142, phase shifter 143, and delayer 144 are shown within individual signal paths (i.e., between divider 141 and combiner 146) these components may additionally or alternatively be placed before the divider 141 or after the combiner 146; this is discussed in greater detail later in the present application.
Each filter 145 functions to transform transmit signal components according to the response of the filter, which may introduce a change in signal magnitude, signal phase, and/or signal delay. The filters 145 preferably work in combination to create a set of signal components that may be weighted (using scalers 142, phase shifters 143, and/or delayers 144) to form a self-interference cancellation signal (i.e., a basis set). The filters 145 may additionally be used to introduce delays to signal components passing through the filters 145. Depending on the bandwidth and structure of the filter 145, as well as the signal passing through the filter 145, one of these effects may be dominant; e.g., some signals may experience a significant change in magnitude (across frequency) without a significant time delay, while other signals may experience time delay without a significant change in magnitude. Alternatively, the filter 145 may produce both significant time delay and magnitude change for a given signal.
The filters 145 are preferably multi-peak bandpass filters formed from a combination (e.g., in series and/or in parallel) of resonant elements. Resonant elements of the filters 145 are preferably formed by lumped elements, but may additionally or alternatively be distributed element resonators, ceramic resonators, SAW resonators, crystal resonators, cavity resonators, or any suitable resonators.
The filters 145 are preferably tunable such that one or more peaks of the filter 145 may be shifted. In one implementation of a preferred embodiment, one or more resonant elements of the filter 145 may include a variable shunt capacitance (e.g., a varactor or a digitally tunable capacitor) that enables filter peaks to be shifted. Additionally or alternatively, filters 145 may be tunable by quality factor (i.e., Q may be modified by altering circuit control values), or filters 145 may be not tunable.
Filters 145 may include, in addition to resonant elements, delayers, phase shifters, and/or scaling elements.
The filters 145 are preferably passive filters, but may additionally or alternatively be active filters. The filters 145 are preferably implemented with analog circuit components, but may additionally or alternatively be digitally implemented. The center frequency of any tunable peak of a filter 145 is preferably controlled by the tuning circuit 160, but may additionally or alternatively be controlled by any suitable system (including manually controlled, e.g. as in a mechanically tuned capacitor).
The filters 145 preferably form a basis set for a desired or predicted transformation function; that is, the spectral properties of filters 145 are preferably configured such that the number of signal paths required to produce a self-interference cancellation signal from a given analog transmit signal is reduced compared to a combination of simple (e.g., single peak) bandpass filters.
For example, take a desired filter response as shown in FIG. 7. If the filters 145 are limited to only a few types of simple bandpass filters, it may take a great number of filters to reproduce the filter response of FIG. 7. By using filters specifically designed to form a basis set for a particular transformation, a much smaller number of filters may be used. For example, the response of FIG. 7 may be reproduced using a linear combination of only three filters as shown in FIGS. 8A, 8B, and 8C. Note that a basis set of filter responses may include one or more un-filtered signal components (e.g., one or more of the signal paths between the divider 141 and the combiner 146 have no filter 145).
In one implementation, a set of filters 145 is configured to have a single-peak filter and a plurality of multi-peak filters, such that all filters 145 of the set operate on the same frequency band (i.e., the outermost edges of all filters appear at roughly the same frequencies), but the frequencies are subdivided by an integer number of filter peaks, as shown in FIG. 9. For example, the operable bandwidth may be defined from o to f. The single peak-filter is centered at f/2, while the two-peak filter has peaks centered at f/4 and 3f/4, the three peak filter has peaks centered at f/6, f/2, and 5f/6.
Note that the frequency relationship between the single-peak and two-peak filter may be alternatively stated as: the single-peak filter has a peak centered at a first frequency; wherein the two-peak filter has exactly two peaks centered at a second frequency and a third frequency respectively; the first frequency is twice the second frequency; the third frequency is three times the second frequency. Likewise, the three-peak filter (with peaks at fourth, fifth, and sixth frequencies) may be related as follows: the first frequency is three times the fourth frequency, the fifth frequency is three times the fourth frequency (i.e., is the same as the first frequency), and the sixth frequency is five times the fourth frequency.
In general, the center frequencies of an n-peak filter may be defined as
f n , i = f 2 n + i f n , i { 0 , n - 1 }
Such filters 145 may be configured to have related time delays associated with the filters 145; for example, if a single peak filter has a delay D0+D for frequencies of the frequency band (in the previous example, between o and f), a two peak filter may be configured to have a delay of D0+2D; an n-peak filter may be configured to have a delay of D0+ND. In such a configuration, an unfiltered path may be configured to have a delay of D0.
Note that this delay relationship may be stated as: the difference between the delay of a single peak filter and an unfiltered path is equal to the difference between the delay of a two peak filter and a single peak filter (i.e., (D0+D)−D0=(D0+2D)−(D0+D)=D).
Basis sets of filters as described above may be grouped and paired with static delayers 144 to create larger sets of potential delays. For example, one basis set of two filters 144 (and one unfiltered path) may be combined with the same basis set with the addition of a single delayer 144 having a delay of 3D to create a set of six signal components with delays {Do, Do+D, Do+2D, Do+3D, Do+4D, Do+5D}, as shown in FIG. 10. Note that this is an arithmetic sequence of delays.
Note that other components of the self-interference canceller 140 may be configured to account for magnitude changes or time delay incurred by filters 145. For example, a scaler 142 may be configured to amplify a signal to counteract signal attenuation incurred by passing through the filter 145. As another example, a scaler 142 may be configured to attenuate a signal on a first signal path to match signal attenuation incurred by a signal passing through a filter on a second signal path.
The signal combiner 146 functions to combine the self-interference cancellation signal components into an analog self-interference cancellation signal; the analog self-interference cancellation signal may then be combined with an analog receive signal to remove self-interference. The signal combiner 146 preferably combines self-interference cancellation signal components (resulting from multiple signal paths) and outputs the resulting analog self-interference cancellation signal. The signal combiner 146 is preferably a transmission line coupler, but may additionally or alternatively be any suitable type of coupler (described in the signal coupler 130 sections). The signal combiner 146 may additionally contain any suitable electronics for post-processing the self-interference cancellation signal before outputting it; for example, the signal combiner 146 may contain an amplifier to increase the power of the self-interference cancellation signal.
Note that the self-interference canceller 140 may include multiple signal dividers 141 and/or combiners 146, as shown in FIG. 10.
As previously mentioned, the analog self-interference canceller 140 may perform self-interference cancellation at either or both of IF or RF bands. If the analog self-interference canceller 140 performs cancellation at IF bands, the analog self-interference canceller 140 preferably includes downconverters and upconverters (substantially similar to the downconverter 112 and upconverter 122 respectively).
In a variation of a preferred embodiment, the system 100 may include multiple analog self-interference cancellers operating in different frequency bands.
The digital self-interference canceller 150 functions to produce a digital self-interference cancellation signal from a digital transmit signal. The digital self-interference cancellation signal is preferably converted to an analog self-interference cancellation signal (by a DAC) and combined with the analog self-interference cancellation signals to further reduce self-interference present in the RF receive signal at the receiver 110. Additionally or alternatively, the digital self-interference cancellation signal may be combined with a digital receive signal.
The digital self-interference canceller 150 preferably samples the RF transmit signal of the transmitter 120 using an ADC (additionally or alternatively, the canceller 150 may sample the digital transmit signal or any other suitable transmit signal) and transforms the sampled and converted RF transmit signal to a digital self-interference signal based on a digital transform configuration. The digital transform configuration preferably includes settings that dictate how the digital self-interference canceller 150 transforms the digital transmit signal to a digital self-interference signal (e.g. coefficients of a generalized memory polynomial used to transform the transmit signal to a self-interference signal).
The digital self-interference canceller 150 may be implemented using a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) and/or any suitable processor(s) or circuit(s). The digital self-interference canceller 150 preferably includes memory to store configuration data, but may additionally or alternatively be configured using externally stored configuration data or in any suitable manner. In one implementation, the digital self-interference canceller 150 is substantially similar to the digital self-interference canceller of U.S. patent application Ser. No. 14/456,320, filed 11 Aug. 2014, which is incorporated in its entirety by this reference.
The digital self-interference canceller 150 may couple to transmit and receive signals in a number of ways. For example, the digital self-interference canceller 150 may use a converted RF transmit signal as input as well as provide a converted digital self-interference cancellation signal as output. As another example, the digital self-interference canceller 150 may use the digital transmit signal as input as a well as provide a digital self-interference cancellation signal as output (directly to the digital receive signal). The digital self-interference canceller may additionally or alternatively couple to transmit signals in any combination of digital and analog receive signals.
Note that while these examples reference the RF transmit signal and RF receive signal, the digital self-interference canceller 150 may additionally or alternatively couple to IF transmit signals and/or IF self-interference cancellation signals.
The tuning circuit 160 functions to control the configuration parameters of the analog canceller 140. The tuning circuit 160 may additionally or alternatively provide input to or control configuration parameters of the digital canceller 150. Configuration parameters may include pre-processing settings (at signal dividers 141), filter center frequency and/or Q factor (at filters 145), scale factor (at the scalers 142), phase change (at the phase shifters 143), delay (at the delayers 144), post-processing settings (at the signal combiner 146) and/or any other suitable configuration parameters. The tuning circuit 160 preferably controls filter 145 center frequencies, scaler 142 scale factors (including gain/attenuation/phase inversion), phase shifter 143 phase shifts, and delayer 144 delays to create RF and/or IF self-interference cancellation signals that reflect some or all of the self-interference contained within received signals.
The tuning circuit 160 preferably sets the configuration state of the analog canceller 140 (where the state includes settings for each variable setting controlled by the tuning circuit 160) based upon the received RF/IF transmit signals, but may additionally or alternatively set the configuration state based on any other suitable input. Suitable input may include signal data (e.g. IF transmit signal, digital transmit signal, RF receive signal), full-duplex radio settings (e.g. RF transmitter power, antenna position), full-duplex radio characteristics (e.g. receiver operating characteristics, transmitter operating characteristics), environmental data (e.g., transceiver temperature, ambient temperature, ambient humidity), and/or any other input relating to self-interference present in the receive signal.
The tuning circuit 160 preferably sets configuration states based on an algorithm responsive to input. This may include a state-choosing algorithm that selects from a set of pre-chosen states based on some input parameter set, a dynamic algorithm that generates states based on the input parameter set (as opposed to choosing from a limited state set), or any other suitable algorithm. Additionally or alternatively, the tuning circuit 160 may set configuration states in any suitable manner.
The tuning circuit 160 may adapt configuration states and/or configuration state generating/choosing algorithms using analytical methods, online gradient-descent methods (e.g., LMS, RLMS), and/or any other suitable methods. The tuning circuit 160 may additionally or alternatively adapt configuration states and/or configuration state generating/choosing algorithms based on test input scenarios (e.g. scenarios when the signal received by the receiver 110 is known), scenarios where there is no input (e.g. the only signal received at the receiver 110 is the signal transmitted by the transmitter 120), or scenarios where the received signal is unknown. In cases where the received signal is an unknown signal, the tuning circuit 160 may perform adaptation based on historical received data (e.g. what the signal looked like ten seconds in the past) or any other suitable information. The tuning circuit 160 may additionally or alternatively perform adaptation based on the content of RF and/or IF transmit signals; for instance, if the RF transmit signal is modulated in a particular way, the tuning circuit may perform adaptation such that when the RF self-interference signal is combined with the RF receive signal the detected modulation (as an indicator of self-interference) is reduced.
The tuning circuit 160 is preferably implemented as a programmable digital circuit, but may additionally or alternatively be implemented in any suitable digital or analog circuit, including implementation as software in a general purpose computing device.
Though the cancellers 140/150 are preferably coupled to signal couplers 130 located after transmitter 120 outputs and before receiver 110 inputs, the cancellers 140/150 may additionally or alternatively be coupled to intermediate outputs and/or inputs (e.g., an output before the transmitter 120 output or an input after the receiver 110 input).
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.

