WO2009098869A1 - Radio communication base station device and channel allocation method - Google Patents

Radio communication base station device and channel allocation method Download PDF

Info

Publication number
WO2009098869A1
WO2009098869A1 PCT/JP2009/000425 JP2009000425W WO2009098869A1 WO 2009098869 A1 WO2009098869 A1 WO 2009098869A1 JP 2009000425 W JP2009000425 W JP 2009000425W WO 2009098869 A1 WO2009098869 A1 WO 2009098869A1
Authority
WO
WIPO (PCT)
Prior art keywords
allocated
phich
vrb
vrbs
base station
Prior art date
Application number
PCT/JP2009/000425
Other languages
French (fr)
Japanese (ja)
Inventor
Seigo Nakao
Masaru Fukuoka
Akihiko Nishio
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2009098869A1 publication Critical patent/WO2009098869A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements

Definitions

  • the present invention relates to a radio communication base station apparatus and a channel allocation method.
  • ARQ is performed on uplink data transmitted from a radio communication mobile station apparatus (hereinafter simply referred to as “mobile station”) to a radio communication base station apparatus (hereinafter simply referred to as “base station”) on the uplink.
  • (Automatic Repeat Request) is applied, and a response signal indicating an error detection result of the uplink data is fed back to the mobile station on the downlink.
  • the signal is fed back to the mobile station as a response signal.
  • ACK / NACK signals are transmitted through a physical channel for downlink response signal transmission such as PHICH (Physical Hybrid-ARQ Indicator Channel).
  • synchronous HARQ HybridRQARQ
  • the base station feeds back a response signal to a mobile station after elapse of a predetermined time after receiving uplink data.
  • the mobile station receives the NACK signal.
  • the uplink data is retransmitted to the base station after a predetermined time has elapsed.
  • the base station transmits control information for notifying the allocation result of the logical resource block (Virtual Resource Block: VRB) number indicating the resource that the mobile station should use for uplink data transmission to the mobile station.
  • This control information is transmitted to the mobile station using a downlink control channel such as PDCCH (Physical Downlink Control Channel).
  • the PDCCH is configured by a physical resource unit called CCE (Control Channel Element), and each PDCCH occupies one or a plurality of CCEs.
  • the base station configures the PDCCH according to the number of CCEs necessary for notifying the control information, assigns the control information to the physical resource corresponding to the CCE occupied by each PDCCH, and transmits the control information.
  • the mobile station When the mobile station receives control information, it transmits uplink data using a physical resource block (Physical Resource Block: PRB) corresponding to the VRB instructed there.
  • a physical resource block Physical Resource Block: PRB
  • PRB Physical Resource Block
  • one physical resource block is formed of time / frequency resources having a size of 180 KHz on the frequency axis and 1 ms on the time axis.
  • SDMA Space Division Multiple Access
  • processing on the spatial axis (for example, separation processing using a known adaptive array) is performed on the base station side, and signals from a plurality of mobile stations are spatially separated.
  • the receiving side (base station) has a plurality of antennas and separates signals by spatial processing. Therefore, MIMO (Multiple-Input Multiple -Output)
  • MIMO Multiple-Input Multiple -Output
  • MU-MIMO Multi-user MIMO
  • a reference signal (Demodulation Reference Signal: DM RS) used for propagation path estimation is a resource that is orthogonal in time, frequency, or code space to a plurality of mobile stations.
  • DM RS Demodulation Reference Signal
  • Non-Patent Document 1 when a plurality of mobile stations transmit signals simultaneously using the same frequency resource, that is, when performing MU-MIMO communication, a reference signal (DM RS) is code-multiplexed between a plurality of mobile stations.
  • DM RS reference signal
  • a CAZAC (Constant-Amplitude-Zero-Auto-Correlation) sequence represented by the same ZC (Zadoff-Chu) sequence is allocated to a plurality of mobile stations performing MU-MIMO communication, and different mobile stations In between, a method of separating signals on the base station side by using CAZAC sequences having different cyclic shift (Cyclic Shift: CS) amounts on the time axis is applied.
  • Cyclic Shift: CS Cyclic Shift
  • the cross-correlation between CAZAC sequences having different cyclic shift amounts generated from the same CAZAC sequence is zero. Therefore, in an ideal communication environment, as shown in FIG. 1, a plurality of response signals spread and code-multiplexed by CAZAC sequences (cyclic shift amounts 0 to 7) having different cyclic shift amounts are transmitted at the base station. With this correlation processing, separation can be performed without intersymbol interference on the time axis.
  • the mobile station in order to efficiently use downlink resources, it is considered to associate a PHICH resource for transmitting a response signal on the downlink with a resource used for uplink data transmission (for example, Non-Patent Document 2 and Non-Patent Document 3). Accordingly, the mobile station can determine the PHICH resource addressed to itself from the resource allocation information for uplink data transmission notified by the PDCCH from the base station, even if the PHICH resource allocation information is not separately notified. it can.
  • Non-Patent Documents 2 and 3 in order to avoid the contention of the downlink PHICH resource, the PHICH resource is defined by the VRB number assigned to the mobile station and the assigned cyclic shift (CS) number for DM ⁇ RS.
  • the downlink PHICH resource is determined using the VRB number assigned to the mobile station and the CS number of DM RS as described above.
  • Non-Patent Document 1 as many PHICH resources as the number of VRBs used for uplink data transmission are prepared and defined as follows.
  • PHICH number Lowest VRB number + (CS number mod number of allocated VRBs) (1)
  • the lowest VRB number indicates the index number of the VRB having the smallest index among a plurality of consecutive VRBs allocated for uplink data transmission of the mobile station, and the allocated VRB number is for the mobile station.
  • the operation of the base station is as follows, for example. Since at least two PHICH resources need to be reserved for SDMA communication with 2 multiplexing, the base station allocates two VRBs (for example, VRB2-3) for 2-multiplex SDMA communication. In this case, since the two PHICH resources corresponding to the two VRBs do not compete with other mobile stations, two PHICH resources (PHICH2-3) can be secured for two-multiplexed SDMA communication.
  • two VRBs for example, VRB2-3
  • the base station assigns an appropriate DM RS CS number to each mobile station in order to avoid contention of PHICH resources between two mobile stations performing SDMA communication.
  • mobile stations assigned to VRB 2-3 and assigned CS numbers 0, 2, 4, 6 and CS numbers 1, 3, 5, and 7 are assigned.
  • the base station assigns CS number 1 to one mobile station and assigns CS number 2 to the other.
  • VRBs for example, VRB 12-15
  • CSs assigned CS numbers 1 and 5, CS numbers 2
  • the base station assigns CS numbers 0, 2, 5 to 4 mobile stations, respectively. , 7 resources are allocated.
  • the CS number is applied to DM RS used for propagation path estimation between each mobile station and the base station on the base station side.
  • CAZAC sequences corresponding to different CS numbers are Since they are orthogonal to each other, signals can be separated on the base station side without intersymbol interference.
  • a plurality of DM ⁇ ⁇ ⁇ ⁇ ⁇ RSs from a plurality of mobile stations do not always reach the base station at the same time due to transmission timing shifts at the mobile station, delayed waves due to multipath, frequency offset, and the like.
  • the correlation peak of the CAZAC sequence with a cyclic shift amount of 0 indicates that the cyclic shift amount is 1. Appear in the detection window of the CAZAC sequence.
  • Non-Patent Document 1 a mobile station to which the same VRB is assigned by SDMA and a mobile station to which CS numbers (for example, 0 and 4) that are separated as far as possible are assigned.
  • CS numbers for example, 0 and 4
  • Non-Patent Document 2 prepares PHICH resources by the same number as the number of VRBs used for uplink data transmission, and defines them as the following equation.
  • PHICH number (Lowest VRB number + CS number) mod Total number of PHICH resources ... (2)
  • the base station allocates two VRBs (for example, VRB2-3) for 2-multiplex SDMA communication, and assigns different CS amounts 0 and 4 to each mobile station.
  • the PHICH resource number corresponding to the mobile station to which VRB2-3 and CS amount 0 are assigned is 2, and the PHICH corresponding to the mobile station to which VRB2-3 and CS amount 4 is assigned. Since the resource number is 6, the PHICH resource does not compete. That is, contention of PHICH resources can be avoided while suppressing mutual interference between DM ⁇ ⁇ RSs of two SDMA mobile stations.
  • the PHICH resource 6 is used for the mobile station in the SDMA communication, when the CS number 0 is assigned to the non-SDMA mobile station to which the VRB number 6 is assigned, a PHICH resource contention occurs. That is, it is necessary to assign a CS number other than CS number 0 for a mobile station to which VRB number 6 is assigned. Further, when a non-SDMA terminal to which VRB number 6 is assigned uses resources other than PHICH number 6, the effect is spread to all mobile stations communicating with the base station.
  • SDMA communication is applicable only to some mobile stations having a good propagation environment and low cross-correlation of propagation paths, and some mobile stations performing SDMA communication may be other mobile stations. It is not preferable to limit the arrangement of VRB numbers and CS numbers. Further, in this case, the load on scheduling on the base station side becomes very large.
  • An object of the present invention is to provide a radio communication base station apparatus and channel allocation that improve the performance of uplink SDMA communication while reducing the scheduling load on the base station side that should consider the relationship between the logical resource for uplink data transmission and the downlink PHICH resource Is to provide a method.
  • the Lowest VRB number indicates the index number of the VRB having the smallest index among a plurality of continuous virtual resource blocks (VRBs) allocated for uplink data transmission of the radio communication mobile station apparatus, and the number of allocated VRBs.
  • the CS number indicates the cyclic shift amount of the code sequence used for the uplink reference signal
  • the total CS number indicates the code sequence that can be used for the reference signal Indicates the total number of cyclic shifts.
  • the ACK / NACK channel allocating unit that allocates the ACK / NACK channel to the obtained PHICH resource and the transmission unit that transmits the ACK / NACK channel allocated to the PHICH resource are employed.
  • the Lowest VRB number indicates the index number of the VRB having the smallest index among a plurality of consecutive virtual resource blocks (VRBs) allocated for uplink data transmission of the radio communication mobile station apparatus, and the number of allocated VRBs.
  • the CS number indicates the cyclic shift amount of the code sequence used for the uplink reference signal
  • the total CS number indicates the code sequence that can be used for the reference signal Indicates the total number of cyclic shifts.
  • an ACK / NACK channel assignment step for assigning an ACK / NACK channel to the obtained PHICH resource, and a transmission step for transmitting the ACK / NACK channel assigned to the PHICH resource.
  • the present invention it is possible to improve the performance of uplink SDMA communication while reducing the scheduling load on the base station side that should consider the relationship between the uplink data transmission logical resource and the downlink PHICH resource.
  • FIG. 5 shows the configuration of base station 100 according to Embodiment 1 of the present invention.
  • radio receiving section 102 receives uplink data transmitted from each mobile station via antenna 101, and receives down-converting, A / D conversion, etc. for this uplink data. Process. The received uplink data is output to demodulation section 103.
  • Demodulation section 103 demodulates the uplink data output from radio reception section 102 and outputs the demodulated uplink data to decoding section 104.
  • the decoding unit 104 decodes the uplink data output from the demodulation unit 103 and outputs the decoded uplink data to the error detection unit 105.
  • Modulation section 106 modulates the response signal of each mobile station output from error detection section 105, and outputs the modulated response signal to ACK / NACK channel allocation section 109.
  • the PDCCH allocation unit 107 receives uplink allocation information # 1 to #K indicating which uplink resource is allocated to which mobile station for a maximum of K mobile stations # 1 to #K. PDCCH allocation section 107 allocates input uplink allocation information # 1 to #K to any one of PDCCH # 1 to #K. Each PDCCH is composed of one or a plurality of CCEs among CCEs # 1 to #M. PDCCH allocating section 107 then outputs the data to encoding / modulating sections 108-1 to 108-K corresponding to the PDCCH allocated with uplink allocation information # 1 to #K, respectively.
  • the PDCCH allocating unit 107 transmits resource allocation information indicating which uplink data transmission logical resource (VRB) and CS number used for the DM RS are allocated to each mobile station.
  • the ACK / NACK channel allocating unit 109 Output to.
  • Encoding / modulating sections 108-1 to 108-K are provided corresponding to PDCCH # 1 to #K, and include an encoding section 1081 and a modulation section 1082.
  • encoding section 1081 encodes uplink allocation information output from PDCCH allocation section 107 and outputs the encoded information to modulation section 1082, and modulation section 1082 performs encoding.
  • the uplink allocation information output from section 1081 is modulated to generate an uplink allocation information symbol and output to allocation section 110.
  • the ACK / NACK channel allocation unit 109 allocates the response signal output from the modulation unit 106 to the PHICH resource based on the resource allocation information output from the PDCCH allocation unit 107. Specifically, the ACK / NACK channel allocation unit 109 sends a response signal for each mobile station to the uplink data transmission logical resource allocated to each mobile station, the number of allocated logical resource blocks, and DM. Assign to the PHICH resource associated with the CS number used for the RS.
  • the ACK / NACK channel allocation unit 109 has the VRB with the smallest VRB number among the allocated VRBs, the number of allocated VRBs, and DM RS.
  • a response signal is allocated to the PHICH resource associated with the CS number used for the. Then, ACK / NACK channel assignment section 109 outputs a response signal assigned to the PHICH resource to placement section 110. Details of the PHICH resource allocation processing in the ACK / NACK channel allocation unit 109 will be described later.
  • Arrangement section 110 arranges the PDCCH output from encoding / modulation sections 108-1 to 108-K and allocated with uplink allocation information symbols in downlink resources reserved in PDCCH, and provides an ACK / NACK channel allocation section.
  • the PHICH resource output from 109 and assigned with the response signal is arranged in the downlink physical resource reserved for PHICH.
  • Arrangement section 110 outputs a signal in which each channel is arranged to radio transmission section 111.
  • the radio transmission unit 111 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal output from the arrangement unit 110 and transmits the signal from the antenna 101 to each mobile station.
  • each mobile station when each mobile station receives a PDCCH addressed to itself from the base station 100, the mobile station transmits transmission data to the base station 100 according to uplink allocation information and MCS (Modulation and Coding Scheme).
  • MCS Modulation and Coding Scheme
  • Each mobile station also receives a response signal assigned to the PHICH resource associated with the VRB number, the number of VRBs, and the CS number assigned to the mobile station.
  • the response signal is an ACK signal
  • each mobile station waits until a PDCCH addressed to itself is transmitted from the base station 100 in order to transmit the next transmission data.
  • each mobile station retransmits transmission data when the response signal is a NACK signal.
  • 20 VRBs # 0 to # 19 are defined as logical resources for uplink data transmission.
  • the uplink data transmission logical resource allocated to each mobile station is composed of one VRB or a plurality of VRBs adjacent to each other among 20 VRBs.
  • CS # 0 to CS # 7 are defined as CS numbers that the mobile station should use in the uplink propagation path estimation reference signal (DM RS), and one CS number is associated with one mobile station. That is, the mobile station is instructed from the base station 100 by a plurality of VRB numbers to which uplink data should be transmitted and the CS number.
  • VRBs # 0 to # 1 are allocated as data resources for mobile stations that occupy 1 VRB
  • VRBs # 2 to # 5 are allocated as data resources for mobile stations that occupy 2 VRBs
  • VRBs # 6 to # 11 are allocated as data resources for mobile stations occupying 3VRB
  • VRBs # 12 to # 19 are allocated as data resources for mobile stations occupying 4VRB.
  • base station 100 reserves in advance downlink physical resources for arranging a maximum of 20 PHICH resources # 0 to # 19 corresponding to 20 VRBs # 0 to # 19, respectively.
  • the PHICH resource number is defined in association with both the VRB number and the CS number. That is, the relationship between the PHICH number, the VRB number, and the CS number is as follows.
  • PHICH number Lowest VRB number + floor (CS number ⁇ number of assigned VRBs / total number of CSs) (3)
  • floor (X) indicates the maximum integer not exceeding X, and the total number of CS is 8 (CS # 0 to CS # 7).
  • the ACK / NACK channel allocation unit 109 assigns a response signal to the uplink data assigned to VRB # 0 to PHICH # 0. Also, as shown in FIG. 6 and Equation (3), PHICH # 2 is associated with mobile stations to which VRB # 2 to # 3 are assigned and CS numbers # 0 to # 3 are assigned. Therefore, ACK / NACK channel assignment section 109 assigns a response signal for uplink data to which VRB # 2 to # 3 and CS numbers # 0 to # 3 are assigned to PHICH # 2.
  • ACK / NACK channel assignment unit 109 Assigns response signals for uplink data to which VRB # 2 to # 3 and CS numbers # 4 to # 7 are assigned to PHICH # 3.
  • ACK / NACK channel assignment unit 109 Assigns response signals for uplink data to which VRB # 12 to # 15 and CS numbers # 0 to # 1 are assigned to PHICH # 12. Mobile stations to which VRB # 12 to # 15 are assigned and CS numbers # 2 to # 3 are assigned, and mobile stations to which VRB # 12 to # 15 are assigned and CS numbers # 4 to # 5 are assigned The same applies to mobile stations to which stations, VRB # 12 to # 15 and CS numbers # 6 to # 7 are assigned.
  • the operations related to scheduling of the base station 100 are summarized as follows.
  • scheduling on the frequency axis is performed to determine the frequency resource.
  • the best CS number is assigned to the mobile station in terms of performance without worrying about PHICH resource contention.
  • the base station 100 has information on a plurality of sectors (cells)
  • the base station 100 performs frequency scheduling on the premise that continuous VRBs equal to or more than the SDMA multiplicity are allocated for 2-multiplex SDMA communication (for example, VRB2-3 is set). assign).
  • VRB2-3 is set. assign.
  • two PHICH resources corresponding to the two VRBs do not compete with other mobile stations in the same cell, two PHICH resources (PHICH2-3) can be secured for two-multiplex SDMA communication.
  • CS numbers (CS numbers 0 and 4, 1 and 5) that are as far away as possible from the two mobile stations are separated. 2 and 6 or 3 and 7).
  • PHICH resources corresponding to the two mobile stations do not compete with each other.
  • the base station 100 has information on a plurality of sectors, by using a CS number different from the CS number for DM RS assigned to other mobile stations using the same time / frequency resource in adjacent sectors, Interference can be reduced.
  • the base station 100 When the mobile station is a target of 4-multiplex SDMA communication, the base station 100 performs frequency scheduling on the assumption that continuous VRBs equal to or greater than the SDMA multiplicity are allocated for 4-multiplex SDMA communication (for example, VRB 12-15 is set). assign). In this case, since the four PHICH resources corresponding to the four VRBs do not compete with other mobile stations, four PHICH resources (PHICH12-15) can be secured for the 4-multiplex SDMA communication. In base station 100, in order to avoid mutual interference between DM RSs of four mobile stations that perform SDMA communication, CS numbers (sets of CS numbers 0, 2, 4, and 6) that are as far apart as possible from the four mobile stations are separated. Or a set of 1, 3, 5, and 7).
  • PHICH resources corresponding to the four mobile stations do not compete with each other.
  • the base station 100 has information on a plurality of sectors, by using a CS number different from the CS number for DM RS assigned to other mobile stations using the same time / frequency resource in adjacent sectors, Interference can be reduced.
  • Embodiment 1 there is no explicit signaling (Signaling) regarding the downlink PHICH resource, and even if the CS number is freely assigned to a mobile station other than the SDMA communication target, the downlink PHICH resource Contention does not occur, and mobile stations subject to SDMA communication are assigned VRBs equal to or greater than the multiplicity and CS numbers that maximize the SDMA reception performance on the base station side. Conflicts can be avoided. That is, the base station 100 side has only a simple scheduling function, and VRB and CS number arrangements that are optimal in terms of performance are possible. Therefore, according to the present embodiment, it is possible to improve the performance of uplink SDMA communication while reducing the scheduling load.
  • CS numbers can be freely assigned while taking into account other cell interference and the like. Since it is possible to assign a CS number that takes cell interference into consideration to some extent, system throughput can be improved.
  • Equation (3) is modified as follows.
  • PHICH number Highest VRB number ⁇ floor (CS number ⁇ number of allocated VRBs / total number of CSs) (4) However, the Highest VRB number indicates the index number of the VRB having the largest index among a plurality of consecutive VRBs allocated for uplink data transmission of the mobile station.
  • one PHICH resource is associated with a plurality of uplink data transmission VRBs to reduce PHICH resources.
  • N VRBs prepared in the system are grouped by M to form a total of N / M VRB groups.
  • one PHICH resource is associated with one VRB group.
  • FIG. 6 and Formula (3) are transformed into FIG. 7 and Formula (5).
  • PHICH number Lowest VRB group number + floor (CS number ⁇ number of assigned VRB groups / total number of CS) (5)
  • M 2
  • Formula (5) can be modified as follows using M.
  • PHICH number Lowest VRB number / M + floor (CS number ⁇ number of allocated VRB groups / (total number of CS ⁇ M)) (6)
  • base station 100 allocates uplink data transmission logical resources to each mobile station in units of VRB groups.
  • the scheduling operation of the base station 100 in the second embodiment is summarized as follows.
  • scheduling on the frequency axis is performed to determine the frequency resource.
  • the PHICH resource does not compete, and the best CS number is assigned to the mobile station in terms of performance.
  • the base station 100 has information on a plurality of sectors (cells)
  • the base station 100 performs frequency scheduling on the assumption that continuous VRB groups equal to or more than the SDMA multiplicity are allocated for 2-multiplex SDMA communication (for example, VRB group 1 -2).
  • the two PHICH resources corresponding to the two VRB groups do not compete with other mobile stations in the same cell, two PHICH resources (PHICH1-2) can be secured for two-multiplex SDMA communication. .
  • CS numbers (CS numbers 0 and 4, 1 and 5) that are as far away as possible from the two mobile stations are separated. 2 and 6 or 3 and 7).
  • PHICH resources corresponding to the two mobile stations do not compete with each other.
  • the base station 100 has information on a plurality of sectors, by using a CS number different from the CS number for DM RS assigned to other mobile stations using the same time / frequency resource in adjacent sectors, Interference can be reduced.
  • the base station 100 performs frequency scheduling on the premise that continuous VRB groups equal to or more than the SDMA multiplicity are allocated for 4-multiplex SDMA communication (for example, VRB group 6 -9 is assigned).
  • VRB group 6 -9 is assigned.
  • four PHICH resources PHICH 6-9 can be secured for the 4-multiplex SDMA communication.
  • CS numbers CS numbers 0, 2, 4, 6, or 1) that are as far away as possible from the four mobile stations are separated. , 3, 5, 7).
  • PHICH resources corresponding to the four mobile stations do not compete with each other.
  • the base station 100 has information on a plurality of sectors, by using a CS number different from the CS number for DM RS assigned to other mobile stations using the same time / frequency resource in adjacent sectors, Interference can be reduced.
  • the mobile station subject to SDMA communication is assigned with VRB groups equal to or more than the multiplicity and a CS number that maximizes the SDMA reception performance on the base station side, thereby avoiding contention for downlink PHICH resources. be able to. That is, the VRB group and the CS number arrangement that are optimal in terms of performance can be achieved only by providing a simple scheduling function on the base station side. Therefore, according to the present embodiment, it is possible to improve the performance of uplink SDMA communication while reducing the scheduling load.
  • a logical resource is assigned to a mobile station, and the mobile station converts it to a physical resource.
  • the base station assigns a physical resource block block number directly to the mobile station.
  • the PHICH resource is associated with a physical resource block (PRB) number, an assigned PRB number, and a CS number.
  • the physical resource block may be simply referred to as a resource block (Resource Block: RB).
  • the logical resource block or physical resource block allocated to the mobile station and the CS number do not change during communication.
  • the resource block and CS When the number hops (changes the logical resource / physical resource and CS number on the time axis), for example, the logical resource block or physical resource block number used in the first slot and the number of allocated resource blocks and The PHICH resource may be associated with the CS number.
  • the CS numbers are sequentially associated with the physical cyclic shift amounts.
  • the correspondence between the physical cyclic shift amount and the CS number indicated by the base station is not related to this. It is not limited to.
  • CS number 0 may indicate a physical cyclic shift amount
  • CS number 1 may indicate a physical cyclic shift amount 4.
  • the PHICH resource is associated with the logical resource block number or physical resource block number and the number of allocated resource blocks, and the physical cyclic shift amount.
  • PHICH resources may not compete.
  • eight cyclic shift amounts used for DM RS are defined at equal intervals. For example, twelve cyclic shift amounts are defined, and eight cyclic shift amounts are defined as bases. You may associate with CS number which a station instruct
  • the present invention can also be applied to a response signal of downlink data.
  • the present invention can be applied to a downlink data response signal by the mobile station performing the same processing as the base station 100.
  • the base station 100 assigns downlink resources. That is, the mobile station does not perform the same processing as the PDCCH allocation unit 107 in the base station 100. Therefore, the mobile station transmits a response signal using the ACK / NACK channel associated with the VRB used for downlink data, the number of assigned VRBs, and the CS number.
  • the PDCCH used in the description of the above embodiment may be referred to as SCCH (Shared Control Channel), L1 / L2 Control Channel, UL grant channel, and CCCH (Common Control Channel).
  • SCCH Shared Control Channel
  • L1 / L2 Control Channel L1 / L2 Control Channel
  • UL grant channel UL grant channel
  • CCCH Common Control Channel
  • the PHICH resource may be referred to as a HICH (Hybrid ARQ Indicator Channel) resource or an ACK / NACK resource.
  • the mobile station may be referred to as UE (User Equipment), and the base station may be referred to as Node B.
  • UE User Equipment
  • Node B the base station
  • the error detection method is not limited to CRC determination.
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the radio communication base station apparatus and channel allocation method according to the present invention improve the performance of uplink SDMA communication while reducing the scheduling load on the base station side that should consider the relationship between the uplink data transmission logical resource and the downlink PHICH resource. For example, it can be applied to a mobile communication system.