Claims (23)

We claim:
1. A system for multi-peak filter-based analog self-interference cancellation comprising:
a transmit coupler, communicatively coupled to an analog transmit signal of a communication system, that samples the analog transmit signal to create a sampled analog transmit signal;
an analog self-interference canceller, comprising a first signal divider, first and second filters, first, second, and third scalers, and a first signal combiner, wherein the first signal divider splits the analog transmit signal into first, second, and third signal paths; wherein the first filter filters the first signal path and the first scaler scales the first signal path to create a first analog self-interference signal component; wherein the second filter filters the second signal path and the second scaler scales the second signal path to create a second analog self-interference signal component; wherein the third signal path is unfiltered and the third scaler scales the third signal path to create a third analog self-interference signal component; wherein the first filter has a single peak centered at a first frequency; wherein the second filter has exactly two peaks centered at a second frequency and a third frequency respectively; wherein the first frequency is twice the second frequency; wherein the third frequency is three times the second frequency; wherein the first signal combiner combines the first, second, and third analog self-interference signal components to form a first analog self-interference cancellation signal;
a receive coupler, communicatively coupled to an analog receive signal of the communication system, that combines the first analog self-interference cancellation signal with the analog receive signal.
2. The system of claim 1, wherein the first and second filters are resonant element filters; wherein the second filter comprises two resonant elements in parallel.
3. The system of claim 2, wherein the first and second filters are lumped element resonant element filters.
4. The system of claim 3, wherein the first and second filters each include a tunable shunt capacitor; wherein the shunt capacitor is a varactor; wherein parameters of the varactor are controlled by a tuning circuit in response to received complex weights.
5. The system of claim 3, wherein the first and second filters each include a tunable shunt capacitor; wherein the shunt capacitor is a digitally tunable capacitor; wherein parameters of the digitally tunable capacitor are controlled by a tuning circuit in response to received complex weights.
6. The system of claim 1, wherein outer edges of passbands of the first filter and the second filter are at same frequencies.
7. The system of claim 1, wherein the first signal path, associated with the first filter having a single peak, is configured to have a first delay; wherein the second signal path, associated with the second filter having two peaks, is configured to have a second delay; wherein the third signal path, associated with no filter, is configured to have a third delay; wherein a difference between the first delay and the third delay is equal to a difference between the second delay and the first delay.
8. The system of claim 7, wherein the analog self-interference canceller further comprises a second signal divider, third and fourth filters, fourth, fifth, and sixth scalers, a second signal combiner, wherein the second signal divider splits the analog transmit signal into fourth, fifth, and sixth signal paths; wherein the third filter filters the fourth signal path and the fourth scaler scales the fourth signal path to create a fourth analog self-interference signal component; wherein the fourth filter filters the fifth signal path and the fifth scaler scales the fifth signal path to create a fifth analog self-interference signal component; wherein the sixth signal path is unfiltered and the sixth scaler scales the sixth signal path to create a sixth analog self-interference signal component; wherein the third filter has a single peak centered at the first frequency; wherein the fourth filter has exactly two peaks centered at the second frequency and the third frequency respectively; wherein the second signal combiner combines the fourth, fifth, and sixth analog self-interference signal components to form a second analog self-interference cancellation signal; wherein the receive coupler combines the first analog self-interference cancellation signal and the second analog self-interference cancellation signal with the analog receive signal.
9. The system of claim 8, wherein the fourth signal path, associated with the third filter having a single peak, is configured to have the first delay; wherein the fifth signal path, associated with the fourth filter having two peaks, is configured to have the second delay; wherein the sixth signal path, associated with no filter, is configured to have the third delay.
10. The system of claim 9, wherein the analog self-interference canceller further comprises a delayer, coupled to the second signal combiner, that delays the second analog self-interference cancellation signal.
11. The system of claim 10, wherein the delayer delays the second analog self-interference cancellation signal by a post-combination delay; wherein the post-combination delay is equal to three times the difference between the first delay and the third delay, wherein addition of the post-combination delay results in formation of an arithmetic series of delays by the first, second, third, fourth, fifth, and sixth signal paths.
12. The system of claim 11, wherein outer edges of passbands of the first, second, third, and fourth filters are at same frequencies.
13. The system of claim 11, wherein the first scaler compensates for magnitude changes to the first signal path due to filtering by the first filter; wherein the second scaler compensates for magnitude changes to the second signal path due to filtering by the second filter; wherein the fourth scaler compensates for magnitude changes to the fourth signal path due to filtering by the third filter; wherein the fifth scaler compensates for magnitude changes to the fifth signal path due to filtering by the fourth filter.
14. The system of claim 8, wherein the first, second, third, and fourth filters are resonant element filters; wherein the second and fourth filter comprise two resonant elements in parallel.
15. The system of claim 14, wherein the first and third filters each include a tunable shunt capacitor; wherein the second and fourth filters each include two tunable shunt capacitors; wherein the shunt capacitor is a varactor; wherein parameters of the varactor are controlled by a tuning circuit in response to received complex weights.
16. The system of claim 14, wherein the first and third filters each include a tunable shunt capacitor; wherein the second and fourth filters each include two tunable shunt capacitors; wherein the shunt capacitor is a digitally tunable capacitor; wherein parameters of the digitally tunable capacitor are controlled by a tuning circuit in response to received complex weights.
17. The system of claim 8, wherein outer edges of passbands of the first, second, third, and fourth filters are at same frequencies.
18. The system of claim 8, wherein the first scaler compensates for magnitude changes to the first signal path due to filtering by the first filter; wherein the second scaler compensates for magnitude changes to the second signal path due to filtering by the second filter; wherein the fourth scaler compensates for magnitude changes to the fourth signal path due to filtering by the third filter; wherein the fifth scaler compensates for magnitude changes to the fifth signal path due to filtering by the fourth filter.
19. The system of claim 1, wherein the first scaler compensates for magnitude changes to the first signal path due to filtering by the first filter; wherein the second scaler compensates for magnitude changes to the second signal path due to filtering by the second filter.
20. A system for multi-peak filter-based analog self-interference cancellation comprising:
a transmit coupler, communicatively coupled to an analog transmit signal of a communication system, that samples the analog transmit signal to create a sampled analog transmit signal;
an analog self-interference canceller, comprising a first signal divider, first and second filters, first, second, and third scalers, and a first signal combiner, wherein the first signal divider splits the analog transmit signal into first, second, and third signal paths; wherein the first filter filters the first signal path and the first scaler scales the first signal path to create a first analog self-interference signal component; wherein the second filter filters the second signal path and the second scaler scales the second signal path to create a second analog self-interference signal component; wherein the third signal path is unfiltered and the third scaler scales the third signal path to create a third analog self-interference signal component; wherein the first filter has a single peak centered at a first frequency; wherein the second filter has exactly two peaks centered at a second frequency and a third frequency respectively; wherein the first signal combiner combines the first, second, and third analog self-interference signal components to form a first analog self-interference cancellation signal;
a receive coupler, communicatively coupled to an analog receive signal of the communication system, that combines the first analog self-interference cancellation signal with the analog receive signal.
21. The system of claim 20, wherein the first and second filters are resonant element filters; wherein the second filter comprises two resonant elements in parallel.
22. The system of claim 20, wherein outer edges of passbands of the first filter and the second filter are at same frequencies.
23. The system of claim 20, wherein the first signal path, associated with the first filter having a single peak, is configured to have a first delay; wherein the second signal path, associated with the second filter having two peaks, is configured to have a second delay; wherein the third signal path, associated with no filter, is configured to have a third delay; wherein a difference between the first delay and the third delay is equal to a difference between the second delay and the first delay.
US14/931,669 2014-11-03 2015-11-03 Systems for multi-peak-filter-based analog self-interference cancellation Active 2036-03-07 US9712313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/931,669 US9712313B2 (en) 2014-11-03 2015-11-03 Systems for multi-peak-filter-based analog self-interference cancellation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462074512P 2014-11-03 2014-11-03
US14/931,669 US9712313B2 (en) 2014-11-03 2015-11-03 Systems for multi-peak-filter-based analog self-interference cancellation

Publications (2)

Publication Number Publication Date
US20160127112A1 US20160127112A1 (en) 2016-05-05
US9712313B2 true US9712313B2 (en) 2017-07-18

Family

ID=55853879

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/931,669 Active 2036-03-07 US9712313B2 (en) 2014-11-03 2015-11-03 Systems for multi-peak-filter-based analog self-interference cancellation

Country Status (1)

Country Link
US (1) US9712313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10879995B2 (en) 2018-04-10 2020-12-29 Wilson Electronics, Llc Feedback cancellation on multiband booster

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10917163B2 (en) 2014-08-15 2021-02-09 SEAKR Engineering, Inc. Integrated mixed-signal RF transceiver with ADC, DAC, and DSP and high-bandwidth coherent recombination
WO2016025953A1 (en) 2014-08-15 2016-02-18 SEAKR Engineering, Inc. Integrated mixed-signal asic with adc, dac, and dsp
US9973326B2 (en) * 2014-11-17 2018-05-15 Electronics And Telecommunications Research Institute Method and apparatus for transmitting/receiving signal in inband full duplex system
US10230423B2 (en) * 2015-11-10 2019-03-12 Huawei Technologies Canada Co., Ltd. System and method for balanced passive cancellation for full duplex communications
US20190109652A1 (en) * 2016-03-18 2019-04-11 Lg Electronics Inc. Method for removing self-interference signal in fdr environment and communication apparatus for same
US10389429B2 (en) 2017-02-11 2019-08-20 Massachusetts Institute Of Technology Full-duplex, bi-directional, analog relay
US10491313B2 (en) 2017-11-20 2019-11-26 Kumu Networks, Inc. Systems and methods for enhanced-isolation coexisting time-division duplexed transceivers
JP7096346B2 (en) * 2018-02-27 2022-07-05 クム ネットワークス,インコーポレイテッド Configurable hybrid self-interference cancellation system and method
US11112489B2 (en) * 2018-12-28 2021-09-07 Intel Corporation Radar systems and methods having isolator driven mixer
WO2023137097A1 (en) * 2022-01-12 2023-07-20 Kumu Networks, Inc. System and method for filter enhancement
US11689393B1 (en) * 2022-01-27 2023-06-27 The Boeing Company Near-zero latency analog bi-quad infinite impulse response filter