Abstract

It is possible to provide a radio communication base station device and a channel allocation method which can improve an uplink SDMA communication performance while reducing a scheduling load of a base station side which should consider the relationship between an uplink line data transmission logical resource and a downlink PHICH resource. An ACK/NACK channel allocation unit (109) decides a PHICH resource for which an ACK/NACK channel is to be allocated according to the following equation: PHICH number = Lowest VRB number + floor (CS number × number of allocated VRB/total number of CS) and allocates the ACK/NACK channel to the decidedPHICH resource.

Description

無線通信基地局装置及びチャネル割当方法Radio communication base station apparatus and channel allocation method
 本発明は、無線通信基地局装置及びチャネル割当方法に関する。 The present invention relates to a radio communication base station apparatus and a channel allocation method.
 移動体通信では、上り回線で無線通信移動局装置(以下、単に「移動局」という)から無線通信基地局装置(以下、単に「基地局」という)へ伝送される上り回線データに対してARQ(Automatic Repeat Request)が適用され、上り回線データの誤り検出結果を示す応答信号が下り回線で移動局へフィードバックされる。基地局は上り回線データに対しCRC(Cyclic Redundancy Check)判定を行って、CRC=OK(誤り無し)であればACK(Acknowledgment)信号を、CRC=NG(誤り有り)であればNACK(Negative Acknowledgment)信号を応答信号として移動局へフィードバックする。これらのACK/NACK信号は、例えば、PHICH(Physical Hybrid-ARQ Indicator Channel)等の下り応答信号送信用の物理チャネルを通して送信される。 In mobile communication, ARQ is performed on uplink data transmitted from a radio communication mobile station apparatus (hereinafter simply referred to as “mobile station”) to a radio communication base station apparatus (hereinafter simply referred to as “base station”) on the uplink. (Automatic Repeat Request) is applied, and a response signal indicating an error detection result of the uplink data is fed back to the mobile station on the downlink. The base station performs a CRC (Cyclic Redundancy Check) check on the uplink data, and if CRC = OK (no error), an ACK (Acknowledgment) signal is received. ) The signal is fed back to the mobile station as a response signal. These ACK / NACK signals are transmitted through a physical channel for downlink response signal transmission such as PHICH (Physical Hybrid-ARQ Indicator Channel).
 ここで、上り回線データに同期HARQ(Hybrid ARQ)を適用することが検討されている。同期HARQでは、基地局は、上り回線データの受信後、所定時間経過後に応答信号を移動局へフィードバックし、移動局は、基地局からNACK信号がフィードバックされた場合には、NACK信号の受信後、所定時間経過後に上り回線データを基地局へ再送する。 Here, it is considered to apply synchronous HARQ (HybridRQARQ) to uplink data. In synchronous HARQ, the base station feeds back a response signal to a mobile station after elapse of a predetermined time after receiving uplink data. When the NACK signal is fed back from the base station, the mobile station receives the NACK signal. The uplink data is retransmitted to the base station after a predetermined time has elapsed.
 また、基地局は、移動局が上り回線データ送信に用いるべきリソースを示す論理リソースブロック(Virtual Resource Block:VRB)番号の割当結果を通知するための制御情報を移動局へ送信する。この制御情報は、例えば、PDCCH(Physical Downlink Control Channel)等の下り回線制御チャネルを用いて移動局へ送信される。PDCCHは、CCE(Control Channel Element)と呼ばれる物理リソース単位で構成され、各PDCCHは1つまたは複数のCCEを占有する。基地局は、制御情報を通知するために必要なCCE数に従って、PDCCHを構成し、各PDCCHが占有するCCEに対応する物理リソースに制御情報を割り当てて送信する。なお、移動局が制御情報を受信すると、そこで指示されているVRBに対応する物理リソースブロック(Physical Resource Block:PRB)を用いて上り回線データを送信する。例えば、1物理リソースブロックは、周波数軸上で180KHz、時間軸上で1msの大きさを持つ時間・周波数リソースで形成される。 Also, the base station transmits control information for notifying the allocation result of the logical resource block (Virtual Resource Block: VRB) number indicating the resource that the mobile station should use for uplink data transmission to the mobile station. This control information is transmitted to the mobile station using a downlink control channel such as PDCCH (Physical Downlink Control Channel). The PDCCH is configured by a physical resource unit called CCE (Control Channel Element), and each PDCCH occupies one or a plurality of CCEs. The base station configures the PDCCH according to the number of CCEs necessary for notifying the control information, assigns the control information to the physical resource corresponding to the CCE occupied by each PDCCH, and transmits the control information. When the mobile station receives control information, it transmits uplink data using a physical resource block (Physical Resource Block: PRB) corresponding to the VRB instructed there. For example, one physical resource block is formed of time / frequency resources having a size of 180 KHz on the frequency axis and 1 ms on the time axis.
 一方、上り回線データ送信用論理リソースの利用効率向上のため、複数の移動局が同時に同一の周波数リソースを用いてそれぞれのデータを送信し、基地局側で信号を分離する手法(Space Division Multiple Access:SDMA)の適用が検討されている。SDMA通信では、基地局側で空間軸上の処理(例えば、公知のアダプティブアレイによる分離処理)を行い、複数の移動局からの信号を空間的に分離するが、その通信の特徴、すなわち、1)送信側(移動局)が複数存在し、それぞれがアンテナを備えること、2)受信側(基地局)は複数のアンテナを備え、空間処理によって信号を分離することから、MIMO(Multiple-Input Multiple-Output)通信の一形態として、MU-MIMO(Multi-user MIMO)と呼ばれることがある。 On the other hand, in order to improve the utilization efficiency of uplink data transmission logical resources, a method in which multiple mobile stations simultaneously transmit each data using the same frequency resource and separate the signals on the base station side (Space Division Multiple Access : SDMA) is under consideration. In SDMA communication, processing on the spatial axis (for example, separation processing using a known adaptive array) is performed on the base station side, and signals from a plurality of mobile stations are spatially separated. ) There are a plurality of transmitting sides (mobile stations), each having an antenna. 2) The receiving side (base station) has a plurality of antennas and separates signals by spatial processing. Therefore, MIMO (Multiple-Input Multiple -Output) One form of communication is sometimes called MU-MIMO (Multi-user MIMO).
 MU-MIMO通信で複数の移動局からの信号を基地局側で空間的に分離するためには、基地局側で高精度な伝播路推定が必要となる。そのため、一般的にMU-MIMO通信では、伝播路推定に用いられる参照信号(Demodulation Reference Signal:DM RS)は複数の移動局に対し、時間、周波数又は符号空間上のいずれかで直交したリソースを割り当て、基地局側での上り伝播路推定精度を確保し、データ部分のみで上り回線データ送信用論理リソース(=物理リソース)を共通化する手法が取られる。 In order to spatially separate signals from a plurality of mobile stations by MU-MIMO communication on the base station side, highly accurate propagation path estimation is required on the base station side. Therefore, in general, in MU-MIMO communication, a reference signal (Demodulation Reference Signal: DM RS) used for propagation path estimation is a resource that is orthogonal in time, frequency, or code space to a plurality of mobile stations. A method is adopted in which the uplink transmission path estimation accuracy on the base station side is ensured, and the uplink data transmission logical resource (= physical resource) is shared only by the data portion.
 例えば、3GPP-LTE(非特許文献1参照)では、複数の移動局が同時に同一周波数リソースを用いて信号を送信する場合、すなわちMU-MIMO通信を行う場合、上り信号に含まれる参照信号(DM RS)を複数の移動局間で符号多重する方法が適用されている。 For example, in 3GPP-LTE (see Non-Patent Document 1), when a plurality of mobile stations transmit signals simultaneously using the same frequency resource, that is, when performing MU-MIMO communication, a reference signal (DM RS) is code-multiplexed between a plurality of mobile stations.
 すなわち、図1に示すように、MU-MIMO通信を行う複数の移動局に同一のZC(Zadoff-Chu)系列に代表されるCAZAC(Constant Amplitude Zero-Auto-Correlation)系列を割り当て、異なる移動局間では、時間軸上での循環シフト(Cyclic Shift:CS)量が互いに異なるCAZAC系列を用いることによって、基地局側で信号を分離する方法が適用されている。ただし、ここでは、CAZAC系列の時間軸上での分割数、すなわち異なる循環シフト量の定義数を8としているため、最大で8つの移動局が符号分割多重により同一周波数・時間リソースを用いてDM RSを送信することができる。 That is, as shown in FIG. 1, a CAZAC (Constant-Amplitude-Zero-Auto-Correlation) sequence represented by the same ZC (Zadoff-Chu) sequence is allocated to a plurality of mobile stations performing MU-MIMO communication, and different mobile stations In between, a method of separating signals on the base station side by using CAZAC sequences having different cyclic shift (Cyclic Shift: CS) amounts on the time axis is applied. However, since the number of divisions on the time axis of the CAZAC sequence, that is, the definition number of different cyclic shift amounts is 8, here, a maximum of 8 mobile stations use the same frequency / time resource by code division multiplexing to perform DM. RS can be transmitted.
 ここで、同一CAZAC系列から生成される循環シフト量が互いに異なるCAZAC系列間での相互相関は0となる。よって、理想的な通信環境では、図1に示すように、循環シフト量が互いに異なるCAZAC系列(循環シフト量0~7)でそれぞれ拡散されてコード多重された複数の応答信号は、基地局での相関処理により時間軸上で符号間干渉なく分離することができる。 Here, the cross-correlation between CAZAC sequences having different cyclic shift amounts generated from the same CAZAC sequence is zero. Therefore, in an ideal communication environment, as shown in FIG. 1, a plurality of response signals spread and code-multiplexed by CAZAC sequences (cyclic shift amounts 0 to 7) having different cyclic shift amounts are transmitted at the base station. With this correlation processing, separation can be performed without intersymbol interference on the time axis.
 さらに、同期HARQにおいて、下り回線リソースを効率良く使用するために、上り回線データ送信に用いられたリソースに、下り回線で応答信号を伝送するためのPHICHリソースを関連付けることが検討されている(例えば、非特許文献2及び非特許文献3参照)。これにより、移動局は、PHICHリソースの割当情報が別途通知されなくても、基地局からのPDCCHによって通知される上り回線データ送信用のリソース割当情報から自局宛てのPHICHリソースを判断することができる。 Further, in synchronous HARQ, in order to efficiently use downlink resources, it is considered to associate a PHICH resource for transmitting a response signal on the downlink with a resource used for uplink data transmission (for example, Non-Patent Document 2 and Non-Patent Document 3). Accordingly, the mobile station can determine the PHICH resource addressed to itself from the resource allocation information for uplink data transmission notified by the PDCCH from the base station, even if the PHICH resource allocation information is not separately notified. it can.
 ただし、前述のSDMA通信が用いられる場合には、同一の上り回線データ送信用の論理リソースに複数の移動局が割り当てられるため、下りPHICHリソースの競合が発生する。そこで、非特許文献2,3ではこの下りPHICHリソースの競合を避けるため、移動局に割り当てられたVRB番号と割り当てられたDM RS用の循環シフト(CS)番号によってPHICHリソースを定義している。 However, when the above-described SDMA communication is used, since a plurality of mobile stations are allocated to the same uplink data transmission logical resource, contention for downlink PHICH resources occurs. Therefore, in Non-Patent Documents 2 and 3, in order to avoid the contention of the downlink PHICH resource, the PHICH resource is defined by the VRB number assigned to the mobile station and the assigned cyclic shift (CS) number for DM 番号 RS.
 また、上り回線データに同期HARQを適用する場合、データの送信タイミングが予め設定されているため、2回目送信以降(再送)の上り回線データを基地局へ送信する移動局に対しては、2回目送信以降(再送)の上り回線データのリソース割り当てのためのPDCCHが送信されない。また、2回目送信以降(再送)の上り回線データに対する応答信号は、1回目送信(初回送信)時に使用したPHICHリソースと同一のPHICHリソースを用いて送信される。
3GPP TS 36.211 V8.1.0, "Physical Channels and Modulation (Release 8)," Nov. 2007 3GPP RAN WG1 Meeting document, R1-073479, "Mapping Relations between UL VRB and DL ACK/NACK", LG Electronics, August 2007 3GPP RAN WG1 Meeting document, R1-080301, "PHICH and mapping to PHICH groups", Nokia, Nokia Siemens Networks, January 2008
In addition, when synchronous HARQ is applied to uplink data, since the data transmission timing is set in advance, it is 2 for mobile stations that transmit uplink data after the second transmission (retransmission) to the base station. PDCCH for resource allocation of uplink data after the second transmission (retransmission) is not transmitted. A response signal for uplink data after the second transmission (retransmission) is transmitted using the same PHICH resource as the PHICH resource used during the first transmission (initial transmission).
3GPP TS 36.211 V8.1.0, "Physical Channels and Modulation (Release 8)," Nov. 2007 3GPP RAN WG1 Meeting document, R1-073479, "Mapping Relations between UL VRB and DL ACK / NACK", LG Electronics, August 2007 3GPP RAN WG1 Meeting document, R1-080301, "PHICH and mapping to PHICH groups", Nokia, Nokia Siemens Networks, January 2008
 上記従来技術では、前述のように移動局に割り当てられたVRB番号とDM RSのCS番号を用いて下りPHICHリソースを決定する。例えば、非特許文献1では、PHICHリソースを上り回線データ送信に用いられるVRB数と同数だけ準備し、次式のように定義する。 In the above prior art, the downlink PHICH resource is determined using the VRB number assigned to the mobile station and the CS number of DM RS as described above. For example, in Non-Patent Document 1, as many PHICH resources as the number of VRBs used for uplink data transmission are prepared and defined as follows.