Citations (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922617A (en) 1974-11-18 1975-11-25 Cutler Hammer Inc Adaptive feed forward system
US4321624A (en) 1978-10-30 1982-03-23 Rca Corporation AFT Circuit
US4952193A (en) 1989-03-02 1990-08-28 American Nucleonics Corporation Interference cancelling system and method
US5212827A (en) 1991-02-04 1993-05-18 Motorola, Inc. Zero intermediate frequency noise blanker
US5691978A (en) 1995-04-07 1997-11-25 Signal Science, Inc. Self-cancelling full-duplex RF communication system
US5734967A (en) 1994-02-17 1998-03-31 Motorola, Inc. Method and apparatus for reducing self interference in a communication system
US5790658A (en) 1996-10-28 1998-08-04 Advanced Micro Devices, Inc. High performance echo canceller for high speed modem
US5818385A (en) 1994-06-10 1998-10-06 Bartholomew; Darin E. Antenna system and method
US5930301A (en) 1996-06-25 1999-07-27 Harris Corporation Up-conversion mechanism employing side lobe-selective pre-distortion filter and frequency replica-selecting bandpass filter respectively installed upstream and downstream of digital-to-analog converter
US6215812B1 (en) 1999-01-28 2001-04-10 Bae Systems Canada Inc. Interference canceller for the protection of direct-sequence spread-spectrum communications from high-power narrowband interference
US6240150B1 (en) 1998-05-12 2001-05-29 Nortel Networks Limited Method and apparatus for filtering interference in a modem receiver
US20020034191A1 (en) 1998-02-12 2002-03-21 Shattil Steve J. Method and apparatus for transmitting and receiving signals having a carrier interferometry architecture
US20020064245A1 (en) 2000-10-10 2002-05-30 Mccorkle John W. Ultra wide bandwidth noise cancellation mechanism and method
US6411250B1 (en) 1997-09-01 2002-06-25 Cambridge Consultants Limited Electromagnetic sensor system
US20020154717A1 (en) 2000-12-19 2002-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Weighting factor setting method for subtractive interference canceller, interference canceller unit using said weighting factor and interference canceller
US20020172265A1 (en) 2001-03-30 2002-11-21 Kenney Thomas J. Successive user data multipath interference cancellation
US20030031279A1 (en) 2001-08-08 2003-02-13 Viasat, Inc. Method and apparatus for relayed communication using band-pass signals for self-interference cancellation
US6539204B1 (en) 2000-09-29 2003-03-25 Mobilian Corporation Analog active cancellation of a wireless coupled transmit signal
US6567649B2 (en) 2000-08-22 2003-05-20 Novatel Wireless, Inc. Method and apparatus for transmitter noise cancellation in an RF communications system
US20030099287A1 (en) 2001-10-31 2003-05-29 Bernard Arambepola Method of and apparatus for detecting impulsive noise, method of operating a demodulator, demodulator and radio receiver
US20030104787A1 (en) 2001-12-05 2003-06-05 Viasat, Inc. Multi-channel self-interference cancellation method and apparatus for relayed communication
US20030148748A1 (en) 2002-02-01 2003-08-07 Shah Peter Jivan Distortion reduction in a wireless communication device
US6639551B2 (en) 1999-08-11 2003-10-28 China Academy Of Telecommunications Technology Method of interference cancellation based on smart antenna
US6657950B1 (en) 1999-02-19 2003-12-02 Cisco Technology, Inc. Optimal filtering and upconversion in OFDM systems
US20040106381A1 (en) 2002-09-06 2004-06-03 Engim Incorporated Transmit signal cancellation in wireless receivers
US20040266378A1 (en) 2001-08-10 2004-12-30 Keisuke Fukamachi Bypass filter, multi-band antenna switch circuit, and layered module composite part and communication device using them
US20050078743A1 (en) 1999-08-10 2005-04-14 Aki Shohara Radio frequency control for communication systems
US20050129152A1 (en) 2003-12-15 2005-06-16 Hillstrom Timothy L. Method and sytem for noise reduction in measurement receivers using automatic noise subtraction
US20050159128A1 (en) 2001-06-21 2005-07-21 Collins Glenn D. Adaptive canceller for frequency reuse systems
EP0755141B1 (en) 1995-07-19 2005-10-12 Sharp Kabushiki Kaisha Adaptive decision feedback equalization for communication systems
US20050250466A1 (en) 2004-04-26 2005-11-10 Hellosoft Inc. Method and apparatus for improving MLSE in the presence of co-channel interferer for GSM/GPRS systems
US6965657B1 (en) 1999-12-01 2005-11-15 Velocity Communication, Inc. Method and apparatus for interference cancellation in shared communication mediums
US20050254555A1 (en) 2004-05-17 2005-11-17 Teague Edward H Interference control via selective blanking/attenuation of interfering transmissions
US20050282500A1 (en) 2004-06-16 2005-12-22 Wang Yi-Pin E Benign interference suppression for received signal quality estimation
US20060030277A1 (en) 2004-02-10 2006-02-09 Cyr Russell J Programmable radio transceiver
US20060029124A1 (en) 2004-08-04 2006-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Reduced complexity soft value generation for MIMO JD-GRAKE receivers
US20060058022A1 (en) 2004-08-27 2006-03-16 Mark Webster Systems and methods for calibrating transmission of an antenna array
US20060083297A1 (en) 2004-10-13 2006-04-20 Analog Devices, Inc. Filters for communication systems
US20060209754A1 (en) 2005-03-16 2006-09-21 Ji Tingfang Channel structures for a quasi-orthogonal multiple-access communication system
US20060273853A1 (en) 2005-06-03 2006-12-07 Ntt Docomo, Inc. Feed forward amplifier for multiple frequency bands
US20070018722A1 (en) 2005-07-21 2007-01-25 Alcatel Adaptive digital pre-distortion system
US20070105509A1 (en) 2005-11-09 2007-05-10 Texas Instruments Inc. RF transmission leakage mitigator, method of mitigating an RF transmission leakage and CDMA tranceiver employing the same
US20070207747A1 (en) 2006-03-06 2007-09-06 Paul Johnson Single frequency duplex radio link
US20070249314A1 (en) 2004-03-19 2007-10-25 Sirit Technologies Inc. Adjusting parameters associated with transmitter leakage
US20070274372A1 (en) 2006-05-29 2007-11-29 Tokyo Institute Of Technology Radio communication apparatus and radio communication method
US20080037801A1 (en) 2006-08-10 2008-02-14 Cambridge Silicon Radio, Ltd. Dual microphone noise reduction for headset application
US7336940B2 (en) 2003-11-07 2008-02-26 Andrew Corporation Frequency conversion techniques using antiphase mixing
US20080089397A1 (en) 2006-10-17 2008-04-17 Interdigital Technology Corporation Transceiver with hybrid adaptive self-interference canceller for removing transmitter generated noise to prevent modem jamming
US7362257B2 (en) 2004-12-23 2008-04-22 Radix Technology, Inc. Wideband interference cancellation using DSP algorithms
US20080107046A1 (en) 2006-11-06 2008-05-08 Nokia Corporation Analog signal path modeling for self-interference cancellation
US20080111754A1 (en) 2006-11-13 2008-05-15 The Boeing Company Electronically scanned antenna with secondary phase shifters
US20080131133A1 (en) 2006-05-17 2008-06-05 Blunt Shannon D Low sinr backscatter communications system and method
US20080192636A1 (en) 2005-02-07 2008-08-14 Briscoe Robert J Policing Networks
US20080219339A1 (en) 2007-03-09 2008-09-11 Qualcomm Incorporated Channel estimation using frequency smoothing
US20080219377A1 (en) 2007-03-06 2008-09-11 Sige Semiconductor Inc. Transmitter crosstalk cancellation in multi-standard wireless transceivers
US7426242B2 (en) 2003-08-04 2008-09-16 Viasat, Inc. Orthogonal frequency digital multiplexing correlation canceller
US20090022089A1 (en) 2007-07-16 2009-01-22 Rudrapatna Ashok N Architecture to support network-wide multiple-in-multiple-out wireless communication
US20090034437A1 (en) 2007-07-31 2009-02-05 Samsung Electronics Co., Ltd. Apparatus and method for canceling interference in relay station in a communication system
EP1959625B1 (en) 2007-02-14 2009-02-18 NTT DoCoMo Inc. Receiver apparatus for detecting narrowband interference in a multi-carrier receive signal
US20090047914A1 (en) 2003-05-27 2009-02-19 Interdigital Technology Corporation Multi-mode radio with interference cancellation circuit
US7509100B2 (en) 2001-04-11 2009-03-24 Kyocera Wireless Corp. Antenna interface unit
US20090115912A1 (en) 2007-11-05 2009-05-07 Mediatek Inc. Television signal receiver capable of cancelling linear and non-linear distortion
US20090180404A1 (en) 2008-01-14 2009-07-16 Samsung Electronics Co., Ltd. Apparatus and method for interference cancellation and synchronization maintenance over interference channel estimation in communication system based on full-duplex relay
US20090186582A1 (en) 2008-01-22 2009-07-23 Khurram Muhammad System and method for transmission interference cancellation in full duplex transceiver
US20090221231A1 (en) 2008-02-29 2009-09-03 The Hong Kong University Of Science And Technology Multi-user mimo relay protocol with self-interference cancellation
US20090303908A1 (en) 2008-06-04 2009-12-10 Budhaditya Deb System and method for adjusting media access control parameters in a wireless network
US20100014600A1 (en) 2008-07-18 2010-01-21 Advanced Micro Devices, Inc. Window position optimization for pilot-aided ofdm system
US20100014614A1 (en) 2006-07-28 2010-01-21 Mstar Semiconductor, Inc. Digital Radio Systems
US20100022201A1 (en) 2008-07-22 2010-01-28 Patrick Vandenameele Apparatus and method for reducing self-interference in a radio system
US20100031036A1 (en) 2007-12-21 2010-02-04 Harris Corporation Secure wireless communications system and related method
US20100056166A1 (en) 2006-11-07 2010-03-04 Qualcomm Incorporated Method and Apparatus for Reinforcement of Broadcast Transmissions in MBSFN Inactive Areas
US20100103900A1 (en) 2006-12-08 2010-04-29 Choong-Il Yeh Beamforming method and device
US20100117693A1 (en) 2008-11-07 2010-05-13 Viasat, Inc. Dual conversion transmitter with single local oscillator
US20100136900A1 (en) 2008-12-02 2010-06-03 Fujitsu Limited Radio Relay Device and Method
US20100150033A1 (en) 2008-12-16 2010-06-17 General Electric Company Software radio frequency canceller
US20100150070A1 (en) 2008-12-16 2010-06-17 Electronics And Telecommunication Research Institute Sensor node having self localization function and self localization method thereof
US20100159858A1 (en) 2008-12-19 2010-06-24 Paul Wilkinson Dent Strong Signal Tolerant OFDM Receiver and Receiving Methods
US20100215124A1 (en) 2009-02-24 2010-08-26 Samsung Electronics Co., Ltd. Apparatus and operating method of digital rf receiver in a wireless communication system
US20100226448A1 (en) 2009-03-05 2010-09-09 Paul Wilkinson Dent Channel extrapolation from one frequency and time to another
US20100232324A1 (en) 2009-03-16 2010-09-16 Microsoft Corporation Full-Duplex Wireless Communications
EP2237434A1 (en) 2009-04-02 2010-10-06 Thales Nederland B.V. An apparatus for emitting and receiving radio-frequency signals, comprising a circuit to cancel interferences
US20100279602A1 (en) 2007-12-21 2010-11-04 Telefonaktiebolaget Lm Ericsson (Publ) Node and a Method for use in a Wireless Communications System
US20100295716A1 (en) 2009-05-19 2010-11-25 Kabushiki Kaisha Toshiba Interference reduction device
EP2267946A2 (en) 2009-06-23 2010-12-29 Uniloc Usa, Inc. System and method for traffic information delivery
US20110013684A1 (en) 2009-07-14 2011-01-20 Nokia Corporation Channel estimates in a SIC receiver for a multi-transmitter array transmission scheme
US20110026509A1 (en) 2008-04-25 2011-02-03 Akio Tanaka Wireless communication apparatus
US20110081880A1 (en) 2009-10-01 2011-04-07 Samsung Electronics Co. Ltd. Wideband receiver for wireless communication system and method for controlling the same
US20110149714A1 (en) 2009-12-21 2011-06-23 Qualcomm Incorporated Method and apparatus for adaptive non-linear self-jamming interference cancellation
US20110171922A1 (en) 2010-01-08 2011-07-14 Samsung Electro-Mechanics Company Systems, methods, and apparatuses for reducing interference at the front-end of a communications receiving device
US8005235B2 (en) 2006-12-14 2011-08-23 Ford Global Technologies, Llc Multi-chamber noise control system
US20110216813A1 (en) 2008-11-14 2011-09-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and Arrangement in a Communication System
US20110222631A1 (en) 2010-03-11 2011-09-15 Samsung Electronics Co., Ltd. Apparatus for receiving signal and method of compensating phase mismatch thereof
US8027642B2 (en) 2004-04-06 2011-09-27 Qualcomm Incorporated Transmission canceller for wireless local area network
US20110243202A1 (en) 2010-04-01 2011-10-06 Ismail Lakkis Cancellation System for Millimeter-Wave Radar
US20110250858A1 (en) 2010-04-08 2011-10-13 Qualcomm Incorporated Frequency selection and transition over white space
US20110254639A1 (en) 2008-12-26 2011-10-20 Taiyo Yuden Co., Ltd. Duplexer and electronic device
US20110256857A1 (en) 2010-04-20 2011-10-20 Intersil Americas Inc. Systems and Methods for Improving Antenna Isolation Using Signal Cancellation
US20110268232A1 (en) 2010-05-03 2011-11-03 Chester Park Inter-carrier bandwidth control for mitigating iq imbalance
US8055235B1 (en) 2008-05-02 2011-11-08 Hypres, Inc. System and method for digital interference cancellation
US8060803B2 (en) 2006-05-16 2011-11-15 Nokia Corporation Method, apparatus and computer program product providing soft iterative recursive least squares (RLS) channel estimator
US20110311067A1 (en) 2009-02-13 2011-12-22 University Of Florida Research Foundation, Inc. Digital sound leveling device and method to reduce the risk of noise induced hearing loss
US8086191B2 (en) 2007-05-07 2011-12-27 Ntt Docomo, Inc. Leakage power reduction apparatus
US20110319044A1 (en) 2010-06-28 2011-12-29 Itt Manufacturing Enterprises, Inc. (A Subsidiary Of Itt Corporation) Adaptive cancellation of multi-path interferences
US20120021153A1 (en) 2010-07-21 2012-01-26 Bhandari Yashpal J Silicone Polyimide Compositions With Improved Flame Retardance
US20120063369A1 (en) 2010-09-14 2012-03-15 Qualcomm Incorporated Method and apparatus for mitigating relay interference
US20120063373A1 (en) 2010-09-15 2012-03-15 Interdigital Patent Holdings, Inc. Method and apparatus for dynamic bandwidth provisioning in frequency division duplex systems
US8155595B2 (en) 2009-03-06 2012-04-10 Ntt Docomo, Inc. Method for iterative interference cancellation for co-channel multi-carrier and narrowband systems
US8175535B2 (en) 2008-02-27 2012-05-08 Telefonaktiebolaget Lm Ericsson (Publ) Active cancellation of transmitter leakage in a wireless transceiver
US8179990B2 (en) 2008-01-16 2012-05-15 Mitsubishi Electric Research Laboratories, Inc. Coding for large antenna arrays in MIMO networks
US20120140685A1 (en) 2010-12-01 2012-06-07 Infineon Technologies Ag Simplified adaptive filter algorithm for the cancellation of tx-induced even order intermodulation products
US20120147790A1 (en) 2010-12-13 2012-06-14 Nec Laboratories America, Inc. Method for a Canceling Self Interference Signal Using Active Noise Cancellation in RF Circuits and Transmission Lines for Full Duplex Simultaneous (In Time) and Overlapping (In Space) Wireless Transmission & Reception on the Same Frequency band
US8218697B2 (en) 2005-11-15 2012-07-10 Rambus Inc. Iterative interference cancellation for MIMO-OFDM receivers
US20120201153A1 (en) 2011-02-03 2012-08-09 Dinesh Bharadia Adaptive techniques for full duplex communications
US20120224497A1 (en) 2011-03-03 2012-09-06 Telefonaktiebolaget L M Ericsson (Publ) Signal Quality Measurement Based On Transmitter Status
US8331477B2 (en) 2009-07-16 2012-12-11 Industrial Technology Research Institute Progressive parallel interference canceller and method and receiver thereof
US20130005284A1 (en) 2010-03-23 2013-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Circuit and Method for Interference Reduction
US8351533B2 (en) 2009-04-16 2013-01-08 Intel Corporation Group resource allocation techniques for IEEE 802.16m
US20130044791A1 (en) 2011-08-18 2013-02-21 Qualcomm Incorporated Joint linear and non-linear cancellation of transmit self-jamming interference
US8385871B2 (en) 2008-12-01 2013-02-26 Rockstar Consortium Us Lp Frequency agile filter using a digital filter and bandstop filtering
US20130089009A1 (en) 2011-09-19 2013-04-11 Li Erran Li Method and apparatus for interference cancellation for antenna arrays
US8422540B1 (en) 2012-06-21 2013-04-16 CBF Networks, Inc. Intelligent backhaul radio with zero division duplexing
US20130102254A1 (en) 2010-05-27 2013-04-25 Ubiquam Ltd. Method and system of interference cancelation in collocated transceivers configurations
US20130114468A1 (en) 2011-11-07 2013-05-09 Dennis Hui Dynamic space division duplex (sdd) wireless communications with multiple antennas using self-interference cancellation
US20130155913A1 (en) 2011-12-14 2013-06-20 Redline Communications Inc. Single channel full duplex wireless communication
US20130166259A1 (en) 2011-11-17 2013-06-27 Analog Devices, Inc. System linearization
US20130194984A1 (en) 2012-01-16 2013-08-01 Huawei Technologies Co., Ltd. Method and apparatus for handling full-duplex interference
US20130215805A1 (en) 2012-02-08 2013-08-22 The Board Of Trustees Of The Leland Stanford Junior University Systems and Methods for Full-Duplex Signal Shaping
US20130225101A1 (en) 2012-02-27 2013-08-29 Intel Mobile Communications GmbH Second-order filter with notch for use in receivers to effectively suppress the transmitter blockers
US20130253917A1 (en) 2010-12-09 2013-09-26 Dolby International Ab Psychoacoustic filter design for rational resamplers
US20130259343A1 (en) 2012-03-28 2013-10-03 Siemens Corporation Alternating direction of multipliers method for parallel mri reconstruction
US20130301487A1 (en) 2012-05-13 2013-11-14 Amir Keyvan Khandani Full Duplex Wireless Transmission with Self-Interference Cancellation
US20130301488A1 (en) 2012-02-08 2013-11-14 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for cancelling interference using multiple attenuation delays
US20130308717A1 (en) 2012-04-13 2013-11-21 Alexander Maltsev Millimeter-wave transceiver with coarse and fine beamforming with interference suppression and method
WO2013185106A1 (en) 2012-06-08 2013-12-12 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for cancelling interference using multiple attenuation delays
US20140011461A1 (en) 2012-07-03 2014-01-09 Infineon Technologies Ag System and Method for Attenuating a Signal in a Radio Frequency System
US20140126437A1 (en) 2012-11-07 2014-05-08 Qualcomm Incorporated Methods and apparatus for communication mode selection based on content type
US8755756B1 (en) 2009-04-29 2014-06-17 Qualcomm Incorporated Active cancellation of interference in a wireless communication system
US20140169236A1 (en) 2012-12-13 2014-06-19 Kumu Networks Feed forward signal cancellation
US20140185533A1 (en) 2012-12-28 2014-07-03 David Haub Method and apparatus for transmitter optimization based on allocated transmission band
US20140206300A1 (en) 2010-02-26 2014-07-24 Intersil Americas Inc. Methods and systems for noise and interference cancellation
US20140219449A1 (en) 2013-02-01 2014-08-07 Steve J. Shattil LPI/LPD Communication Systems
US20140219139A1 (en) 2013-02-04 2014-08-07 Kumu Networks Signal cancellation using feedforward and feedback paths
US8842584B2 (en) 2012-07-13 2014-09-23 At&T Intellectual Property I, L.P. System and method for full duplex cancellation
US20140313946A1 (en) 2013-04-17 2014-10-23 Lsi Corporation Non-Linear Interference Cancellation For Wireless Transceivers
US20140348032A1 (en) 2012-02-09 2014-11-27 The Regents Of The University Of California Methods and systems for full duplex wireless communications
US20140348018A1 (en) 2011-02-03 2014-11-27 The Board Of Trustees Of The Leland Stanford Junior University Self-interference cancellation
US20140376416A1 (en) 2011-12-20 2014-12-25 Yang-seok Choi Techniques to simultaneously transmit and receive over the same radiofrequency carrier
US20150055568A1 (en) * 2013-08-20 2015-02-26 Broadcom Corporation Self-Interference Cancellation
US8995410B2 (en) 2012-05-25 2015-03-31 University Of Southern California Airsync: enabling distributed multiuser MIMO with full multiplexing gain
US9042838B2 (en) 2010-08-25 2015-05-26 Intel Corporation Transmit leakage cancellation in a wide bandwidth distributed antenna system
US20150156004A1 (en) 2013-11-30 2015-06-04 Amir Keyvan Khandani Wireless Full-Duplex System and Method Using Sideband Test Signals
US20150156003A1 (en) 2013-11-30 2015-06-04 Amir Keyvan Khandani Wireless Full-Duplex System and Method with Self-Interference Sampling
US9054795B2 (en) 2013-08-14 2015-06-09 Kumu Networks, Inc. Systems and methods for phase noise mitigation
US9077421B1 (en) 2013-12-12 2015-07-07 Kumu Networks, Inc. Systems and methods for hybrid self-interference cancellation
US20150200721A1 (en) * 2014-01-10 2015-07-16 Qualcomm Incorporated Opportunistic active interference cancellation using rx diversity antenna
US20150215937A1 (en) 2014-01-30 2015-07-30 Amir Keyvan Khandani Adapter and Associated Method for Full-Duplex Wireless Communication
US20150249444A1 (en) 2012-09-28 2015-09-03 Samsung Electronics Co., Ltd. Apparatus and method of correcting output characteristics in a power combination apparatus
US9136883B1 (en) 2014-08-20 2015-09-15 Futurewei Technologies, Inc. Analog compensation circuit and method
US20150296413A1 (en) * 2014-04-11 2015-10-15 Qualcomm Incorporated Methods and apparatus for adapting transmitter configuration for efficient concurrent transmission and radar detection through adaptive self-interference cancellation
US9184902B2 (en) 2012-04-25 2015-11-10 Nec Laboratories America, Inc. Interference cancellation for full-duplex communications
US20150378017A1 (en) * 2014-06-26 2015-12-31 Honeywell International Inc. Systems and methods for calibration and optimization of frequency modulated continuous wave radar altimeters using adjustable self-interference cancellation
US9231647B2 (en) 2014-03-19 2016-01-05 Trellisware Technologies, Inc. Joint analog and digital interference cancellation in wireless systems
US20160056946A1 (en) * 2014-08-20 2016-02-25 Futurewei Technologies, Inc. System and Method for Digital Cancellation of Self-Interference in Full-Duplex Communications
US20160094332A1 (en) * 2014-09-25 2016-03-31 Futurewei Technologies, Inc. Systems and Methods for Analog Cancellation for Division Free Duplexing for Radios Using MIMO
US9312895B1 (en) 2008-08-07 2016-04-12 Hypres, Inc. Two stage radio frequency interference cancellation system and method
US20160218769A1 (en) 2015-01-27 2016-07-28 Electronics And Telecommunications Research Institute Method and apparatus for canceling self-interference