 PHICH番号=Lowest VRB番号+(CS番号 mod 割当VRB数)…(1)
 ただし、Lowest VRB番号とは、移動局の上り回線データ送信用に割り当てられた複数の連続するVRBのうち、最小のインデックスを有するVRBのインデックス番号を示し、割当VRB数とは、移動局用に割り当てられたVRB数を示す。システムのVRBの総数を20、総PHICHリソース数を20、CS数を8とすると、この方式を用いたVRB番号及びCS番号とPHICH番号の対応付けは、例えば、図2のようになる。
PHICH number = Lowest VRB number + (CS number mod number of allocated VRBs) (1)
However, the lowest VRB number indicates the index number of the VRB having the smallest index among a plurality of consecutive VRBs allocated for uplink data transmission of the mobile station, and the allocated VRB number is for the mobile station. Indicates the number of allocated VRBs. Assuming that the total number of VRBs in the system is 20, the total number of PHICH resources is 20, and the number of CSs is 8, the correspondence between VRB numbers and CS numbers using this method is as shown in FIG.
 非特許文献1に開示された方式を用いて多重度数2のSDMA通信を行う場合、基地局の動作は、例えば次のようになる。PHICHリソースを多重数2のSDMA通信用に最低2つ確保する必要があるため、基地局では2つのVRB(例えば、VRB2-3)を2多重SDMA通信用に割り当てる。この場合、この2つのVRBに対応する2つのPHICHリソースは他の移動局と競合することはないので、2つのPHICHリソース(PHICH2-3)が2多重のSDMA通信用に確保できる。 When performing multi-frequency 2 SDMA communication using the method disclosed in Non-Patent Document 1, the operation of the base station is as follows, for example. Since at least two PHICH resources need to be reserved for SDMA communication with 2 multiplexing, the base station allocates two VRBs (for example, VRB2-3) for 2-multiplex SDMA communication. In this case, since the two PHICH resources corresponding to the two VRBs do not compete with other mobile stations, two PHICH resources (PHICH2-3) can be secured for two-multiplexed SDMA communication.
 次に、基地局では、SDMA通信を行う2つの移動局間でのPHICHリソースの競合を避けるため、各異動局に対し適切なDM RS用のCS番号を割り当てる。式(1)及び図2を参照すると、VRB2-3に割り当てられ、かつ、CS番号0,2,4,6を割り当てられた移動局同士、及び、CS番号1,3,5,7を割り当てられた移動局同士のPHICHリソースは競合するため、例えば、基地局は一方の移動局用にCS番号1を割り当て、もう一方にCS番号2を割り当てる。 Next, the base station assigns an appropriate DM RS CS number to each mobile station in order to avoid contention of PHICH resources between two mobile stations performing SDMA communication. Referring to Equation (1) and FIG. 2, mobile stations assigned to VRB 2-3 and assigned CS numbers 0, 2, 4, 6 and CS numbers 1, 3, 5, and 7 are assigned. For example, the base station assigns CS number 1 to one mobile station and assigns CS number 2 to the other.
 また、基地局が4多重SDMA通信を行う場合には、4つの移動局に対し4つのVRB(例えば、VRB12-15)を割り当てる。式(1)及び図2を参照すると、VRB12-15に割り当てられ、かつ、CS番号0,4を割り当てられた移動局同士、CS番号1,5を割り当てられた移動局同士、CS番号2,6を割り当てられた移動局同士、及びCS番号3,7を割り当てられた移動局同士のPHICHリソースは競合するため、例えば、基地局は4台の移動局にそれぞれ、CS番号0,2,5,7のリソースを割り当てる。 When the base station performs 4-multiplex SDMA communication, 4 VRBs (for example, VRB 12-15) are allocated to 4 mobile stations. Referring to Equation (1) and FIG. 2, mobile stations assigned to VRB 12-15 and assigned CS numbers 0 and 4, CSs assigned CS numbers 1 and 5, CS numbers 2, Since the PHICH resources of the mobile stations to which 6 is assigned and the mobile stations to which CS numbers 3 and 7 are assigned compete, for example, the base station assigns CS numbers 0, 2, 5 to 4 mobile stations, respectively. , 7 resources are allocated.
 CS番号は、基地局側で各移動局と基地局間の伝播路推定のために用いられるDM RSに適用され、前述の通り、理想的な通信環境では、異なるCS番号に対応するCAZAC系列は互いに直交するため、基地局側で符号間干渉無く信号を分離できる。 The CS number is applied to DM RS used for propagation path estimation between each mobile station and the base station on the base station side. As described above, in an ideal communication environment, CAZAC sequences corresponding to different CS numbers are Since they are orthogonal to each other, signals can be separated on the base station side without intersymbol interference.
 しかしながら、移動局での送信タイミングずれ、マルチパスによる遅延波、周波数オフセット等の影響により、複数の移動局からの複数のDM RSは基地局に同時に到達するとは限らない。例えば、図3Aに示すように、循環シフト量0のCAZAC系列で拡散されたDM RSの送信タイミングが正しい送信タイミングより遅れた場合は、循環シフト量0のCAZAC系列の相関ピークが循環シフト量1のCAZAC系列の検出窓に現れてしまう。また、図3Bに示すように、循環シフト量0のCAZAC系列で拡散されたDM RSに遅延波がある場合には、その遅延波による干渉漏れが循環シフト量1のCAZAC系列の検出窓に現れてしまう。これらの場合には、循環シフト量1のCAZAC系列が循環シフト量0のCAZAC系列からの干渉を受ける。よって、これらの場合には、循環シフト量0のCAZAC系列で拡散されたDM RSと循環シフト量1のCAZAC系列で拡散されたDM RSとの分離特性が劣化し、各移動局からの上り伝播路推定を正しく行えなくなる。つまり、互いに隣接する循環シフト量のCAZAC系列を用いると、同一VRBを用いて送信されたDM RSの分離特性が劣化する可能性がある。換言すれば、SDMAにおいては極力離れたCS番号を異なる移動局に割り当てる必要がある。 However, a plurality of DM タ イ ミ ン グ RSs from a plurality of mobile stations do not always reach the base station at the same time due to transmission timing shifts at the mobile station, delayed waves due to multipath, frequency offset, and the like. For example, as shown in FIG. 3A, when the transmission timing of a DM-RS spread with a CAZAC sequence with a cyclic shift amount of 0 is delayed from the correct transmission timing, the correlation peak of the CAZAC sequence with a cyclic shift amount of 0 indicates that the cyclic shift amount is 1. Appear in the detection window of the CAZAC sequence. Further, as shown in FIG. 3B, when there is a delayed wave in DM RS spread by a CAZAC sequence with a cyclic shift amount of 0, interference leakage due to the delayed wave appears in the detection window of the CAZAC sequence with a cyclic shift amount of 1 End up. In these cases, a CAZAC sequence with a cyclic shift amount of 1 receives interference from a CAZAC sequence with a cyclic shift amount of 0. Therefore, in these cases, the separation characteristics of DM RS spread with a CAZAC sequence with a cyclic shift amount of 0 and DM RS spread with a CAZAC sequence with a cyclic shift amount of 1 deteriorate, and uplink propagation from each mobile station The path estimation cannot be performed correctly. That is, if CAZAC sequences having cyclic shift amounts adjacent to each other are used, there is a possibility that the separation characteristics of DM RS transmitted using the same VRB may be deteriorated. In other words, in SDMA, it is necessary to assign CS numbers that are as far away as possible to different mobile stations.
 ところで、前述した通り、非特許文献1に示す方式では、SDMAによって同一のVRBが割り当てられている移動局、かつ、最大限離れたCS番号(例えば、0と4)を割り当てられている移動局用のPHICHリソースが競合するため、SDMA性能が劣化するという問題があった。 By the way, as described above, in the method shown in Non-Patent Document 1, a mobile station to which the same VRB is assigned by SDMA and a mobile station to which CS numbers (for example, 0 and 4) that are separated as far as possible are assigned. There is a problem in that the SDMA performance deteriorates due to competing PHICH resources.
 それに対し、非特許文献2では、PHICHリソースを上り回線データ送信に用いられるVRB数と同数だけ準備し、次式のように定義している。 On the other hand, Non-Patent Document 2 prepares PHICH resources by the same number as the number of VRBs used for uplink data transmission, and defines them as the following equation.
 PHICH番号=(Lowest VRB番号+CS番号) mod 総PHICHリソース数…(2) PHICH number = (Lowest VRB number + CS number) mod Total number of PHICH resources ... (2)
 この場合、総VRB数を20、総PHICHリソース数を20、CS数を8とすると、この方式を用いたVRB番号及びCS番号とPHICH番号の対応付けは、図4のようになる。 In this case, assuming that the total number of VRBs is 20, the total number of PHICH resources is 20, and the number of CSs is 8, the correspondence between VRB numbers and CS numbers and PHICH numbers using this method is as shown in FIG.
 非特許文献2に開示された方式を用いて多重度数2のSDMA通信を行う場合、SDMA通信を行う複数の移動局に対し、極力離れたCS番号を割り当てることが可能となる。この時の、基地局の動作は、例えば次のようになる。基地局は、2つのVRB(例えば、VRB2-3)を2多重SDMA通信用に割り当て、それぞれの移動局に異なるCS量0と4を割り当てる。式(2)と図4を参照すると、VRB2-3及びCS量0が割り当てられた移動局に対応するPHICHリソース番号は2、VRB2-3及びCS量4が割り当てられた移動局に対応するPHICHリソース番号は6なので、PHICHリソースは競合しない。すなわち、2つのSDMA移動局のDM RS間の相互干渉を抑えつつ、PHICHリソースの競合を避けることができる。 When performing SDMA communication with a multiplicity of 2 using the method disclosed in Non-Patent Document 2, it is possible to assign CS numbers as far as possible to a plurality of mobile stations performing SDMA communication. The operation of the base station at this time is as follows, for example. The base station allocates two VRBs (for example, VRB2-3) for 2-multiplex SDMA communication, and assigns different CS amounts 0 and 4 to each mobile station. Referring to Equation (2) and FIG. 4, the PHICH resource number corresponding to the mobile station to which VRB2-3 and CS amount 0 are assigned is 2, and the PHICH corresponding to the mobile station to which VRB2-3 and CS amount 4 is assigned. Since the resource number is 6, the PHICH resource does not compete. That is, contention of PHICH resources can be avoided while suppressing mutual interference between DM 間 の RSs of two SDMA mobile stations.
 しかしながら、SDMA通信中の移動局用にPHICHリソース6が用いられるため、VRB番号6が割り当てられた非SDMA移動局に対してCS番号0を割り当てるとPHICHリソースの競合が発生する。すなわち、VRB番号6を割り当てた移動局用には、CS番号0以外のCS番号を割り当てる必要がある。さらに、VRB番号6を割り当てられた非SDMA端末がPHICH番号6以外のリソースを用いることにより、その影響は基地局と通信する全ての移動局へ波及する。 However, since the PHICH resource 6 is used for the mobile station in the SDMA communication, when the CS number 0 is assigned to the non-SDMA mobile station to which the VRB number 6 is assigned, a PHICH resource contention occurs. That is, it is necessary to assign a CS number other than CS number 0 for a mobile station to which VRB number 6 is assigned. Further, when a non-SDMA terminal to which VRB number 6 is assigned uses resources other than PHICH number 6, the effect is spread to all mobile stations communicating with the base station.
 一般的に、SDMA通信は伝播環境が良く、かつ、伝播路の相互相関の低い一部の移動局に対してのみ適用できるものであり、SDMA通信を行う一部の移動局が他の移動局のVRB番号やCS番号の配置に制限を与えることは好ましくない。さらに、この場合、基地局側でのスケジューリングにかかる負荷が非常に大きくなる。 In general, SDMA communication is applicable only to some mobile stations having a good propagation environment and low cross-correlation of propagation paths, and some mobile stations performing SDMA communication may be other mobile stations. It is not preferable to limit the arrangement of VRB numbers and CS numbers. Further, in this case, the load on scheduling on the base station side becomes very large.
 本発明の目的は、上り回線データ送信用論理リソースと下りPHICHリソースの関係を考慮すべき基地局側のスケジューリング負荷を低減しつつ、上りSDMA通信の性能を向上させる無線通信基地局装置及びチャネル割当方法を提供することである。 An object of the present invention is to provide a radio communication base station apparatus and channel allocation that improve the performance of uplink SDMA communication while reducing the scheduling load on the base station side that should consider the relationship between the logical resource for uplink data transmission and the downlink PHICH resource Is to provide a method.
 本発明の無線通信基地局装置は、ACK/NACKチャネルを割り当てるPHICHリソースをPHICH番号=Lowest VRB番号+floor(CS番号×割当VRB数/総CS数)
 ただし、Lowest VRB番号は、無線通信移動局装置の上り回線データ送信用に割り当てられた複数の連続するバーチャルリソースブロック(VRB)のうち、最小のインデックスを有するVRBのインデックス番号を示し、割当VRB数は、無線通信移動局装置用に割り当てられたVRB数を示し、CS番号は、上り参照信号に用いる符号系列の循環シフト量を示し、総CS数は、参照信号に用いることができる符号系列の循環シフトの総数を示す。
 により求め、求めたPHICHリソースにACK/NACKチャネルを割り当てるACK/NACKチャネル割当手段と、PHICHリソースに割り当てたACK/NACKチャネルを送信する送信手段と、を具備する構成を採る。
The radio communication base station apparatus of the present invention assigns PHICH resources to which ACK / NACK channels are allocated to PHICH number = Lowest VRB number + floor (CS number × number of allocated VRBs / total number of CSs).
However, the Lowest VRB number indicates the index number of the VRB having the smallest index among a plurality of continuous virtual resource blocks (VRBs) allocated for uplink data transmission of the radio communication mobile station apparatus, and the number of allocated VRBs. Indicates the number of VRBs allocated for the radio communication mobile station apparatus, the CS number indicates the cyclic shift amount of the code sequence used for the uplink reference signal, and the total CS number indicates the code sequence that can be used for the reference signal Indicates the total number of cyclic shifts.
The ACK / NACK channel allocating unit that allocates the ACK / NACK channel to the obtained PHICH resource and the transmission unit that transmits the ACK / NACK channel allocated to the PHICH resource are employed.
 本発明のチャネル割当方法は、ACK/NACKチャネルを割り当てるPHICHリソースをPHICH番号=Lowest VRB番号+floor(CS番号×割当VRB数/総CS数)
 ただし、Lowest VRB番号は、無線通信移動局装置の上り回線データ送信用に割り当てられた複数の連続するバーチャルリソースブロック(VRB)のうち、最小のインデックスを有するVRBのインデックス番号を示し、割当VRB数は、無線通信移動局装置用に割り当てられたVRB数を示し、CS番号は、上り参照信号に用いる符号系列の循環シフト量を示し、総CS数は、参照信号に用いることができる符号系列の循環シフトの総数を示す。