Patent Citations (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922617A (en) 1974-11-18 1975-11-25 Cutler Hammer Inc Adaptive feed forward system
US4321624A (en) 1978-10-30 1982-03-23 Rca Corporation AFT Circuit
US4952193A (en) 1989-03-02 1990-08-28 American Nucleonics Corporation Interference cancelling system and method
US5212827A (en) 1991-02-04 1993-05-18 Motorola, Inc. Zero intermediate frequency noise blanker
US5734967A (en) 1994-02-17 1998-03-31 Motorola, Inc. Method and apparatus for reducing self interference in a communication system
US5818385A (en) 1994-06-10 1998-10-06 Bartholomew; Darin E. Antenna system and method
US5691978A (en) 1995-04-07 1997-11-25 Signal Science, Inc. Self-cancelling full-duplex RF communication system
EP0755141B1 (en) 1995-07-19 2005-10-12 Sharp Kabushiki Kaisha Adaptive decision feedback equalization for communication systems
US5930301A (en) 1996-06-25 1999-07-27 Harris Corporation Up-conversion mechanism employing side lobe-selective pre-distortion filter and frequency replica-selecting bandpass filter respectively installed upstream and downstream of digital-to-analog converter
US5790658A (en) 1996-10-28 1998-08-04 Advanced Micro Devices, Inc. High performance echo canceller for high speed modem
US6411250B1 (en) 1997-09-01 2002-06-25 Cambridge Consultants Limited Electromagnetic sensor system
US20020034191A1 (en) 1998-02-12 2002-03-21 Shattil Steve J. Method and apparatus for transmitting and receiving signals having a carrier interferometry architecture
US6240150B1 (en) 1998-05-12 2001-05-29 Nortel Networks Limited Method and apparatus for filtering interference in a modem receiver
US6215812B1 (en) 1999-01-28 2001-04-10 Bae Systems Canada Inc. Interference canceller for the protection of direct-sequence spread-spectrum communications from high-power narrowband interference
US6657950B1 (en) 1999-02-19 2003-12-02 Cisco Technology, Inc. Optimal filtering and upconversion in OFDM systems
US20050078743A1 (en) 1999-08-10 2005-04-14 Aki Shohara Radio frequency control for communication systems
RU2256985C2 (en) 1999-08-11 2005-07-20 Чайна Акэдеми Оф Телекоммьюникейшнс Текнолоджи Noise suppression method depending on intelligent antenna
US6639551B2 (en) 1999-08-11 2003-10-28 China Academy Of Telecommunications Technology Method of interference cancellation based on smart antenna
US6965657B1 (en) 1999-12-01 2005-11-15 Velocity Communication, Inc. Method and apparatus for interference cancellation in shared communication mediums
US6567649B2 (en) 2000-08-22 2003-05-20 Novatel Wireless, Inc. Method and apparatus for transmitter noise cancellation in an RF communications system
US6539204B1 (en) 2000-09-29 2003-03-25 Mobilian Corporation Analog active cancellation of a wireless coupled transmit signal
US20020064245A1 (en) 2000-10-10 2002-05-30 Mccorkle John W. Ultra wide bandwidth noise cancellation mechanism and method
US20020154717A1 (en) 2000-12-19 2002-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Weighting factor setting method for subtractive interference canceller, interference canceller unit using said weighting factor and interference canceller
US20020172265A1 (en) 2001-03-30 2002-11-21 Kenney Thomas J. Successive user data multipath interference cancellation
US7509100B2 (en) 2001-04-11 2009-03-24 Kyocera Wireless Corp. Antenna interface unit
US20050159128A1 (en) 2001-06-21 2005-07-21 Collins Glenn D. Adaptive canceller for frequency reuse systems
US7349505B2 (en) 2001-08-08 2008-03-25 Viasat, Inc. Relayed communication with versatile self-interference cancellation
US20050190870A1 (en) 2001-08-08 2005-09-01 Viasat, Inc. Relayed communication with versatile self-interference cancellation
US20030031279A1 (en) 2001-08-08 2003-02-13 Viasat, Inc. Method and apparatus for relayed communication using band-pass signals for self-interference cancellation
US20040266378A1 (en) 2001-08-10 2004-12-30 Keisuke Fukamachi Bypass filter, multi-band antenna switch circuit, and layered module composite part and communication device using them
US20030099287A1 (en) 2001-10-31 2003-05-29 Bernard Arambepola Method of and apparatus for detecting impulsive noise, method of operating a demodulator, demodulator and radio receiver
US6725017B2 (en) 2001-12-05 2004-04-20 Viasat, Inc. Multi-channel self-interference cancellation method and apparatus for relayed communication
US20030104787A1 (en) 2001-12-05 2003-06-05 Viasat, Inc. Multi-channel self-interference cancellation method and apparatus for relayed communication
US20030148748A1 (en) 2002-02-01 2003-08-07 Shah Peter Jivan Distortion reduction in a wireless communication device
US20040106381A1 (en) 2002-09-06 2004-06-03 Engim Incorporated Transmit signal cancellation in wireless receivers
US20090047914A1 (en) 2003-05-27 2009-02-19 Interdigital Technology Corporation Multi-mode radio with interference cancellation circuit
US7426242B2 (en) 2003-08-04 2008-09-16 Viasat, Inc. Orthogonal frequency digital multiplexing correlation canceller
US7336940B2 (en) 2003-11-07 2008-02-26 Andrew Corporation Frequency conversion techniques using antiphase mixing
US20050129152A1 (en) 2003-12-15 2005-06-16 Hillstrom Timothy L. Method and sytem for noise reduction in measurement receivers using automatic noise subtraction
US20060030277A1 (en) 2004-02-10 2006-02-09 Cyr Russell J Programmable radio transceiver
US20070249314A1 (en) 2004-03-19 2007-10-25 Sirit Technologies Inc. Adjusting parameters associated with transmitter leakage
US8027642B2 (en) 2004-04-06 2011-09-27 Qualcomm Incorporated Transmission canceller for wireless local area network
US20050250466A1 (en) 2004-04-26 2005-11-10 Hellosoft Inc. Method and apparatus for improving MLSE in the presence of co-channel interferer for GSM/GPRS systems
US20050254555A1 (en) 2004-05-17 2005-11-17 Teague Edward H Interference control via selective blanking/attenuation of interfering transmissions
US20050282500A1 (en) 2004-06-16 2005-12-22 Wang Yi-Pin E Benign interference suppression for received signal quality estimation
US20060029124A1 (en) 2004-08-04 2006-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Reduced complexity soft value generation for MIMO JD-GRAKE receivers
US20060058022A1 (en) 2004-08-27 2006-03-16 Mark Webster Systems and methods for calibrating transmission of an antenna array
US20060083297A1 (en) 2004-10-13 2006-04-20 Analog Devices, Inc. Filters for communication systems
US7362257B2 (en) 2004-12-23 2008-04-22 Radix Technology, Inc. Wideband interference cancellation using DSP algorithms
US20080192636A1 (en) 2005-02-07 2008-08-14 Briscoe Robert J Policing Networks
US20060209754A1 (en) 2005-03-16 2006-09-21 Ji Tingfang Channel structures for a quasi-orthogonal multiple-access communication system
US20060273853A1 (en) 2005-06-03 2006-12-07 Ntt Docomo, Inc. Feed forward amplifier for multiple frequency bands
US20070018722A1 (en) 2005-07-21 2007-01-25 Alcatel Adaptive digital pre-distortion system
US20070105509A1 (en) 2005-11-09 2007-05-10 Texas Instruments Inc. RF transmission leakage mitigator, method of mitigating an RF transmission leakage and CDMA tranceiver employing the same
US8218697B2 (en) 2005-11-15 2012-07-10 Rambus Inc. Iterative interference cancellation for MIMO-OFDM receivers
US20070207747A1 (en) 2006-03-06 2007-09-06 Paul Johnson Single frequency duplex radio link
US8060803B2 (en) 2006-05-16 2011-11-15 Nokia Corporation Method, apparatus and computer program product providing soft iterative recursive least squares (RLS) channel estimator
US20080131133A1 (en) 2006-05-17 2008-06-05 Blunt Shannon D Low sinr backscatter communications system and method
US20070274372A1 (en) 2006-05-29 2007-11-29 Tokyo Institute Of Technology Radio communication apparatus and radio communication method
US7778611B2 (en) 2006-05-29 2010-08-17 Tokyo Institute Of Technology Radio communication apparatus and radio communication method
US20100014614A1 (en) 2006-07-28 2010-01-21 Mstar Semiconductor, Inc. Digital Radio Systems
US20080037801A1 (en) 2006-08-10 2008-02-14 Cambridge Silicon Radio, Ltd. Dual microphone noise reduction for headset application
US20080089397A1 (en) 2006-10-17 2008-04-17 Interdigital Technology Corporation Transceiver with hybrid adaptive self-interference canceller for removing transmitter generated noise to prevent modem jamming
US7869527B2 (en) 2006-10-17 2011-01-11 Interdigital Technology Corporation Transceiver with hybrid adaptive self-interference canceller for removing transmitter generated noise to prevent modem jamming
US20080107046A1 (en) 2006-11-06 2008-05-08 Nokia Corporation Analog signal path modeling for self-interference cancellation
US20100056166A1 (en) 2006-11-07 2010-03-04 Qualcomm Incorporated Method and Apparatus for Reinforcement of Broadcast Transmissions in MBSFN Inactive Areas
US20080111754A1 (en) 2006-11-13 2008-05-15 The Boeing Company Electronically scanned antenna with secondary phase shifters
US20100103900A1 (en) 2006-12-08 2010-04-29 Choong-Il Yeh Beamforming method and device
US8005235B2 (en) 2006-12-14 2011-08-23 Ford Global Technologies, Llc Multi-chamber noise control system
EP1959625B1 (en) 2007-02-14 2009-02-18 NTT DoCoMo Inc. Receiver apparatus for detecting narrowband interference in a multi-carrier receive signal
US20080219377A1 (en) 2007-03-06 2008-09-11 Sige Semiconductor Inc. Transmitter crosstalk cancellation in multi-standard wireless transceivers
US20080219339A1 (en) 2007-03-09 2008-09-11 Qualcomm Incorporated Channel estimation using frequency smoothing
US8086191B2 (en) 2007-05-07 2011-12-27 Ntt Docomo, Inc. Leakage power reduction apparatus
US20090022089A1 (en) 2007-07-16 2009-01-22 Rudrapatna Ashok N Architecture to support network-wide multiple-in-multiple-out wireless communication
US20090034437A1 (en) 2007-07-31 2009-02-05 Samsung Electronics Co., Ltd. Apparatus and method for canceling interference in relay station in a communication system
US20090115912A1 (en) 2007-11-05 2009-05-07 Mediatek Inc. Television signal receiver capable of cancelling linear and non-linear distortion
US20100279602A1 (en) 2007-12-21 2010-11-04 Telefonaktiebolaget Lm Ericsson (Publ) Node and a Method for use in a Wireless Communications System
US20100031036A1 (en) 2007-12-21 2010-02-04 Harris Corporation Secure wireless communications system and related method
US20090180404A1 (en) 2008-01-14 2009-07-16 Samsung Electronics Co., Ltd. Apparatus and method for interference cancellation and synchronization maintenance over interference channel estimation in communication system based on full-duplex relay
US8179990B2 (en) 2008-01-16 2012-05-15 Mitsubishi Electric Research Laboratories, Inc. Coding for large antenna arrays in MIMO networks
US20090186582A1 (en) 2008-01-22 2009-07-23 Khurram Muhammad System and method for transmission interference cancellation in full duplex transceiver
US8175535B2 (en) 2008-02-27 2012-05-08 Telefonaktiebolaget Lm Ericsson (Publ) Active cancellation of transmitter leakage in a wireless transceiver
US20090221231A1 (en) 2008-02-29 2009-09-03 The Hong Kong University Of Science And Technology Multi-user mimo relay protocol with self-interference cancellation
US20110026509A1 (en) 2008-04-25 2011-02-03 Akio Tanaka Wireless communication apparatus
US8055235B1 (en) 2008-05-02 2011-11-08 Hypres, Inc. System and method for digital interference cancellation
US20090303908A1 (en) 2008-06-04 2009-12-10 Budhaditya Deb System and method for adjusting media access control parameters in a wireless network
US20100014600A1 (en) 2008-07-18 2010-01-21 Advanced Micro Devices, Inc. Window position optimization for pilot-aided ofdm system
US20100022201A1 (en) 2008-07-22 2010-01-28 Patrick Vandenameele Apparatus and method for reducing self-interference in a radio system
US9312895B1 (en) 2008-08-07 2016-04-12 Hypres, Inc. Two stage radio frequency interference cancellation system and method
US20100117693A1 (en) 2008-11-07 2010-05-13 Viasat, Inc. Dual conversion transmitter with single local oscillator
US20110216813A1 (en) 2008-11-14 2011-09-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and Arrangement in a Communication System
US8385871B2 (en) 2008-12-01 2013-02-26 Rockstar Consortium Us Lp Frequency agile filter using a digital filter and bandstop filtering
US20100136900A1 (en) 2008-12-02 2010-06-03 Fujitsu Limited Radio Relay Device and Method
US20100150033A1 (en) 2008-12-16 2010-06-17 General Electric Company Software radio frequency canceller
US20100150070A1 (en) 2008-12-16 2010-06-17 Electronics And Telecommunication Research Institute Sensor node having self localization function and self localization method thereof
US20100159858A1 (en) 2008-12-19 2010-06-24 Paul Wilkinson Dent Strong Signal Tolerant OFDM Receiver and Receiving Methods
US20110254639A1 (en) 2008-12-26 2011-10-20 Taiyo Yuden Co., Ltd. Duplexer and electronic device
US20110311067A1 (en) 2009-02-13 2011-12-22 University Of Florida Research Foundation, Inc. Digital sound leveling device and method to reduce the risk of noise induced hearing loss
US20100215124A1 (en) 2009-02-24 2010-08-26 Samsung Electronics Co., Ltd. Apparatus and operating method of digital rf receiver in a wireless communication system
US20100226416A1 (en) 2009-03-05 2010-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Compensating Pre-Filter for an OFDM Transmitter
US20100226448A1 (en) 2009-03-05 2010-09-09 Paul Wilkinson Dent Channel extrapolation from one frequency and time to another
US8155595B2 (en) 2009-03-06 2012-04-10 Ntt Docomo, Inc. Method for iterative interference cancellation for co-channel multi-carrier and narrowband systems
US20100232324A1 (en) 2009-03-16 2010-09-16 Microsoft Corporation Full-Duplex Wireless Communications
EP2237434A1 (en) 2009-04-02 2010-10-06 Thales Nederland B.V. An apparatus for emitting and receiving radio-frequency signals, comprising a circuit to cancel interferences
US8351533B2 (en) 2009-04-16 2013-01-08 Intel Corporation Group resource allocation techniques for IEEE 802.16m
US8755756B1 (en) 2009-04-29 2014-06-17 Qualcomm Incorporated Active cancellation of interference in a wireless communication system
US20100295716A1 (en) 2009-05-19 2010-11-25 Kabushiki Kaisha Toshiba Interference reduction device
EP2267946A2 (en) 2009-06-23 2010-12-29 Uniloc Usa, Inc. System and method for traffic information delivery
US20110013684A1 (en) 2009-07-14 2011-01-20 Nokia Corporation Channel estimates in a SIC receiver for a multi-transmitter array transmission scheme
US8331477B2 (en) 2009-07-16 2012-12-11 Industrial Technology Research Institute Progressive parallel interference canceller and method and receiver thereof
US20110081880A1 (en) 2009-10-01 2011-04-07 Samsung Electronics Co. Ltd. Wideband receiver for wireless communication system and method for controlling the same
US20110149714A1 (en) 2009-12-21 2011-06-23 Qualcomm Incorporated Method and apparatus for adaptive non-linear self-jamming interference cancellation
US20110171922A1 (en) 2010-01-08 2011-07-14 Samsung Electro-Mechanics Company Systems, methods, and apparatuses for reducing interference at the front-end of a communications receiving device
US20140206300A1 (en) 2010-02-26 2014-07-24 Intersil Americas Inc. Methods and systems for noise and interference cancellation
US20110222631A1 (en) 2010-03-11 2011-09-15 Samsung Electronics Co., Ltd. Apparatus for receiving signal and method of compensating phase mismatch thereof
US20130005284A1 (en) 2010-03-23 2013-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Circuit and Method for Interference Reduction
US20110243202A1 (en) 2010-04-01 2011-10-06 Ismail Lakkis Cancellation System for Millimeter-Wave Radar
US20110250858A1 (en) 2010-04-08 2011-10-13 Qualcomm Incorporated Frequency selection and transition over white space
US20110256857A1 (en) 2010-04-20 2011-10-20 Intersil Americas Inc. Systems and Methods for Improving Antenna Isolation Using Signal Cancellation
US20110268232A1 (en) 2010-05-03 2011-11-03 Chester Park Inter-carrier bandwidth control for mitigating iq imbalance
US20130102254A1 (en) 2010-05-27 2013-04-25 Ubiquam Ltd. Method and system of interference cancelation in collocated transceivers configurations
US20110319044A1 (en) 2010-06-28 2011-12-29 Itt Manufacturing Enterprises, Inc. (A Subsidiary Of Itt Corporation) Adaptive cancellation of multi-path interferences
US20120021153A1 (en) 2010-07-21 2012-01-26 Bhandari Yashpal J Silicone Polyimide Compositions With Improved Flame Retardance
US20150303984A1 (en) 2010-08-25 2015-10-22 Richard Neil Braithwaite Transmit leakage cancellation in a wide bandwidth distributed antenna system
US9042838B2 (en) 2010-08-25 2015-05-26 Intel Corporation Transmit leakage cancellation in a wide bandwidth distributed antenna system
US20120063369A1 (en) 2010-09-14 2012-03-15 Qualcomm Incorporated Method and apparatus for mitigating relay interference
US20120063373A1 (en) 2010-09-15 2012-03-15 Interdigital Patent Holdings, Inc. Method and apparatus for dynamic bandwidth provisioning in frequency division duplex systems
US20120140685A1 (en) 2010-12-01 2012-06-07 Infineon Technologies Ag Simplified adaptive filter algorithm for the cancellation of tx-induced even order intermodulation products
US20130253917A1 (en) 2010-12-09 2013-09-26 Dolby International Ab Psychoacoustic filter design for rational resamplers
US20120155335A1 (en) 2010-12-13 2012-06-21 Nec Laboratories America, Inc. Method for a Canceling Self Interference Signal Using Active Noise Cancellation in the Air for Full Duplex Simultaneous (In Time) and Overlapping (In Space) Wireless Transmission & Reception on the Same Frequency band
US20120155336A1 (en) 2010-12-13 2012-06-21 Nec Laboratories America, Inc. Method For A canceling Self Interference Signal Using Passive Noise Cancellation For Full-Duplex Simultaneous (in Time) and Overlapping (In Space) Wireless transmission and Reception On The Same Frequency Band
US20120154249A1 (en) 2010-12-13 2012-06-21 Nec Laboratories America, Inc. Method for antenna cancellation for wireless communication
US20120147790A1 (en) 2010-12-13 2012-06-14 Nec Laboratories America, Inc. Method for a Canceling Self Interference Signal Using Active Noise Cancellation in RF Circuits and Transmission Lines for Full Duplex Simultaneous (In Time) and Overlapping (In Space) Wireless Transmission & Reception on the Same Frequency band
US20120201173A1 (en) 2011-02-03 2012-08-09 Mayank Jain Single channel full duplex wireless communications
US20120201153A1 (en) 2011-02-03 2012-08-09 Dinesh Bharadia Adaptive techniques for full duplex communications
US20140348018A1 (en) 2011-02-03 2014-11-27 The Board Of Trustees Of The Leland Stanford Junior University Self-interference cancellation
US20120224497A1 (en) 2011-03-03 2012-09-06 Telefonaktiebolaget L M Ericsson (Publ) Signal Quality Measurement Based On Transmitter Status
US20130044791A1 (en) 2011-08-18 2013-02-21 Qualcomm Incorporated Joint linear and non-linear cancellation of transmit self-jamming interference
US20130089009A1 (en) 2011-09-19 2013-04-11 Li Erran Li Method and apparatus for interference cancellation for antenna arrays
US9124475B2 (en) 2011-09-19 2015-09-01 Alcatel Lucent Method and apparatus for interference cancellation for antenna arrays
US9019849B2 (en) 2011-11-07 2015-04-28 Telefonaktiebolaget L M Ericsson (Publ) Dynamic space division duplex (SDD) wireless communications with multiple antennas using self-interference cancellation
US20130114468A1 (en) 2011-11-07 2013-05-09 Dennis Hui Dynamic space division duplex (sdd) wireless communications with multiple antennas using self-interference cancellation
US20130166259A1 (en) 2011-11-17 2013-06-27 Analog Devices, Inc. System linearization
US20130155913A1 (en) 2011-12-14 2013-06-20 Redline Communications Inc. Single channel full duplex wireless communication
US20140376416A1 (en) 2011-12-20 2014-12-25 Yang-seok Choi Techniques to simultaneously transmit and receive over the same radiofrequency carrier
US20130194984A1 (en) 2012-01-16 2013-08-01 Huawei Technologies Co., Ltd. Method and apparatus for handling full-duplex interference
US20130301488A1 (en) 2012-02-08 2013-11-14 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for cancelling interference using multiple attenuation delays
US20130215805A1 (en) 2012-02-08 2013-08-22 The Board Of Trustees Of The Leland Stanford Junior University Systems and Methods for Full-Duplex Signal Shaping
US20140348032A1 (en) 2012-02-09 2014-11-27 The Regents Of The University Of California Methods and systems for full duplex wireless communications
US20130225101A1 (en) 2012-02-27 2013-08-29 Intel Mobile Communications GmbH Second-order filter with notch for use in receivers to effectively suppress the transmitter blockers
US20130259343A1 (en) 2012-03-28 2013-10-03 Siemens Corporation Alternating direction of multipliers method for parallel mri reconstruction
US20130308717A1 (en) 2012-04-13 2013-11-21 Alexander Maltsev Millimeter-wave transceiver with coarse and fine beamforming with interference suppression and method
US9184902B2 (en) 2012-04-25 2015-11-10 Nec Laboratories America, Inc. Interference cancellation for full-duplex communications
US20130301487A1 (en) 2012-05-13 2013-11-14 Amir Keyvan Khandani Full Duplex Wireless Transmission with Self-Interference Cancellation
WO2013173250A1 (en) 2012-05-13 2013-11-21 Invention Mine Llc Full duplex wireless transmission with self-interference cancellation
US8995410B2 (en) 2012-05-25 2015-03-31 University Of Southern California Airsync: enabling distributed multiuser MIMO with full multiplexing gain
WO2013185106A1 (en) 2012-06-08 2013-12-12 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for cancelling interference using multiple attenuation delays
US8422540B1 (en) 2012-06-21 2013-04-16 CBF Networks, Inc. Intelligent backhaul radio with zero division duplexing
US20140011461A1 (en) 2012-07-03 2014-01-09 Infineon Technologies Ag System and Method for Attenuating a Signal in a Radio Frequency System
US8842584B2 (en) 2012-07-13 2014-09-23 At&T Intellectual Property I, L.P. System and method for full duplex cancellation
US20150249444A1 (en) 2012-09-28 2015-09-03 Samsung Electronics Co., Ltd. Apparatus and method of correcting output characteristics in a power combination apparatus
US20140126437A1 (en) 2012-11-07 2014-05-08 Qualcomm Incorporated Methods and apparatus for communication mode selection based on content type
US20140169236A1 (en) 2012-12-13 2014-06-19 Kumu Networks Feed forward signal cancellation
WO2014093916A1 (en) 2012-12-13 2014-06-19 Kumu Networks Feed forward signal cancellation
US20140185533A1 (en) 2012-12-28 2014-07-03 David Haub Method and apparatus for transmitter optimization based on allocated transmission band
US20140219449A1 (en) 2013-02-01 2014-08-07 Steve J. Shattil LPI/LPD Communication Systems
US20140219139A1 (en) 2013-02-04 2014-08-07 Kumu Networks Signal cancellation using feedforward and feedback paths
US20140313946A1 (en) 2013-04-17 2014-10-23 Lsi Corporation Non-Linear Interference Cancellation For Wireless Transceivers
US9054795B2 (en) 2013-08-14 2015-06-09 Kumu Networks, Inc. Systems and methods for phase noise mitigation
US20150055568A1 (en) * 2013-08-20 2015-02-26 Broadcom Corporation Self-Interference Cancellation
US20150156004A1 (en) 2013-11-30 2015-06-04 Amir Keyvan Khandani Wireless Full-Duplex System and Method Using Sideband Test Signals
US20150156003A1 (en) 2013-11-30 2015-06-04 Amir Keyvan Khandani Wireless Full-Duplex System and Method with Self-Interference Sampling
US9077421B1 (en) 2013-12-12 2015-07-07 Kumu Networks, Inc. Systems and methods for hybrid self-interference cancellation
US20150200721A1 (en) * 2014-01-10 2015-07-16 Qualcomm Incorporated Opportunistic active interference cancellation using rx diversity antenna
US20150215937A1 (en) 2014-01-30 2015-07-30 Amir Keyvan Khandani Adapter and Associated Method for Full-Duplex Wireless Communication
US9231647B2 (en) 2014-03-19 2016-01-05 Trellisware Technologies, Inc. Joint analog and digital interference cancellation in wireless systems
US20150296413A1 (en) * 2014-04-11 2015-10-15 Qualcomm Incorporated Methods and apparatus for adapting transmitter configuration for efficient concurrent transmission and radar detection through adaptive self-interference cancellation
US20150378017A1 (en) * 2014-06-26 2015-12-31 Honeywell International Inc. Systems and methods for calibration and optimization of frequency modulated continuous wave radar altimeters using adjustable self-interference cancellation
US9136883B1 (en) 2014-08-20 2015-09-15 Futurewei Technologies, Inc. Analog compensation circuit and method
US20160056946A1 (en) * 2014-08-20 2016-02-25 Futurewei Technologies, Inc. System and Method for Digital Cancellation of Self-Interference in Full-Duplex Communications
US20160094332A1 (en) * 2014-09-25 2016-03-31 Futurewei Technologies, Inc. Systems and Methods for Analog Cancellation for Division Free Duplexing for Radios Using MIMO
US20160218769A1 (en) 2015-01-27 2016-07-28 Electronics And Telecommunications Research Institute Method and apparatus for canceling self-interference