 により求め、求めたPHICHリソースにACK/NACKチャネルを割り当てるACK/NACKチャネル割当工程と、PHICHリソースに割り当てたACK/NACKチャネルを送信する送信工程と、を具備するようにした。
In the channel allocation method of the present invention, a PHICH resource for allocating an ACK / NACK channel is defined as PHICH number = Lowest VRB number + floor (CS number × number of allocated VRBs / total number of CSs).
However, the Lowest VRB number indicates the index number of the VRB having the smallest index among a plurality of consecutive virtual resource blocks (VRBs) allocated for uplink data transmission of the radio communication mobile station apparatus, and the number of allocated VRBs. Indicates the number of VRBs allocated for the radio communication mobile station apparatus, the CS number indicates the cyclic shift amount of the code sequence used for the uplink reference signal, and the total CS number indicates the code sequence that can be used for the reference signal Indicates the total number of cyclic shifts.
And an ACK / NACK channel assignment step for assigning an ACK / NACK channel to the obtained PHICH resource, and a transmission step for transmitting the ACK / NACK channel assigned to the PHICH resource.
 本発明によれば、上り回線データ送信用論理リソースと下りPHICHリソースの関係を考慮すべき基地局側のスケジューリング負荷を低減しつつ、上りSDMA通信の性能を向上させることができる。 According to the present invention, it is possible to improve the performance of uplink SDMA communication while reducing the scheduling load on the base station side that should consider the relationship between the uplink data transmission logical resource and the downlink PHICH resource.
CAZAC系列の説明に供する図Diagram for explaining CAZAC series 非特許文献1に開示のVRB、CS及びPHICHの対応関係を示す模式図Schematic diagram showing the correspondence between VRB, CS and PHICH disclosed in Non-Patent Document 1. CAZAC系列で拡散されたACK/NACK信号の相関処理を示す図(送信タイミングのずれがある場合)The figure which shows the correlation process of the ACK / NACK signal spread | diffused by the CAZAC series (when there exists a shift | offset | difference of transmission timing) CAZAC系列で拡散されたACK/NACK信号の相関処理を示す図(遅延波がある場合)The figure which shows the correlation process of the ACK / NACK signal spread by the CAZAC sequence (when there is a delay wave) 非特許文献2に開示のVRB、CS及びPHICHの対応関係を示す模式図Schematic diagram showing the correspondence between VRB, CS and PHICH disclosed in Non-Patent Document 2 本発明の実施の形態1に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るVRB、CS及びPHICHの対応関係を示す模式図Schematic diagram showing the correspondence between VRB, CS and PHICH according to the first embodiment of the present invention 本発明の実施の形態2に係るVRB、CS及びPHICHの対応関係を示す模式図Schematic diagram showing the correspondence between VRB, CS and PHICH according to Embodiment 2 of the present invention
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (実施の形態1)
 本発明の実施の形態1に係る基地局100の構成を図5に示す。
(Embodiment 1)
FIG. 5 shows the configuration of base station 100 according to Embodiment 1 of the present invention.
 図5に示す基地局100において、無線受信部102は、各移動局から送信された上り回線データをアンテナ101を介して受信し、この上り回線データに対しダウンコンバート、A/D変換等の受信処理を行う。受信処理した上り回線データは復調部103に出力される。 In base station 100 shown in FIG. 5, radio receiving section 102 receives uplink data transmitted from each mobile station via antenna 101, and receives down-converting, A / D conversion, etc. for this uplink data. Process. The received uplink data is output to demodulation section 103.
 復調部103は、無線受信部102から出力された上り回線データを復調し、復調した上り回線データを復号部104に出力する。 Demodulation section 103 demodulates the uplink data output from radio reception section 102 and outputs the demodulated uplink data to decoding section 104.
 復号部104は、復調部103から出力された上り回線データを復号し、復号した上り回線データを誤り検出部105に出力する。 The decoding unit 104 decodes the uplink data output from the demodulation unit 103 and outputs the decoded uplink data to the error detection unit 105.
 誤り検出部105は、復号部104から出力された上り回線データに対してCRC判定を用いた誤り検出を行って、CRC=OK(誤り無し)の場合はACK信号を、CRC=NG(誤り有り)の場合はNACK信号を応答信号として生成し、生成した応答信号を変調部106に出力する。また、誤り検出部105は、CRC=OK(誤り無し)の場合、復号した上り回線データを受信データとして出力する。 The error detection unit 105 performs error detection using CRC determination on the uplink data output from the decoding unit 104, and when CRC = OK (no error), an ACK signal and CRC = NG (with error) ), A NACK signal is generated as a response signal, and the generated response signal is output to modulation section 106. In addition, when CRC = OK (no error), error detection section 105 outputs decoded uplink data as received data.
 変調部106は、誤り検出部105から出力された各移動局の応答信号を変調して、変調した応答信号をACK/NACKチャネル割当部109に出力する。 Modulation section 106 modulates the response signal of each mobile station output from error detection section 105, and outputs the modulated response signal to ACK / NACK channel allocation section 109.
 PDCCH割当部107には、最大K個の移動局#1~#Kに対して、どの上り回線リソースをどの移動局に割り当てたかを示す上り回線割当情報#1~#Kが入力される。PDCCH割当部107は、入力された上り回線割当情報#1~#KをPDCCH#1~#Kのいずれかに割り当てる。なお、各PDCCHは、CCE#1~#Mのうち1つまたは複数のCCEで構成される。そして、PDCCH割当部107は、上り回線割当情報#1~#Kを割り当てたPDCCHそれぞれに対応する符号化・変調部108-1~108-Kにそれぞれ出力する。また、PDCCH割当部107は、各移動局に対して、どの上り回線データ送信用論理リソース(VRB)及びDM RSに用いられるCS番号を割り当てたかを示すリソース割当情報をACK/NACKチャネル割当部109に出力する。 The PDCCH allocation unit 107 receives uplink allocation information # 1 to #K indicating which uplink resource is allocated to which mobile station for a maximum of K mobile stations # 1 to #K. PDCCH allocation section 107 allocates input uplink allocation information # 1 to #K to any one of PDCCH # 1 to #K. Each PDCCH is composed of one or a plurality of CCEs among CCEs # 1 to #M. PDCCH allocating section 107 then outputs the data to encoding / modulating sections 108-1 to 108-K corresponding to the PDCCH allocated with uplink allocation information # 1 to #K, respectively. Also, the PDCCH allocating unit 107 transmits resource allocation information indicating which uplink data transmission logical resource (VRB) and CS number used for the DM RS are allocated to each mobile station. The ACK / NACK channel allocating unit 109 Output to.
 符号化・変調部108-1~108-Kは、PDCCH#1~#Kに対応して備えられ、符号化部1081及び変調部1082を備える。符号化・変調部108-1~108-Kにおいて、符号化部1081は、PDCCH割当部107から出力された上り回線割当情報を符号化して変調部1082に出力し、変調部1082は、符号化部1081から出力された上り回線割当情報を変調して上り回線割当情報シンボルを生成し、配置部110に出力する。 Encoding / modulating sections 108-1 to 108-K are provided corresponding to PDCCH # 1 to #K, and include an encoding section 1081 and a modulation section 1082. In encoding / modulating sections 108-1 to 108-K, encoding section 1081 encodes uplink allocation information output from PDCCH allocation section 107 and outputs the encoded information to modulation section 1082, and modulation section 1082 performs encoding. The uplink allocation information output from section 1081 is modulated to generate an uplink allocation information symbol and output to allocation section 110.
 ACK/NACKチャネル割当部109は、PDCCH割当部107から出力されたリソース割当情報に基づいて、変調部106から出力された応答信号をPHICHリソースに割り当てる。具体的には、ACK/NACKチャネル割当部109は、各移動局に対する応答信号を、各移動局に対して割り当てられた上り回線データ送信用論理リソース、割り当てられた論理リソースブロック数、及び、DM RSに用いられるCS番号に関連付けられたPHICHリソースに割り当てる。ここで、ACK/NACKチャネル割当部109は、1つの移動局に対し複数のVRBが割り当てられた場合、割り当てられたVRBのうちVRB番号が最も小さいVRB、割り当てられたVRB数、及び、DM RSに用いられるCS番号に関連付けられたPHICHリソースに応答信号を割り当てる。そして、ACK/NACKチャネル割当部109は、PHICHリソースに割り当てられた応答信号を配置部110に出力する。ACK/NACKチャネル割当部109におけるPHICHリソース割当処理の詳細については後述する。 The ACK / NACK channel allocation unit 109 allocates the response signal output from the modulation unit 106 to the PHICH resource based on the resource allocation information output from the PDCCH allocation unit 107. Specifically, the ACK / NACK channel allocation unit 109 sends a response signal for each mobile station to the uplink data transmission logical resource allocated to each mobile station, the number of allocated logical resource blocks, and DM. Assign to the PHICH resource associated with the CS number used for the RS. Here, when a plurality of VRBs are allocated to one mobile station, the ACK / NACK channel allocation unit 109 has the VRB with the smallest VRB number among the allocated VRBs, the number of allocated VRBs, and DM RS. A response signal is allocated to the PHICH resource associated with the CS number used for the. Then, ACK / NACK channel assignment section 109 outputs a response signal assigned to the PHICH resource to placement section 110. Details of the PHICH resource allocation processing in the ACK / NACK channel allocation unit 109 will be described later.
 配置部110は、符号化・変調部108-1~108-Kから出力され、上り回線割当情報シンボルが割り当てられたPDCCHをPDCCHに確保された下り回線リソースに配置し、ACK/NACKチャネル割当部109から出力され、応答信号が割り当てられたPHICHリソースをPHICH用に確保された下り回線物理リソースに配置する。配置部110は、各チャネルを配置した信号を無線送信部111に出力する。 Arrangement section 110 arranges the PDCCH output from encoding / modulation sections 108-1 to 108-K and allocated with uplink allocation information symbols in downlink resources reserved in PDCCH, and provides an ACK / NACK channel allocation section. The PHICH resource output from 109 and assigned with the response signal is arranged in the downlink physical resource reserved for PHICH. Arrangement section 110 outputs a signal in which each channel is arranged to radio transmission section 111.
 無線送信部111は、配置部110から出力された信号に対しD/A変換、増幅及びアップコンバート等の送信処理を行ってアンテナ101から各移動局へ送信する。 The radio transmission unit 111 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal output from the arrangement unit 110 and transmits the signal from the antenna 101 to each mobile station.
 一方、各移動局では、基地局100から自局宛てのPDCCHを受信した場合、上り回線割当情報及びMCS(Modulation and Coding Scheme)に従って、送信データを基地局100に送信する。また、各移動局は、自局宛てに割り当てられたVRB番号、VRB数及びCS番号に関連付けられたPHICHリソースに割り当てられた応答信号を受信する。ここで、各移動局では、どのPHICHリソースがどの下り回線物理リソースに対応しているかを上位レイヤで指示されるか、予め規定されているものとする。そして、各移動局は、応答信号がACK信号である場合、次の送信データを送信するために、基地局100から自局宛てのPDCCHが送信されるまで待機する。一方、各移動局は、応答信号がNACK信号である場合、送信データを再送する。 On the other hand, when each mobile station receives a PDCCH addressed to itself from the base station 100, the mobile station transmits transmission data to the base station 100 according to uplink allocation information and MCS (Modulation and Coding Scheme). Each mobile station also receives a response signal assigned to the PHICH resource associated with the VRB number, the number of VRBs, and the CS number assigned to the mobile station. Here, in each mobile station, it is assumed that which PHICH resource corresponds to which downlink physical resource is instructed by an upper layer or is defined in advance. Then, when the response signal is an ACK signal, each mobile station waits until a PDCCH addressed to itself is transmitted from the base station 100 in order to transmit the next transmission data. On the other hand, each mobile station retransmits transmission data when the response signal is a NACK signal.
 次に、ACK/NACKチャネル割当部109におけるPHICHリソース割当処理の詳細について説明する。ここでは、図6上段に示すように、上り回線データ送信用論理リソースとして、20個のVRB#0~#19を定義する。また、各移動局に対して割り当てられる上り回線データ送信用論理リソースは20個のVRBのうち、1個のVRBまたはVRB番号が隣接する複数のVRBで構成される。さらに、移動局が上り伝播路推定用参照信号(DM RS)で用いるべきCS番号はCS#0~CS#7が規定され、1つの移動局に対し、1つのCS番号が対応付けられる。すなわち、移動局は基地局100から上り回線データを送信すべき複数のVRB番号と、CS番号が指示される。例えば、図6上段に示すように、VRB#0~#1は1VRBを占有する移動局用のデータリソースとして割り当てられ、VRB#2~#5は2VRBを占有する移動局用のデータリソースとして割り当てられ、VRB#6~#11は3VRBを占有する移動局用のデータリソースとして割り当てられ、VRB#12~#19は4VRBを占有する移動局用のデータリソースとして割り当てられる。 Next, details of the PHICH resource allocation process in the ACK / NACK channel allocation unit 109 will be described. Here, as shown in the upper part of FIG. 6, 20 VRBs # 0 to # 19 are defined as logical resources for uplink data transmission. Further, the uplink data transmission logical resource allocated to each mobile station is composed of one VRB or a plurality of VRBs adjacent to each other among 20 VRBs. Further, CS # 0 to CS # 7 are defined as CS numbers that the mobile station should use in the uplink propagation path estimation reference signal (DM RS), and one CS number is associated with one mobile station. That is, the mobile station is instructed from the base station 100 by a plurality of VRB numbers to which uplink data should be transmitted and the CS number. For example, as shown in the upper part of FIG. 6, VRBs # 0 to # 1 are allocated as data resources for mobile stations that occupy 1 VRB, and VRBs # 2 to # 5 are allocated as data resources for mobile stations that occupy 2 VRBs. VRBs # 6 to # 11 are allocated as data resources for mobile stations occupying 3VRB, and VRBs # 12 to # 19 are allocated as data resources for mobile stations occupying 4VRB.