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bharadia et al., "Full Duplex Radios" SIGOMM, Aug. 12-16, 2013, Hong Kong, China, Copyright 2013 ACM 978-1-4503-2056-6/6/13/08, 12 pages.
McMichael et al., "Optimal Tuning of Analog Self-Interference Cancellers for Full-Duple Wireless Communication", Oct. 1-5, 2012, Fiftieth Annual Allerton Conference, Illinois, USA, pp. 246-251.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10879995B2 (en) 2018-04-10 2020-12-29 Wilson Electronics, Llc Feedback cancellation on multiband booster

Also Published As

Publication number Publication date
US20160127112A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
US9712313B2 (en) Systems for multi-peak-filter-based analog self-interference cancellation
US9337885B2 (en) Systems and methods for hybrid self-interference cancellation
US9455756B2 (en) Systems and methods for frequency independent analog self-interference cancellation
US9774405B2 (en) Systems and methods for frequency-isolated self-interference cancellation
US9832003B2 (en) Systems and methods for self-interference canceller tuning
US9712312B2 (en) Systems and methods for near band interference cancellation
US10230422B2 (en) Systems and methods for modified frequency-isolation self-interference cancellation
US10404297B2 (en) Systems and methods for out-of-band interference mitigation
US10382085B2 (en) Analog self-interference cancellation systems for CMTS
US10425115B2 (en) Systems and methods for configurable hybrid self-interference cancellation
US11764825B2 (en) Systems and methods for tunable out-of-band interference mitigation
EP3602776B1 (en) Enhanced linearity mixer

Legal Events

Date Code Title Description
AS Assignment

Owner name: KUMU NETWORKS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHALIZI, JOSEPH;JAIN, MAYANK;CHOI, JUNG-IL;REEL/FRAME:037021/0903

Effective date: 20151110

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUMU NETWORKS, INC.;REEL/FRAME:066090/0165

Effective date: 20231219