 また、基地局100では、図6下段に示すように、20個のVRB#0~#19にそれぞれ対応する最大20個のPHICHリソース#0~#19を配置する下り回線物理リソースを予め確保する。ただし、PHICHリソース番号は、図6に示すように、VRB番号とCS番号の両方に対応付けて定義される。すなわち、PHICH番号とVRB番号及びCS番号の関係は以下のようになる。 Also, as shown in the lower part of FIG. 6, base station 100 reserves in advance downlink physical resources for arranging a maximum of 20 PHICH resources # 0 to # 19 corresponding to 20 VRBs # 0 to # 19, respectively. . However, as shown in FIG. 6, the PHICH resource number is defined in association with both the VRB number and the CS number. That is, the relationship between the PHICH number, the VRB number, and the CS number is as follows.
 PHICH番号=Lowest VRB番号+floor(CS番号×割当VRB数/総CS数)…(3)
 ただし、式(3)において、floor(X)とは、Xを超えない最大の整数を示し、総CS数は8である(CS#0~CS#7)。
PHICH number = Lowest VRB number + floor (CS number × number of assigned VRBs / total number of CSs) (3)
However, in Expression (3), floor (X) indicates the maximum integer not exceeding X, and the total number of CS is 8 (CS # 0 to CS # 7).
 図6及び式(3)に示すように、VRB#0が1つ割り当てられた移動局に対しては、CS番号によらずPHICH#0が対応付けられているため、ACK/NACKチャネル割当部109は、VRB#0に割り当てられた上り回線データに対する応答信号をPHICH#0に割り当てる。また、図6及び式(3)に示すように、VRB#2~#3が割り当てられ、かつ、CS番号#0~#3が割り当てられた移動局に対しては、PHICH#2が対応付けられているため、ACK/NACKチャネル割当部109は、VRB#2~#3、かつ、CS番号#0~#3が割り当てられた上り回線データに対する応答信号をPHICH#2に割り当てる。また、VRB#2~#3が割り当てられ、かつ、CS番号#4~#7が割り当てられた移動局に対しては、PHICH#3が対応付けられているため、ACK/NACKチャネル割当部109は、VRB#2~#3、かつ、CS番号#4~#7が割り当てられた上り回線データに対する応答信号をPHICH#3に割り当てる。 As shown in FIG. 6 and equation (3), since a mobile station to which one VRB # 0 is allocated is associated with PHICH # 0 regardless of the CS number, the ACK / NACK channel allocation unit 109 assigns a response signal to the uplink data assigned to VRB # 0 to PHICH # 0. Also, as shown in FIG. 6 and Equation (3), PHICH # 2 is associated with mobile stations to which VRB # 2 to # 3 are assigned and CS numbers # 0 to # 3 are assigned. Therefore, ACK / NACK channel assignment section 109 assigns a response signal for uplink data to which VRB # 2 to # 3 and CS numbers # 0 to # 3 are assigned to PHICH # 2. Also, since PHICH # 3 is associated with mobile stations to which VRBs # 2 to # 3 are assigned and CS numbers # 4 to # 7 are assigned, ACK / NACK channel assignment unit 109 Assigns response signals for uplink data to which VRB # 2 to # 3 and CS numbers # 4 to # 7 are assigned to PHICH # 3.
 また、VRB#12~#15が割り当てられ、かつ、CS番号#0~#1が割り当てられた移動局に対しては、PHICH#12が対応付けられているため、ACK/NACKチャネル割当部109は、VRB#12~#15、かつ、CS番号#0~#1が割り当てられた上り回線データに対する応答信号をPHICH#12に割り当てる。VRB#12~#15が割り当てられ、かつ、CS番号#2~#3が割り当てられた移動局、VRB#12~#15が割り当てられ、かつ、CS番号#4~#5が割り当てられた移動局、VRB#12~#15が割り当てられ、かつ、CS番号#6~#7が割り当てられた移動局についても同様である。 Also, since PHICH # 12 is associated with mobile stations to which VRBs # 12 to # 15 are assigned and CS numbers # 0 to # 1 are assigned, ACK / NACK channel assignment unit 109 Assigns response signals for uplink data to which VRB # 12 to # 15 and CS numbers # 0 to # 1 are assigned to PHICH # 12. Mobile stations to which VRB # 12 to # 15 are assigned and CS numbers # 2 to # 3 are assigned, and mobile stations to which VRB # 12 to # 15 are assigned and CS numbers # 4 to # 5 are assigned The same applies to mobile stations to which stations, VRB # 12 to # 15 and CS numbers # 6 to # 7 are assigned.
 すなわち、基地局100のスケジューリングにかかる動作をまとめると以下のようになる。移動局がSDMA通信の対象ではない場合、周波数軸上のスケジューリングを行い、周波数リソースを決定する。この時、同一VRBが同一セル内の他の移動局に割り当てられることはないため、PHICHリソースの競合を気にせず、移動局に対して性能の面から最良なCS番号を割り当てる。例えば、基地局100が複数のセクタ(セル)の情報を有する場合、隣接セクタで同一時間・周波数リソースを用いる他の移動局に割り当てられたDM RS用のCS番号と異なるCS番号を用いることによって、セル間干渉を削減できる。 That is, the operations related to scheduling of the base station 100 are summarized as follows. When the mobile station is not the target of SDMA communication, scheduling on the frequency axis is performed to determine the frequency resource. At this time, since the same VRB is not assigned to another mobile station in the same cell, the best CS number is assigned to the mobile station in terms of performance without worrying about PHICH resource contention. For example, when the base station 100 has information on a plurality of sectors (cells), by using a CS number different from the CS number for DM RS assigned to other mobile stations using the same time / frequency resources in adjacent sectors. Inter-cell interference can be reduced.
 また、移動局が2多重SDMA通信の対象の場合、基地局100ではSDMAの多重度数と同数以上の連続したVRBを2多重SDMA通信用に割り当てる前提で周波数スケジューリングを行う(例えば、VRB2-3を割り当てる)。この場合、この2つのVRBに対応する2つのPHICHリソースは同一セル内の他の移動局と競合することはないので、2つのPHICHリソース(PHICH2-3)が2多重SDMA通信用に確保できる。 In addition, when the mobile station is a target of 2-multiplex SDMA communication, the base station 100 performs frequency scheduling on the premise that continuous VRBs equal to or more than the SDMA multiplicity are allocated for 2-multiplex SDMA communication (for example, VRB2-3 is set). assign). In this case, since the two PHICH resources corresponding to the two VRBs do not compete with other mobile stations in the same cell, two PHICH resources (PHICH2-3) can be secured for two-multiplex SDMA communication.
 次に、基地局100では、SDMA通信を行う2つの移動局のDM RS間の相互干渉を避けるために、2つの移動局に対し、極力離れたCS番号(CS番号0と4、1と5、2と6又は3と7)を割り当てる。この場合、式(3)及び図6を参照すると、2つの移動局に対応するPHICHリソースは互いに競合しない。なお、基地局100が複数のセクタの情報を有する場合、隣接セクタで同一時間・周波数リソースを用いる他の移動局に割り当てられたDM RS用のCS番号と異なるCS番号を用いることによって、セル間干渉を削減できる。 Next, in the base station 100, in order to avoid mutual interference between DM RSs of two mobile stations that perform SDMA communication, CS numbers ( CS numbers 0 and 4, 1 and 5) that are as far away as possible from the two mobile stations are separated. 2 and 6 or 3 and 7). In this case, referring to Equation (3) and FIG. 6, PHICH resources corresponding to the two mobile stations do not compete with each other. In addition, when the base station 100 has information on a plurality of sectors, by using a CS number different from the CS number for DM RS assigned to other mobile stations using the same time / frequency resource in adjacent sectors, Interference can be reduced.
 また、移動局が4多重SDMA通信の対象の場合、基地局100ではSDMAの多重度数と同数以上の連続したVRBを4多重SDMA通信用に割り当てる前提で周波数スケジューリングを行う(例えば、VRB12-15を割り当てる)。この場合、この4つのVRBに対応する4つのPHICHリソースは他の移動局と競合することはないので、4つのPHICHリソース(PHICH12-15)が4多重SDMA通信用に確保できる。基地局100では、SDMA通信を行う4つの移動局のDM RS間の相互干渉を避けるために、4つの移動局に対し、互いに極力離れたCS番号(CS番号0,2,4,6の組又は1,3,5,7の組)を割り当てる。この場合も、式(3)及び図6を参照すると、4つの移動局に対応するPHICHリソースは互いに競合しない。なお、基地局100が複数のセクタの情報を有する場合、隣接セクタで同一時間・周波数リソースを用いる他の移動局に割り当てられたDM RS用のCS番号と異なるCS番号を用いることによって、セル間干渉を削減できる。 When the mobile station is a target of 4-multiplex SDMA communication, the base station 100 performs frequency scheduling on the assumption that continuous VRBs equal to or greater than the SDMA multiplicity are allocated for 4-multiplex SDMA communication (for example, VRB 12-15 is set). assign). In this case, since the four PHICH resources corresponding to the four VRBs do not compete with other mobile stations, four PHICH resources (PHICH12-15) can be secured for the 4-multiplex SDMA communication. In base station 100, in order to avoid mutual interference between DM RSs of four mobile stations that perform SDMA communication, CS numbers (sets of CS numbers 0, 2, 4, and 6) that are as far apart as possible from the four mobile stations are separated. Or a set of 1, 3, 5, and 7). Again, referring to Equation (3) and FIG. 6, PHICH resources corresponding to the four mobile stations do not compete with each other. In addition, when the base station 100 has information on a plurality of sectors, by using a CS number different from the CS number for DM RS assigned to other mobile stations using the same time / frequency resource in adjacent sectors, Interference can be reduced.
 このように実施の形態1によれば、下りPHICHリソースに関する明示的なシグナリング(Signaling)を備えず、また、SDMA通信対象の移動局以外には自由にCS番号を割り当てても、下りPHICHリソースの競合は発生せず、SDMA通信対象の移動局には、多重度と同数以上のVRB、かつ、基地局側でのSDMA受信性能が最大となるようなCS番号を割り当てることにより、下りPHICHリソースの競合を避けることができる。すなわち、基地局100側では簡素なスケジューリング機能を有するだけで、性能面で最適なVRB及びCS番号配置が可能となる。よって、本実施の形態によれば、スケジューリング負荷を低減しつつ、上りSDMA通信の性能を向上させることができる。 As described above, according to Embodiment 1, there is no explicit signaling (Signaling) regarding the downlink PHICH resource, and even if the CS number is freely assigned to a mobile station other than the SDMA communication target, the downlink PHICH resource Contention does not occur, and mobile stations subject to SDMA communication are assigned VRBs equal to or greater than the multiplicity and CS numbers that maximize the SDMA reception performance on the base station side. Conflicts can be avoided. That is, the base station 100 side has only a simple scheduling function, and VRB and CS number arrangements that are optimal in terms of performance are possible. Therefore, according to the present embodiment, it is possible to improve the performance of uplink SDMA communication while reducing the scheduling load.
 また、SDMA通信対象の移動局以外には他セル干渉等を考慮に入れながら自由にCS番号を割り当てることができ、SDMA通信対象の移動局にはSDMA通信の性能を最大限に保ちつつ、他セル干渉をある程度考慮に入れたCS番号を割り当てることができるため、システムスループットを向上させることができる。 In addition to the mobile stations subject to SDMA communication, CS numbers can be freely assigned while taking into account other cell interference and the like. Since it is possible to assign a CS number that takes cell interference into consideration to some extent, system throughput can be improved.
 なお、本実施の形態では、SDMA通信の対象外の移動局に割り当てられた上り回線データ送信用VRBが複数である場合、割り当てられたVRBのうち最小の番号を有するVRB、割り当られたVRB数及びCS番号に関連付けられたPHICHリソースを利用するとしたが、割り当てられたVRBのうち最大の番号を有するVRB、割り当てられたVRB数及びCS番号に関連付けられたPHICHリソースを用いてもよい。この場合、式(3)は以下のように変形される。 In this embodiment, when there are a plurality of uplink data transmission VRBs assigned to mobile stations that are not subject to SDMA communication, the VRB having the smallest number among the assigned VRBs and the assigned VRBs. Although the PHICH resource associated with the number and the CS number is used, the VRB having the largest number among the assigned VRBs, the number of assigned VRBs, and the PHICH resource associated with the CS number may be used. In this case, Equation (3) is modified as follows.
 PHICH番号=Highest VRB番号-floor(CS番号×割当VRB数/総CS数)…(4)
 ただし、Highest VRB番号とは、移動局の上り回線データ送信用に割り当てられた複数の連続するVRBのうち、最大のインデックスを有するVRBのインデックス番号を示す。
PHICH number = Highest VRB number−floor (CS number × number of allocated VRBs / total number of CSs) (4)
However, the Highest VRB number indicates the index number of the VRB having the largest index among a plurality of consecutive VRBs allocated for uplink data transmission of the mobile station.
 (実施の形態2)
 本発明の実施の形態2では、複数の上り回線データ送信用VRBに対して1つのPHICHリソースを対応付けることにより、PHICHリソースを削減する。具体的には、システムで準備されるN個のVRBを、M個ずつグループ化することによって、合計N/M個のVRBグループを形成する。その上で、1つのVRBグループあたり1つのPHICHリソースを対応付ける。この場合、図6及び式(3)は図7及び式(5)のように変形される。
(Embodiment 2)
In Embodiment 2 of the present invention, one PHICH resource is associated with a plurality of uplink data transmission VRBs to reduce PHICH resources. Specifically, N VRBs prepared in the system are grouped by M to form a total of N / M VRB groups. In addition, one PHICH resource is associated with one VRB group. In this case, FIG. 6 and Formula (3) are transformed into FIG. 7 and Formula (5).
 PHICH番号=Lowest VRBグループ番号+floor(CS番号×割当VRBグループ数/総CS数)…(5)
 ただし、図7では1グループあたりのVRB数を2(M=2)としている。さらに、式(5)はMを用いて以下のようにも変形できる。
PHICH number = Lowest VRB group number + floor (CS number × number of assigned VRB groups / total number of CS) (5)
However, in FIG. 7, the number of VRBs per group is 2 (M = 2). Furthermore, Formula (5) can be modified as follows using M.
 PHICH番号=Lowest VRB番号/M+floor(CS番号×割当VRBグループ数/(総CS数×M))…(6)
 この場合、基地局100は各移動局に対してVRBグループ単位で上り回線データ送信用論理リソースを割り当てる。
PHICH number = Lowest VRB number / M + floor (CS number × number of allocated VRB groups / (total number of CS × M)) (6)
In this case, base station 100 allocates uplink data transmission logical resources to each mobile station in units of VRB groups.
 実施の形態2における基地局100のスケジューリング動作をまとめると以下のようになる。移動局がSDMA通信の対象ではない場合、周波数軸上のスケジューリングを行い、周波数リソースを決定する。この時、同一VRBグループが同一セル内の他の移動局に割り当てられることはないため、PHICHリソースが競合することはなく、移動局に対しては性能の面から最良なCS番号を割り当てる。例えば、基地局100が複数のセクタ(セル)の情報を有する場合、隣接セクタで同一時間・周波数リソースを用いる他の移動局に割り当てられたDM RS用のCS番号と異なるCS番号を用いることによって、セル間干渉を削減できる。 The scheduling operation of the base station 100 in the second embodiment is summarized as follows. When the mobile station is not the target of SDMA communication, scheduling on the frequency axis is performed to determine the frequency resource. At this time, since the same VRB group is not assigned to another mobile station in the same cell, the PHICH resource does not compete, and the best CS number is assigned to the mobile station in terms of performance. For example, when the base station 100 has information on a plurality of sectors (cells), by using a CS number different from the CS number for DM RS assigned to other mobile stations using the same time / frequency resources in adjacent sectors. Inter-cell interference can be reduced.
 また、移動局が2多重SDMA通信の対象の場合、基地局100ではSDMAの多重度数と同数以上の連続したVRBグループを2多重SDMA通信用に割り当てる前提で周波数スケジューリングを行う(例えば、VRBグループ1-2を割り当てる)。この場合、この2つのVRBグループに対応する2つのPHICHリソースは同一セル内の他の移動局と競合することはないので、2つのPHICHリソース(PHICH1-2)が2多重SDMA通信用に確保できる。 Also, when the mobile station is a target of 2-multiplex SDMA communication, the base station 100 performs frequency scheduling on the assumption that continuous VRB groups equal to or more than the SDMA multiplicity are allocated for 2-multiplex SDMA communication (for example, VRB group 1 -2). In this case, since the two PHICH resources corresponding to the two VRB groups do not compete with other mobile stations in the same cell, two PHICH resources (PHICH1-2) can be secured for two-multiplex SDMA communication. .
 次に、基地局100では、SDMA通信を行う2つの移動局のDM RS間の相互干渉を避けるために、2つの移動局に対し、極力離れたCS番号(CS番号0と4、1と5、2と6又は3と7)を割り当てる。この場合、式(5)及び図7を参照すると、2つの移動局に対応するPHICHリソースは互いに競合しない。なお、基地局100が複数のセクタの情報を有する場合、隣接セクタで同一時間・周波数リソースを用いる他の移動局に割り当てられたDM RS用のCS番号と異なるCS番号を用いることによって、セル間干渉を削減できる。 Next, in the base station 100, in order to avoid mutual interference between DM RSs of two mobile stations that perform SDMA communication, CS numbers ( CS numbers 0 and 4, 1 and 5) that are as far away as possible from the two mobile stations are separated. 2 and 6 or 3 and 7). In this case, referring to Equation (5) and FIG. 7, PHICH resources corresponding to the two mobile stations do not compete with each other. In addition, when the base station 100 has information on a plurality of sectors, by using a CS number different from the CS number for DM RS assigned to other mobile stations using the same time / frequency resource in adjacent sectors, Interference can be reduced.
 また、移動局が4多重SDMA通信の対象の場合、基地局100ではSDMAの多重度数と同数以上の連続したVRBグループを4多重SDMA通信用に割り当てる前提で周波数スケジューリングを行う(例えば、VRBグループ6-9を割り当てる)。この場合、この4つのVRBグループに対応する4つのPHICHリソースは他の移動局と競合することはないので、4つのPHICHリソース(PHICH6-9)が4多重SDMA通信用に確保できる。基地局100では、SDMA通信を行う4つの移動局のDM RS間の相互干渉を避けるために、4つの移動局に対し、互いに極力離れたCS番号(CS番号0,2,4,6又は1,3,5,7)を割り当てる。この場合も、式(7)及び図7を参照すると、4つの移動局に対応するPHICHリソースは互いに競合しない。なお、基地局100が複数のセクタの情報を有する場合、隣接セクタで同一時間・周波数リソースを用いる他の移動局に割り当てられたDM RS用のCS番号と異なるCS番号を用いることによって、セル間干渉を削減できる。 Further, when the mobile station is a target of 4-multiplex SDMA communication, the base station 100 performs frequency scheduling on the premise that continuous VRB groups equal to or more than the SDMA multiplicity are allocated for 4-multiplex SDMA communication (for example, VRB group 6 -9 is assigned). In this case, since the four PHICH resources corresponding to the four VRB groups do not compete with other mobile stations, four PHICH resources (PHICH 6-9) can be secured for the 4-multiplex SDMA communication. In the base station 100, in order to avoid mutual interference between DM RSs of four mobile stations that perform SDMA communication, CS numbers ( CS numbers 0, 2, 4, 6, or 1) that are as far away as possible from the four mobile stations are separated. , 3, 5, 7). Again, referring to equation (7) and FIG. 7, PHICH resources corresponding to the four mobile stations do not compete with each other. In addition, when the base station 100 has information on a plurality of sectors, by using a CS number different from the CS number for DM RS assigned to other mobile stations using the same time / frequency resource in adjacent sectors, Interference can be reduced.
 このように実施の形態2によれば、下りPHICHリソースに関する明示的なシグナリングを備えず、また、SDMA通信対象の移動局以外には自由にCS番号を割り当てても、下りPHICHリソースの競合は発生せず、SDMA通信対象の移動局には、多重度と同数以上のVRBグループ、かつ、基地局側でのSDMA受信性能が最大となるようなCS番号を割り当てることによって下りPHICHリソースの競合を避けることができる。すなわち、基地局側では簡素なスケジューリング機能を備えるだけで、性能面で最適なVRBグループ及びCS番号配置が可能となる。よって、本実施の形態によれば、スケジューリング負荷を低減しつつ、上りSDMA通信の性能を向上させることができる。 As described above, according to the second embodiment, there is no explicit signaling related to the downlink PHICH resource, and contention of the downlink PHICH resource occurs even if a CS number is freely assigned to a mobile station other than the SDMA communication target mobile station. In addition, the mobile station subject to SDMA communication is assigned with VRB groups equal to or more than the multiplicity and a CS number that maximizes the SDMA reception performance on the base station side, thereby avoiding contention for downlink PHICH resources. be able to. That is, the VRB group and the CS number arrangement that are optimal in terms of performance can be achieved only by providing a simple scheduling function on the base station side. Therefore, according to the present embodiment, it is possible to improve the performance of uplink SDMA communication while reducing the scheduling load.
 以上、本発明の実施の形態について説明した。 The embodiment of the present invention has been described above.
 なお、上記実施の形態では、移動局に対して論理リソースが割り当てられ、移動局側でそれを物理リソースに変換するとしたが、基地局が移動局に対して直接物理リソースブロックブロック番号を割り当ててもよい。この場合、PHICHリソースは物理リソースブロック(PRB)番号、割り当てPRB数、及び、CS番号に関連付けられる。物理リソースブロックは単にリソースブロック(Resource Block:RB)と称されることもある。 In the above embodiment, a logical resource is assigned to a mobile station, and the mobile station converts it to a physical resource. However, the base station assigns a physical resource block block number directly to the mobile station. Also good. In this case, the PHICH resource is associated with a physical resource block (PRB) number, an assigned PRB number, and a CS number. The physical resource block may be simply referred to as a resource block (Resource Block: RB).
 また、上記実施の形態では、移動局に対して割り当てられる論理リソースブロックまたは物理リソースブロック、及び、CS番号が通信中に変化しないとしたが、上り通信のダイバーシチ効果を得るためにリソースブロック及びCS番号がホッピングする(論理リソース/物理リソース及びCS番号を時間軸上で変化させる)場合には、あるタイミング、例えば、第一スロットで用いられる論理リソースブロック又は物理リソースブロック番号と割り当てリソースブロック数及びCS番号にPHICHリソースを対応付ければよい。 In the above embodiment, the logical resource block or physical resource block allocated to the mobile station and the CS number do not change during communication. However, in order to obtain the diversity effect of uplink communication, the resource block and CS When the number hops (changes the logical resource / physical resource and CS number on the time axis), for example, the logical resource block or physical resource block number used in the first slot and the number of allocated resource blocks and The PHICH resource may be associated with the CS number.
 また、上記実施の形態では、物理的な循環シフト量に対して順番にCS番号が対応付けられているとしたが、物理的な循環シフト量と基地局が指示するCS番号の対応付けはこれに限定されない。例えば、CS番号0が物理的な循環シフト量0を示し、CS番号1が物理的な循環シフト量4を示してもよい。この場合、PHICHリソースは、論理リソースブロック番号又は物理リソースブロック番号と割り当てリソースブロック数、及び、物理的な循環シフト量に関連付けられることになる。要は、SDMA通信において、各移動局が送信するDM RSに対し物理的な循環シフト量が極力離れたCS番号を割り当てた時に、PHICHリソースが競合しなければよい。 In the above embodiment, the CS numbers are sequentially associated with the physical cyclic shift amounts. However, the correspondence between the physical cyclic shift amount and the CS number indicated by the base station is not related to this. It is not limited to. For example, CS number 0 may indicate a physical cyclic shift amount 0, and CS number 1 may indicate a physical cyclic shift amount 4. In this case, the PHICH resource is associated with the logical resource block number or physical resource block number and the number of allocated resource blocks, and the physical cyclic shift amount. In short, in SDMA communication, when a CS number whose physical cyclic shift amount is as far as possible is assigned to DM RS transmitted by each mobile station, PHICH resources may not compete.
 また、上記実施の形態では、DM RSに用いられる8つの循環シフト量が等間隔で定義されているとしたが、例えば、循環シフト量を12個定義し、そのうちの8つの循環シフト量を基地局が指示するCS番号に順番に対応付けてもよい。この場合でも、CS番号が離れれば離れるほど物理的な循環シフト量が大きく異なることになるため、本実施の形態をそのまま適用しても同様の効果を得ることができる。また、物理的な循環シフト量とCS番号の対応付けの順番が異なる場合、PHICHリソースは論理リソースブロック番号又は物理リソースブロック番号と割り当てリソースブロック数、及び、物理的な循環シフト量に関連付けられることになる。 In the above embodiment, eight cyclic shift amounts used for DM RS are defined at equal intervals. For example, twelve cyclic shift amounts are defined, and eight cyclic shift amounts are defined as bases. You may associate with CS number which a station instruct | indicates in order. Even in this case, since the physical cyclic shift amount greatly varies as the CS number increases, the same effect can be obtained even if the present embodiment is applied as it is. Further, when the order of correspondence between the physical cyclic shift amount and the CS number is different, the PHICH resource is associated with the logical resource block number or the physical resource block number and the number of allocated resource blocks, and the physical cyclic shift amount. become.
 なお、上記実施の形態では上り回線データの応答信号を伝送する場合について説明したが、本発明を下り回線データの応答信号に適用することも可能である。例えば、移動局が基地局100と同様の処理を行うことにより、本発明を下り回線データの応答信号に適用することができる。ただし、下り回線リソースの割り当ては、基地局100が行う。すなわち、移動局では、基地局100におけるPDCCH割当部107と同様の処理を行わない。よって、移動局は下り回線データに用いられたVRB、割り当てVRB数及びCS番号に関連付けられたACK/NACKチャネルを用いて応答信号を送信する。 In the above embodiment, the case of transmitting a response signal of uplink data has been described. However, the present invention can also be applied to a response signal of downlink data. For example, the present invention can be applied to a downlink data response signal by the mobile station performing the same processing as the base station 100. However, the base station 100 assigns downlink resources. That is, the mobile station does not perform the same processing as the PDCCH allocation unit 107 in the base station 100. Therefore, the mobile station transmits a response signal using the ACK / NACK channel associated with the VRB used for downlink data, the number of assigned VRBs, and the CS number.
 また、上記実施の形態の説明で用いたPDCCHは、SCCH(Shared Control Channel)、L1/L2 Control Channel、UL grantチャネル、及び、CCCH(Common Control Channel)と称されることもある。また、PHICHリソースはHICH(Hybrid ARQ Indicator Channel)リソース又はACK/NACKリソースと称されることもある。 Also, the PDCCH used in the description of the above embodiment may be referred to as SCCH (Shared Control Channel), L1 / L2 Control Channel, UL grant channel, and CCCH (Common Control Channel). Also, the PHICH resource may be referred to as a HICH (Hybrid ARQ Indicator Channel) resource or an ACK / NACK resource.
 また、移動局はUE(User Equipment)、基地局はNode Bと称されることもある。 Also, the mobile station may be referred to as UE (User Equipment), and the base station may be referred to as Node B.
 また、誤り検出の方法はCRC判定に限られない。 Also, the error detection method is not limited to CRC determination.
 また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。 Further, although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be realized by software.
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. The name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 2008年2月4日出願の特願2008-024437の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2008-024437 filed on Feb. 4, 2008 is incorporated herein by reference.
 本発明にかかる無線通信基地局装置及びチャネル割当方法は、上り回線データ送信用論理リソースと下りPHICHリソースの関係を考慮すべき基地局側のスケジューリング負荷を低減しつつ、上りSDMA通信の性能を向上させることができ、例えば、移動体通信システム等に適用することができる。 The radio communication base station apparatus and channel allocation method according to the present invention improve the performance of uplink SDMA communication while reducing the scheduling load on the base station side that should consider the relationship between the uplink data transmission logical resource and the downlink PHICH resource. For example, it can be applied to a mobile communication system.

Claims (3)

  1.  ACK/NACKチャネルを割り当てるPHICHリソースをPHICH番号=Lowest VRB番号+floor(CS番号×割当VRB数/総CS数)
     ただし、Lowest VRB番号は、無線通信移動局装置の上り回線データ送信用に割り当てられた複数の連続するバーチャルリソースブロック(VRB)のうち、最小のインデックスを有するVRBのインデックス番号を示し、割当VRB数は、無線通信移動局装置用に割り当てられたVRB数を示し、CS番号は、上り参照信号に用いる符号系列の循環シフト量を示し、総CS数は、参照信号に用いることができる符号系列の循環シフトの総数を示す。
     により求め、求めたPHICHリソースにACK/NACKチャネルを割り当てるACK/NACKチャネル割当手段と、
     PHICHリソースに割り当てたACK/NACKチャネルを送信する送信手段と、
     を具備する無線通信基地局装置。
    PHICH resource to which ACK / NACK channel is allocated PHICH number = Lowest VRB number + floor (CS number × number of allocated VRBs / total number of CSs)
    However, the Lowest VRB number indicates the index number of the VRB having the smallest index among a plurality of consecutive virtual resource blocks (VRBs) allocated for uplink data transmission of the radio communication mobile station apparatus, and the number of allocated VRBs. Indicates the number of VRBs allocated for the radio communication mobile station apparatus, the CS number indicates the cyclic shift amount of the code sequence used for the uplink reference signal, and the total CS number indicates the code sequence that can be used for the reference signal Indicates the total number of cyclic shifts.
    ACK / NACK channel assignment means for assigning an ACK / NACK channel to the obtained PHICH resource,
    Transmitting means for transmitting an ACK / NACK channel allocated to the PHICH resource;
    A wireless communication base station apparatus comprising:
  2.  前記ACK/NACKチャネル割当手段は、複数のVRBをグループ化してPHICHリソースを求める請求項1に記載の無線通信基地局装置。 The radio communication base station apparatus according to claim 1, wherein the ACK / NACK channel allocation means obtains a PHICH resource by grouping a plurality of VRBs.
  3.  ACK/NACKチャネルを割り当てるPHICHリソースをPHICH番号=Lowest VRB番号+floor(CS番号×割当VRB数/総CS数)
     ただし、Lowest VRB番号は、無線通信移動局装置の上り回線データ送信用に割り当てられた複数の連続するバーチャルリソースブロック(VRB)のうち、最小のインデックスを有するVRBのインデックス番号を示し、割当VRB数は、無線通信移動局装置用に割り当てられたVRB数を示し、CS番号は、上り参照信号に用いる符号系列の循環シフト量を示し、総CS数は、参照信号に用いることができる符号系列の循環シフトの総数を示す。
     により求め、求めたPHICHリソースにACK/NACKチャネルを割り当てるACK/NACKチャネル割当工程と、
     PHICHリソースに割り当てたACK/NACKチャネルを送信する送信工程と、
     を具備するチャネル割当方法。
    PHICH resource to which ACK / NACK channel is allocated PHICH number = Lowest VRB number + floor (CS number × number of allocated VRBs / total number of CSs)
    However, the Lowest VRB number indicates the index number of the VRB having the smallest index among a plurality of consecutive virtual resource blocks (VRBs) allocated for uplink data transmission of the radio communication mobile station apparatus, and the number of allocated VRBs. Indicates the number of VRBs allocated for the radio communication mobile station apparatus, the CS number indicates the cyclic shift amount of the code sequence used for the uplink reference signal, and the total CS number indicates the code sequence that can be used for the reference signal Indicates the total number of cyclic shifts.
    ACK / NACK channel assignment step for assigning an ACK / NACK channel to the obtained PHICH resource,
    A transmission step of transmitting an ACK / NACK channel allocated to the PHICH resource;
    A channel allocation method comprising:
PCT/JP2009/000425 2008-02-04 2009-02-04 Radio communication base station device and channel allocation method WO2009098869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008024437 2008-02-04
JP2008-024437 2008-02-04

Publications (1)

Publication Number Publication Date
WO2009098869A1 true WO2009098869A1 (en) 2009-08-13

Family

ID=40951949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000425 WO2009098869A1 (en) 2008-02-04 2009-02-04 Radio communication base station device and channel allocation method

Country Status (1)

Country Link
WO (1) WO2009098869A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024474A1 (en) * 2009-08-28 2011-03-03 パナソニック株式会社 Wireless communication apparatus and response control method
JP2011521538A (en) * 2008-04-29 2011-07-21 クゥアルコム・インコーポレイテッド Allocation of ACK resources in wireless communication
JP2015510317A (en) * 2012-01-18 2015-04-02 華為技術有限公司Huawei Technologies Co.,Ltd. Method and apparatus for wireless communication
WO2018149230A1 (en) * 2017-02-17 2018-08-23 中兴通讯股份有限公司 Control channel resource allocation method and device, and wireless communication signal transmission method and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPP TSG RAN WG1 Meeting #51bis,Rl-080301", 14 January 2008, article "PHICH and mapping to PHICH groups", pages: 1 - 5 *
"Mapping Relations between UL VRB and DL ACK/NACK", 3GPP TSG RAN WG1 #50,R1-073479, 20 August 2007 (2007-08-20), pages 1 - 5 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521538A (en) * 2008-04-29 2011-07-21 クゥアルコム・インコーポレイテッド Allocation of ACK resources in wireless communication
US8531962B2 (en) 2008-04-29 2013-09-10 Qualcomm Incorporated Assignment of ACK resource in a wireless communication system
WO2011024474A1 (en) * 2009-08-28 2011-03-03 パナソニック株式会社 Wireless communication apparatus and response control method
US9276650B2 (en) 2009-08-28 2016-03-01 Panasonic Intellectual Property Corporation Of America Wireless communication apparatus and response control method
JP2015510317A (en) * 2012-01-18 2015-04-02 華為技術有限公司Huawei Technologies Co.,Ltd. Method and apparatus for wireless communication
US9455805B2 (en) 2012-01-18 2016-09-27 Huawei Technologies Co., Ltd. Method and apparatus for wireless communications
WO2018149230A1 (en) * 2017-02-17 2018-08-23 中兴通讯股份有限公司 Control channel resource allocation method and device, and wireless communication signal transmission method and device

Similar Documents

Publication Publication Date Title
KR102450942B1 (en) Method and apparatus for unauthorized data transmission in a wireless communication system
US11678311B2 (en) HARQ process management method and apparatus for slot aggregation
US20220053469A1 (en) Base station, terminal, and communication method
JP5569850B2 (en) Communication device, response signal receiving method, and integrated circuit
JP5137959B2 (en) Radio resource management apparatus, radio communication base station apparatus, and radio resource management method
JP6220049B2 (en) Transmitting apparatus and control signal arrangement method
JP6485787B2 (en) Terminal device, transmission method, and integrated circuit
JP6213887B2 (en) Receiving device, receiving method, and integrated circuit
TWI384799B (en) Method for allocating physical hybrid automatic repeat request indicator channel
KR102478846B1 (en) Apparatus and method for retransmission in wireless communication system
US11638285B2 (en) Method and apparatus for control and data information resource mapping in wireless cellular communication system
US11695510B2 (en) Base station, terminal, and communication method
US11877304B2 (en) Base station, terminal, and communication method
JPWO2009037853A1 (en) Radio communication base station apparatus, radio communication terminal apparatus, and response signal allocation method
US20220046694A1 (en) Method and apparatus for control and data information resource mapping in wireless cellular communication system
US20110310809A1 (en) Wireless Communication Base Station Apparatus and Channel Allocation Method
WO2009098869A1 (en) Radio communication base station device and channel allocation method
JPWO2008136194A1 (en) Radio communication base station apparatus and resource sharing method
KR20180081421A (en) Control information transmission method and apparatus in wireless cellular communication system
JP5683676B2 (en) Base station apparatus, terminal apparatus, control channel transmission method, control channel reception method, and integrated circuit
KR20110097235A (en) Method and apparatus for transmitting and receiving a signal in wireless communication system
JP7130692B2 (en) Terminal, communication method and integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP