WO2012111256A1 - 信号生成方法及び信号生成装置 - Google Patents

信号生成方法及び信号生成装置 Download PDF

Info

Publication number
WO2012111256A1
WO2012111256A1 PCT/JP2012/000352 JP2012000352W WO2012111256A1 WO 2012111256 A1 WO2012111256 A1 WO 2012111256A1 JP 2012000352 W JP2012000352 W JP 2012000352W WO 2012111256 A1 WO2012111256 A1 WO 2012111256A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
signal
phase change
data
symbol
Prior art date
Application number
PCT/JP2012/000352
Other languages
English (en)
French (fr)
Inventor
村上 豊
知弘 木村
幹博 大内
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020137001013A priority Critical patent/KR102026652B1/ko
Priority to EP12747257.9A priority patent/EP2677676A4/en
Priority to MX2016000042A priority patent/MX342312B/es
Priority to BR112013002605-7A priority patent/BR112013002605B1/pt
Priority to AU2012218953A priority patent/AU2012218953B2/en
Priority to SG2013002217A priority patent/SG187030A1/en
Priority to RU2013104166/07A priority patent/RU2593381C2/ru
Priority to KR1020227025902A priority patent/KR102534519B1/ko
Priority to JP2012557809A priority patent/JP5984062B2/ja
Priority to CN2012800020663A priority patent/CN103109482A/zh
Priority to KR1020197027755A priority patent/KR102133354B1/ko
Priority to KR1020227010732A priority patent/KR102427003B1/ko
Priority to KR1020217008224A priority patent/KR102382798B1/ko
Priority to MX2016012433A priority patent/MX368299B/es
Priority to US13/811,064 priority patent/US8885596B2/en
Priority to CA2802654A priority patent/CA2802654C/en
Priority to MX2015003256A priority patent/MX336169B/es
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to MX2013000953A priority patent/MX2013000953A/es
Priority to KR1020237016525A priority patent/KR20230074299A/ko
Priority to KR1020207019572A priority patent/KR20200085931A/ko
Publication of WO2012111256A1 publication Critical patent/WO2012111256A1/ja
Priority to IL223918A priority patent/IL223918A/en
Priority to US14/501,780 priority patent/US9667333B2/en
Priority to AU2017200598A priority patent/AU2017200598B2/en
Priority to US15/496,406 priority patent/US10009207B2/en
Priority to PH12017501410A priority patent/PH12017501410A1/en
Priority to US15/987,016 priority patent/US10225123B2/en
Priority to US16/239,145 priority patent/US10476720B2/en
Priority to AU2019201897A priority patent/AU2019201897A1/en
Priority to US16/582,644 priority patent/US11063805B2/en
Priority to AU2021200843A priority patent/AU2021200843B2/en
Priority to US17/338,092 priority patent/US11240084B2/en
Priority to US17/551,984 priority patent/US20220109599A1/en
Priority to AU2022252818A priority patent/AU2022252818A1/en
Priority to US18/102,338 priority patent/US11943032B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/12Channels characterised by the type of signal the signals being represented by different phase modulations of a single carrier

Definitions

  • the present invention particularly relates to a transmission apparatus and a reception apparatus that perform communication using a multi-antenna.
  • MIMO Multiple-Input Multiple-Output
  • data transmission speed is increased by modulating transmission data of a plurality of sequences and transmitting each modulated signal simultaneously from different antennas.
  • FIG. 23 shows an example of the configuration of the transmission / reception apparatus when the number of transmission antennas is 2, the number of reception antennas is 2, and the number of transmission modulation signals (transmission streams) is 2.
  • the encoded data is interleaved, the interleaved data is modulated, frequency conversion or the like is performed to generate a transmission signal, and the transmission signal is transmitted from the antenna.
  • a scheme in which different modulation signals are transmitted from the transmission antenna to the same frequency at the same time is the spatial multiplexing MIMO scheme.
  • Patent Document 1 proposes a transmission apparatus having a different interleave pattern for each transmission antenna. That is, in the transmission device of FIG. 23, two interleaves ( ⁇ a, ⁇ b) have different interleave patterns. Then, as shown in Non-Patent Document 1 and Non-Patent Document 2, the reception apparatus improves the reception quality by repeatedly performing a detection method using a soft value (MIMO detector in FIG. 23). Will do.
  • a soft value MIMO detector in FIG. 23
  • NLOS non-line of sight
  • LOS line of sight
  • a LOS environment In the case of transmitting a single modulated signal in a transmitting device, performing maximum ratio combining on signals received by a plurality of antennas in a receiving device, and performing demodulation and decoding on the signal after maximum ratio combining, a LOS environment, In particular, good reception quality can be obtained in an environment where the rice factor indicating the magnitude of the reception power of the direct wave with respect to the reception power of the scattered wave is large.
  • BER Bit Error Rate
  • SNR signal-to-noise power ratio
  • FIGS. 24A and 24B show the BER characteristics of Max-log-APP (Non-patent Document 1 and Non-patent Document 2) (APP: a posteriprobability) in which iterative detection is not performed, and FIG.
  • the BER characteristics of Max-log-APP see Non-Patent Document 1 and Non-Patent Document 2) (5 iterations) subjected to detection are shown.
  • FIGS. 24A and 24B regardless of whether or not iterative detection is performed, in the spatial multiplexing MIMO system, it can be confirmed that reception quality deteriorates as the rice factor increases.
  • the spatial multiplexing MIMO system has a problem inherent to the spatial multiplexing MIMO system, which is not found in a conventional system that transmits a single modulation signal, such as “the reception quality deteriorates when the propagation environment becomes stable”. Recognize.
  • Broadcasting and multicast communication are services that have to deal with various propagation environments, and it is natural that the radio wave propagation environment between the receiver and broadcast station owned by the user is a LOS environment.
  • a spatial multiplexing MIMO system with the above-mentioned problems is used for broadcasting or multicast communication, a phenomenon occurs in which the receiver receives a service due to a deterioration in reception quality although the received electric field strength of radio waves is high. there is a possibility.
  • Non-Patent Document 8 describes a method of selecting a codebook (precoding matrix (also referred to as precoding weight matrix)) used for precoding from feedback information from a communication partner. In a situation where feedback information from a communication partner cannot be obtained as in multicast communication, there is no description of a method for performing precoding.
  • precoding matrix also referred to as precoding weight matrix
  • Non-Patent Document 4 describes a method of switching a precoding matrix with time, which can be applied even when there is no feedback information.
  • a unitary matrix is used as a matrix used for precoding and that the unitary matrix is switched at random.
  • the application method for the degradation of reception quality in the LOS environment described above It is not described at all, and only switching at random is described.
  • DVB Document A122 Framing structure, channel coding and modulation for a second generation digital terrestrial broadcasting system
  • T2 (DVB-D8)-DVB Document A122 Framing structure, channel coding and modulation L. Vangelista, N.A. Benvenuto, and S.M. Tomasin, “Key technologies for next-generation terrestrial digital television standard DVB-T2,” IEEE Commun. Magazine, vo. 47, no. 10, pp. 146-153, Oct. 2009. T. T. et al. Ohgane, T. Nishimura, and Y.
  • ETSI EN 302 307 “Second generation framing structure, channel coding and modulation systems for broadcasting services, new berthetics, and other severating lithivalents. 1.1.2, June 2006. Y. -L. Ueng, and C.I. -C. Cheng, “a fast-convergence decoding method and memory-efficient VLSI decoder architecture for irregular LDPC codes in the IEEE 802.16E standard E. 1255-1259.
  • S. M.M. Alamouti “A simple transmission diversity technology for wireless communications,” IEEE J. Select. Areas Commun. , Vol. 16, no. 8, pp. 1451-1458, Oct 1998.
  • An object of the present invention is to provide a MIMO system capable of improving reception quality in a LOS environment.
  • a plurality of signals transmitted at the same frequency band and at the same time from a plurality of baseband signals transmitted from the plurality of baseband signals at the same frequency band and at the same time A signal generation method for generating a phase change for both a first baseband signal s1 generated from a first plurality of bits and a second baseband signal s2 generated from a second plurality of bits To generate the first baseband signal s1 ′ after the phase change and the second baseband signal s2 ′ after the phase change, and multiply the first baseband signal s1 ′ after the phase change by u.
  • the second baseband signal s2 ′ after the phase change is multiplied by v, u and v are real numbers different from each other, and the signal obtained by multiplying the first baseband signal s1 ′ after the phase change by u;
  • the phase change amount that is applied to the u-multiplied first baseband signal s1 and the v-multiplied second baseband signal s2 that satisfies T is N phase change amount candidates. Each of the N phase change amounts is selected at least once within a predetermined period.
  • the signal generation device is a signal generation device that generates a plurality of signals transmitted from a plurality of baseband signals at the same frequency band and at the same time, and is generated from a first plurality of bits.
  • the phase change is performed on both the first baseband signal s1 and the second baseband signal s2 generated from the second plurality of bits, and the phase and the first baseband signal s1 ′ after the phase change are changed.
  • a phase changing unit that generates the second baseband signal s2 ′ after the change, and the first baseband signal s1 ′ after the phase change is multiplied by u, and the second baseband signal s2 after the phase change.
  • 'Is multiplied by v, u and v are real numbers different from each other, a signal obtained by multiplying the first baseband signal s1' after the phase change by u, and the second base after the phase change.
  • weighted synthesis is performed in accordance with a predetermined matrix F, and the first weighted synthesized signal z1 and the second weighted synthesized signal z2 are generated as a plurality of signals transmitted at the same frequency band and at the same time.
  • the phase change amount to be applied to the u-folded first baseband signal s1 and the v-folded second baseband signal s2 is selected while switching each of the N phase change amount candidates.
  • Each of the N phase change amount candidates is selected at least once within a predetermined period.
  • Example of configuration of transmission / reception device in spatial multiplexing MIMO transmission system Example of frame configuration
  • Example of transmitter configuration when applying phase change method Example of transmitter configuration when applying phase change method
  • Example of transmitter configuration when applying phase change method Frame configuration example
  • Example of phase change method Example of receiver configuration
  • Configuration example of signal processing unit of receiving apparatus Configuration example of signal processing unit of receiving apparatus
  • Decryption processing method Example of reception status
  • Example of transmitter configuration when applying phase change method Example of transmitter configuration when applying phase change method
  • Example of transmitter configuration when applying phase change method Frame configuration Example Frame configuration example Frame configuration example Frame configuration example Frame configuration example Frame configuration example Frame configuration example Frame configuration example Frame configuration example Frame configuration example Frame configuration example Frame configuration example
  • Example of mapping method Example of mapping method
  • Example of weighted composition unit configuration Example of how symbols are rearranged
  • Example of configuration of transmission / reception device in spatial multiplexing MIMO transmission system Example of BER characteristics
  • Example of phase change method Example of phase change method
  • Example of phase change method Example of phase change method
  • Example of phase change method Example of
  • the configuration of the N t ⁇ N r spatial multiplexing MIMO system is shown in FIG.
  • the information vector z is encoded and interleaved.
  • u i (u i1 ,..., U iM ) (M: number of transmission bits per symbol).
  • the transmission vector s (s 1 ,..., S Nt ) T
  • 2 ⁇ Es / Nt (E s : total energy per channel).
  • equation (6) can be expressed as equation (7).
  • the posterior L-value is expressed as follows in MAP or APP (a posteriori probability).
  • FIG. 23 shows a basic configuration of a system that leads to the following description.
  • a 2 ⁇ 2 spatial multiplexing MIMO system is used, and streams A and B each have an outer encoder, and the two outer encoders are encoders of the same LDPC code (in this case, an LDPC code encoder is used as the outer encoder).
  • the error correction code used by the outer encoder is not limited to the LDPC code, and other error correction codes such as a turbo code, a convolutional code, and an LDPC convolutional code are used in the same manner.
  • the outer encoder is configured to be provided for each transmission antenna, but the configuration is not limited thereto, and there may be a plurality of transmission antennas or a single outer encoder. Has more outer encoders than antennas Even if it is.).
  • the modulation scheme is 2 h -QAM (h bits are transmitted in one symbol).
  • the receiver performs the above-described MIMO signal iterative detection (iterative APP (or Max-log APP) decoding).
  • iterative APP or Max-log APP
  • sum-product decoding is performed.
  • FIG. 2 shows a frame structure and describes the order of symbols after interleaving. At this time, it is assumed that (i a , j a ) and (i b , j b ) are expressed as in the following equations.
  • i a , i b order of symbols after interleaving
  • ⁇ a , ⁇ b stream A and B interleavers
  • ⁇ a ia, ja , ⁇ b ib, jb The order of data before interleaving of streams A and B is shown.
  • ⁇ Iterative decoding> Here, the sum-product decoding and the iterative detection algorithm of the MIMO signal used for decoding the LDPC code in the receiver will be described in detail.
  • a (m) means a set of column indexes that are 1 in the m-th row of the check matrix H
  • B (n) is a set of row indexes that are 1 in the n-th row of the check matrix H.
  • the sum-product decoding algorithm is as follows.
  • Step A ⁇ 4 (calculation of log-likelihood ratio):
  • the log-likelihood ratio L n is obtained as follows for n ⁇ [1, N].
  • Step A ⁇ 5 (counting the number of iterations): If l sum ⁇ l sum, max , increment l sum and return to step A ⁇ 2.
  • l sum l sum, max , this round of sum-product decoding ends.
  • the above is one sum-product decoding operation. Thereafter, iterative detection of the MIMO signal is performed.
  • the variables in the stream A are denoted by m a , n a , ⁇ a mana , ⁇ a mana , ⁇ na, L na
  • Step B (iterative detection; number of iterations k): ⁇ k, na , ⁇ k, nb when the number of iterations is k is calculated from equations (11) (13)-(15) (16) (17) 31)-(34).
  • (X, Y) (a, b) (b, a).
  • FIG. 3 is an example of a configuration of transmitting apparatus 300 in the present embodiment.
  • the encoding unit 302A receives the information (data) 301A and the frame configuration signal 313 as input, and the frame configuration signal 313 (the error correction method used by the encoding unit 302A for error correction encoding of data, the encoding rate, the block length, etc.)
  • the frame configuration signal 313 the error correction method used by the encoding unit 302A for error correction encoding of data, the encoding rate, the block length, etc.
  • a convolutional code, an LDPC code, a turbo code, or the like may be used in accordance with a method specified by the frame configuration signal 313. Error correction encoding is performed, and encoded data 303A is output.
  • the interleaver 304A receives the encoded data 303A and the frame configuration signal 313, performs interleaving, that is, rearranges the order, and outputs the interleaved data 305A. (The interleaving method may be switched based on the frame configuration signal 313.)
  • the mapping unit 306A receives the interleaved data 305A and the frame configuration signal 313 as input and performs QPSK (Quadrature Phase Shift Keying), 16QAM (16 Quadrature Amplitude Modulation), 64QAM (64 Quadrature Amplitude Modulation), etc.
  • the signal 307A is output.
  • the modulation method may be switched based on the frame configuration signal 313.
  • FIG. 19 shows an example of a mapping method on the IQ plane of the in-phase component I and the quadrature component Q constituting the baseband signal in QPSK modulation.
  • FIG. 19B is an example of a mapping method on the IQ plane of QPSK modulation different from FIG. 19A, and FIG. 19B is different from FIG. 19A in that FIG. The signal point in FIG. 19B can be obtained by rotating the signal point around the origin.
  • FIG. 20 shows a signal point arrangement on the IQ plane in the case of 16QAM, and an example corresponding to FIG. 19A is FIG. 20A, and FIG. An example corresponding to is shown in FIG.
  • Encoding section 302B receives information (data) 301B and frame configuration signal 313 as input, and includes frame configuration signal 313 (including information such as an error correction method to be used, a coding rate, and a block length).
  • the error correction method may be switched, for example, error correction coding such as convolutional code, LDPC code, turbo code, etc., and the encoded data.
  • 303B is output.
  • the interleaver 304B receives the encoded data 303B and the frame configuration signal 313, performs interleaving, that is, rearranges the order, and outputs the interleaved data 305B. (The interleaving method may be switched based on the frame configuration signal 313.)
  • the mapping unit 306B receives the interleaved data 305B and the frame configuration signal 313, and performs QPSK (Quadrature Phase Shift Keying), 16QAM (16 Quadrature Amplitude Modulation), 64QAM (64 Quadrature Amplitude Modulation), and so on.
  • the signal 307B is output.
  • the modulation method may be switched based on the frame configuration signal 313.
  • the signal processing method information generation unit 314 receives the frame configuration signal 313 and outputs information 315 related to the signal processing method based on the frame configuration signal 313.
  • the information 315 relating to the signal processing method includes information specifying which precoding matrix is to be used in a fixed manner and information on a phase change pattern for changing the phase.
  • the weighting / synthesizing unit 308A receives the baseband signal 307A, the baseband signal 307B, and the information 315 related to the signal processing method as inputs, and weights and combines the baseband signal 307A and the baseband signal 307B based on the information 315 related to the signal processing method.
  • the signal 309A after the weighted synthesis is output. The details of the weighting synthesis method will be described later in detail.
  • Radio section 310A receives signal 309A after weighted synthesis, performs processing such as quadrature modulation, band limitation, frequency conversion, and amplification, and outputs transmission signal 311A. Transmission signal 311A is output as a radio wave from antenna 312A.
  • the weighting / synthesizing unit 308B receives the baseband signal 307A, the baseband signal 307B, and the information 315 related to the signal processing method as inputs, and weights and combines the baseband signal 307A and the baseband signal 307B based on the information 315 related to the signal processing method.
  • the signal 316B after the weighted synthesis is output.
  • FIG. 21 shows the configuration of the weighting synthesis unit (308A, 308B).
  • a region surrounded by a dotted line is a weighting synthesis unit.
  • the baseband signal 307A is multiplied by w11 to generate w11 ⁇ s1 (t), and is multiplied by w21 to generate w21 ⁇ s1 (t).
  • the baseband signal 307B is multiplied by w12 to generate w12 ⁇ s2 (t), and is multiplied by w22 to generate w22 ⁇ s2 (t).
  • s1 (t) and s2 (t) are BPSK (Binary Phase Shift Shift Keying), QPSK, 8PSK (8 Phase Shift Shift Keying), 16 QAM, 32 QAM (32 Quadrature Amplitude Modulation), It becomes a baseband signal of a modulation scheme such as 64QAM, 256QAM, 16APSK (16 Amplitude Phase Shift Keying).
  • both weighting combining sections perform weighting using a fixed precoding matrix.
  • the precoding matrix the following equation (37) or equation (38) is used under the condition There is a method using (36).
  • the precoding matrix is a
  • precoding matrix is not limited to the equation (36), and the one shown in the equation (39) may be used.
  • a Ae j ⁇ 11
  • b Be j ⁇ 12
  • c Ce j ⁇ 21
  • any one of a, b, c, and d may be “zero”.
  • (2) b zero, a, c, d is not zero
  • (3) c zero, a, b , D is not zero
  • (4) d may be zero
  • a, b, and c may be non-zero.
  • the phase changing unit 317B receives the signal 316B after weighted synthesis and the information 315 related to the signal processing method as inputs, and regularly changes and outputs the phase of the signal 316B. To change regularly, the phase is changed according to a predetermined phase change pattern at a predetermined cycle (for example, every n symbols (n is an integer of 1 or more) or every predetermined time). . Details of the phase change pattern will be described in a fourth embodiment below.
  • Radio section 310B receives signal 309B after the phase change, performs processing such as quadrature modulation, band limitation, frequency conversion, and amplification, and outputs transmission signal 311B.
  • Transmission signal 311B is output as a radio wave from antenna 312B.
  • the FIG. 4 shows a configuration example of a transmission apparatus 400 different from that in FIG. In FIG. 4, a different part from FIG. 3 is demonstrated.
  • Encoding section 402 receives information (data) 401 and frame configuration signal 313 as input, performs error correction encoding based on frame configuration signal 313, and outputs encoded data 402.
  • the distribution unit 404 receives and distributes the encoded data 403, and outputs data 405A and data 405B.
  • the encoding unit is m (m is an integer of 1 or more), and the codes created by each encoding unit
  • the present invention can also be implemented in the same manner when the distribution unit outputs the divided data into two systems of data.
  • FIG. 5 shows an example of a frame configuration on the time axis of the transmission apparatus according to this embodiment.
  • Symbol 500_1 is a symbol for notifying the receiving apparatus of the transmission method. For example, an error correction method used for transmitting a data symbol, information on its coding rate, and a modulation method used for transmitting a data symbol The information etc. is transmitted.
  • Symbol 501_1 is a symbol for estimating channel fluctuation of modulated signal z1 (t) ⁇ where t is time ⁇ transmitted by the transmission apparatus.
  • Symbol 502_1 is a data symbol transmitted by modulated signal z1 (t) to symbol number u (on the time axis), and symbol 503_1 is a data symbol transmitted by modulated signal z1 (t) to symbol number u + 1.
  • Symbol 501_2 is a symbol for estimating channel fluctuation of modulated signal z2 (t) ⁇ where t is time ⁇ transmitted by the transmission apparatus.
  • Symbol 502_2 is a data symbol transmitted from modulated signal z2 (t) to symbol number u
  • symbol 503_2 is a data symbol transmitted from modulated signal z2 (t) to symbol number u + 1.
  • symbols at the same time are transmitted from the transmission antenna using the same (common) frequency.
  • the channel fluctuation of each transmission antenna of the transmission device and each antenna of the reception device is set to h11 (t), h12 (t), h21 (t), and h22 (t), respectively, and reception received by the reception antenna 505 # 1 of the reception device.
  • the signal is r1 (t) and the received signal received by the receiving antenna 505 # 2 of the receiving device is r2 (t)
  • the following relational expression is established.
  • FIG. 6 is a diagram related to the weighting method (precoding method) and the phase changing method in the present embodiment, and the weighting synthesis unit 600 integrates both the weighting synthesis units 308A and 308B of FIG. It is a weighting synthesis unit.
  • the stream s1 (t) and the stream s2 (t) correspond to the baseband signals 307A and 307B of FIG. 3, that is, the bases according to the mapping of modulation schemes such as QPSK, 16QAM, and 64QAM.
  • the in-phase I component and quadrature Q component of the band signal is a diagram related to the weighting method (precoding method) and the phase changing method in the present embodiment, and the weighting synthesis unit 600 integrates both the weighting synthesis units 308A and 308B of FIG. It is a weighting synthesis unit.
  • the stream s1 (t) and the stream s2 (t) correspond to the baseband signals 307A and 307B of FIG. 3, that is, the bases according to the mapping
  • the stream s1 (t) represents the signal with symbol number u as s1 (u), the signal with symbol number u + 1 as s1 (u + 1), and so on.
  • a signal with a symbol number u is represented as s2 (u)
  • a signal with a symbol number u + 1 is represented as s2 (u + 1), and so on.
  • the weighting / synthesizing unit 600 receives the baseband signals 307A (s1 (t)) and 307B (s2 (t)) and the information 315 related to the signal processing method in FIG. 3, and performs weighting according to the information 315 related to the signal processing method.
  • the phase changing unit 317B changes the phase of the weighted signal 316B (z2 '(t)) and outputs a signal 309B (z2 (t)) after the phase change.
  • y (t) is an expression for changing the phase in accordance with a predetermined method.
  • the phase change expression at time u is expressed by, for example, Expression (43). be able to.
  • phase change equation at time u + 1 can be expressed by equation (44), for example.
  • phase change equation at time u + k can be expressed by equation (45).
  • the regular phase change examples shown in the equations (43) to (45) are merely examples.
  • the period of regular phase change is not limited to four. If the number of periods increases, there is a possibility that the reception performance (more precisely, error correction performance) of the receiving apparatus can be improved accordingly. It's likely that you should avoid small values such as.)
  • phase change examples shown in the above equations (43) to (45) the configuration in which the rotation is sequentially rotated by a predetermined phase (in the above equation, by ⁇ / 2) is shown.
  • the phase may be changed randomly.
  • the phase by which y (t) is multiplied in the order as shown in Expression (46) or Expression (47) may be changed according to a predetermined cycle.
  • What is important in the regular change of the phase is that the phase of the modulation signal is changed regularly, and the degree of the phase to be changed is made as uniform as possible, for example, from ⁇ radians to ⁇ radians.
  • the phase changing unit 317B determines the phase of the input signal and the degree of change. Change while changing.
  • the reception quality may be greatly improved.
  • the special precoding matrix depends on the phase and amplitude components of the direct wave when received. Different.
  • there is a certain rule in the LOS environment If the phase of the transmission signal is regularly changed in accordance with this rule, the data reception quality is greatly improved.
  • the present invention proposes a signal processing method that improves the LOS environment.
  • FIG. 7 shows an example of the configuration of receiving apparatus 700 in the present embodiment.
  • Radio section 703_X receives reception signal 702_X received by antenna 701_X, performs processing such as frequency conversion and orthogonal demodulation, and outputs baseband signal 704_X.
  • Channel fluctuation estimation section 705_1 in modulated signal z1 transmitted by the transmission apparatus receives baseband signal 704_X, extracts channel estimation reference symbol 501_1 in FIG. 5, and obtains a value corresponding to h11 in equation (40).
  • the channel estimation signal 706_1 is output.
  • Channel fluctuation estimation section 705_2 in modulated signal z2 transmitted by the transmission apparatus receives baseband signal 704_X, extracts channel estimation reference symbol 501_2 in FIG. 5, and obtains a value corresponding to h12 in equation (40).
  • the channel estimation signal 706_2 is output.
  • Radio section 703_Y receives reception signal 702_Y received by antenna 701_Y, performs processing such as frequency conversion and orthogonal demodulation, and outputs baseband signal 704_Y.
  • Channel fluctuation estimation section 707_1 in modulated signal z1 transmitted from the transmission apparatus receives baseband signal 704_Y as input, extracts channel estimation reference symbol 501_1 in FIG. 5, and obtains a value corresponding to h21 in equation (40).
  • the channel estimation signal 708_1 is output.
  • Channel fluctuation estimation section 707_2 in modulated signal z2 transmitted from the transmission apparatus receives baseband signal 704_Y as input, extracts channel estimation reference symbol 501_2 in FIG. 5, and obtains a value corresponding to h22 in equation (40).
  • the channel estimation signal 708_2 is output.
  • Control information decoding section 709 receives baseband signals 704_X and 704_Y, detects symbol 500_1 for notifying the transmission method of FIG. 5, and outputs a signal 710 related to the transmission method information notified by the transmission apparatus.
  • the signal processing unit 711 receives the baseband signals 704_X and 704_Y, the channel estimation signals 706_1, 706_2, 708_1, and 708_2, and the signal 710 related to the transmission method notified by the transmission apparatus, performs detection and decoding, and performs reception data 712_1 and 712_2 are output.
  • FIG. 8 shows an example of the configuration of the signal processing unit 711 in the present embodiment.
  • FIG. 8 mainly includes an INNER MIMO detection unit, a soft-in / soft-out decoder, and a coefficient generation unit.
  • the details of the iterative decoding method in this configuration are described in Non-Patent Document 2 and Non-Patent Document 3, but the MIMO transmission methods described in Non-Patent Document 2 and Non-Patent Document 3 are spatial multiplexing MIMO transmissions.
  • the transmission method in this embodiment is a MIMO transmission method in which the phase of a signal is regularly changed with time and a precoding matrix is used, it is a non-patent document 2, This is different from Patent Document 3.
  • the (channel) matrix in equation (36) is H (t)
  • the precoding weight matrix in FIG. 6 is F (where the precoding matrix is a fixed one that is not changed in one received signal)
  • the matrix of the phase change equation by the phase change unit is Y (t) (where Y (t) changes according to t)
  • the receiving apparatus can apply the decoding methods of Non-Patent Document 2 and Non-Patent Document 3 to the received vector R (t) by obtaining H (t) ⁇ Y (t) ⁇ F. . Therefore, the coefficient generation unit 819 in FIG. 8 transmits a signal 818 related to information on the transmission method notified by the transmission apparatus (information for specifying a fixed precoding matrix and a phase change pattern when the phase is changed). (Corresponding to 710 in FIG. 7) is input, and a signal 820 relating to signal processing method information is output.
  • the INNER MIMO detection unit 803 receives a signal 820 relating to information on a signal processing method as an input, and uses this signal to perform iterative detection / decoding by using the relationship of Equation (48). Will be described.
  • the signal processing unit configured as shown in FIG. 8 needs to perform a processing method as shown in FIG. 10 in order to perform iterative decoding (iterative detection). First, one codeword (or one frame) of the modulation signal (stream) s1 and one codeword (or one frame) of the modulation signal (stream) s2 are decoded.
  • the storage unit 815 has a baseband signal 801X (corresponding to the baseband signal 704_X in FIG. 7), a channel estimation signal group 802X (corresponding to the channel estimation signals 706_1 and 706_2 in FIG. 7), and a baseband.
  • the signal 801Y (corresponding to the baseband signal 704_Y in FIG. 7) and the channel estimation signal group 802Y (corresponding to the channel estimation signals 708_1 and 708_2 in FIG. 7) are input to realize iterative decoding (iterative detection).
  • H (t) ⁇ Y (t) ⁇ F in the equation (48) is executed (calculated), and the calculated matrix is stored as a modified channel signal group.
  • the storage unit 815 outputs the above signals as a baseband signal 816X, a modified channel estimation signal group 817X, a baseband signal 816Y, and a modified channel estimation signal group 817Y when necessary.
  • the INNER MIMO detection unit 803 receives the baseband signal 801X, the channel estimation signal group 802X, the baseband signal 801Y, and the channel estimation signal group 802Y.
  • the modulation scheme of the modulation signal (stream) s1 and the modulation signal (stream) s2 will be described as 16QAM.
  • the INNER MIMO detection unit 803 first executes H (t) ⁇ Y (t) ⁇ F from the channel estimation signal group 802X and the channel estimation signal group 802Y to obtain candidate signal points corresponding to the baseband signal 801X.
  • the state at that time is shown in FIG.
  • black circle
  • the modulation method is 16QAM
  • FIG. 11 shows an image diagram, all 256 candidate signal points are not shown.
  • 4 bits transmitted by the modulation signal s1 are b0, b1, b2, b3, and the modulation signal s2.
  • step b4 Assuming that the 4 bits transmitted in step b4 are b4, b5, b6, b7, there are candidate signal points corresponding to (b0, b1, b2, b3, b4, b5, b6, b7) in FIG. Then, the squared Euclidean distance between the reception signal point 1101 (corresponding to the baseband signal 801X) and each candidate signal point is obtained. Then, each square Euclidean distance is divided by the noise variance ⁇ 2 .
  • Each baseband signal and modulated signals s1 and s2 are complex signals.
  • H (t) ⁇ Y (t) ⁇ F is executed from the channel estimation signal group 802X and the channel estimation signal group 802Y, a candidate signal point corresponding to the baseband signal 801Y is obtained, and a reception signal point (baseband signal)
  • the square Euclidean distance is calculated by dividing the square Euclidean distance by the noise variance ⁇ 2 . Therefore, a value obtained by dividing the candidate signal point corresponding to (b0, b1, b2, b3, b4, b5, b6, b7) and the received signal point squared Euclidean distance by the variance of noise is represented by E Y (b0, b1, b2 , B3, b4, b5, b6, b7).
  • E X (b0, b1, b2, b3, b4, b5, b6, b7) + E Y (b0, b1, b2, b3, b4, b5, b6, b7) E (b0, b1, b2, b3) , B4, b5, b6, b7).
  • the INNER MIMO detection unit 803 outputs E (b0, b1, b2, b3, b4, b5, b6, b7) as a signal 804.
  • Log likelihood calculation section 805A receives signal 804, calculates the log likelihood of bits b0 and b1, and b2 and b3, and outputs log likelihood signal 806A. However, in the calculation of the log likelihood, the log likelihood when “1” and the log likelihood when “0” are calculated.
  • the calculation method is as shown in Expression (28), Expression (29), and Expression (30), and details are shown in Non-Patent Document 2 and Non-Patent Document 3.
  • log likelihood calculation section 805B receives signal 804 as input, calculates log likelihood of bits b4 and b5 and b6 and b7, and outputs log likelihood signal 806B.
  • the deinterleaver (807A) receives the log likelihood signal 806A, performs deinterleaving corresponding to the interleaver (interleaver (304A in FIG. 3)), and outputs a log likelihood signal 808A after deinterleaving.
  • the deinterleaver (807B) receives the log likelihood signal 806B, performs deinterleaving corresponding to the interleaver (interleaver (304B) in FIG. 3), and outputs a log likelihood signal 808B after deinterleaving.
  • Log-likelihood ratio calculation section 809A receives log-likelihood signal 808A after deinterleaving as input, and calculates a log-likelihood ratio (LLR: Log-likelihood Ratio) of bits encoded by encoder 302A in FIG.
  • LLR Log-likelihood Ratio
  • log-likelihood ratio calculation section 809B receives log-likelihood signal 808B after deinterleaving as input, and uses a log-likelihood ratio (LLR: Log-Likelihood Ratio) of bits encoded by encoder 302B in FIG. ) And a log likelihood ratio signal 810B is output.
  • the soft-in / soft-out decoder 811A receives the log likelihood ratio signal 810A, performs decoding, and outputs a log likelihood ratio 812A after decoding.
  • Soft-in / soft-out decoder 811B receives log-likelihood ratio signal 810B as input, performs decoding, and outputs decoded log-likelihood ratio 812B.
  • the interleaver (813A) receives the log-likelihood ratio 812A after decoding obtained in the (k-1) th soft-in / soft-out decoding, performs interleaving, and outputs a log-likelihood ratio 814A after interleaving.
  • the interleave pattern of the interleaver (813A) is the same as the interleave pattern of the interleaver (304A) of FIG.
  • the interleaver (813B) receives the log likelihood ratio 812B after decoding obtained in the (k-1) th soft-in / soft-out decoding, performs interleaving, and outputs the log likelihood ratio 814B after interleaving. .
  • the interleave pattern of the interleaver (813B) is the same as the interleave pattern of the interleaver (304B) of FIG.
  • the INNER MIMO detection unit 803 inputs a baseband signal 816X, a modified channel estimation signal group 817X, a baseband signal 816Y, a modified channel estimation signal group 817Y, an interleaved log likelihood ratio 814A, and an interleaved log likelihood ratio 814B. And Here, not the baseband signal 801X, the channel estimation signal group 802X, the baseband signal 801Y, and the channel estimation signal group 802Y, but the baseband signal 816X, the modified channel estimation signal group 817X, the baseband signal 816Y, and the modified channel estimation signal group 817Y. Is used because of a delay time due to iterative decoding.
  • the difference between the operation at the time of iterative decoding of the INNER MIMO detection unit 803 and the operation at the time of initial detection is that the log likelihood ratio 814A after interleaving and the log likelihood ratio 814B after interleaving are used in signal processing. It is.
  • the INNER MIMO detection unit 803 first obtains E (b0, b1, b2, b3, b4, b5, b6, b7) as in the initial detection.
  • coefficients corresponding to Equation (11) and Equation (32) are obtained from the log likelihood ratio 814A after interleaving and the log likelihood ratio 814B after interleaving.
  • E (b0, b1, b2, b3, b4, b5, b6, b7) is corrected using the obtained coefficient, and the value is changed to E ′ (b0, b1, b2, b3, b4, b5). , B6, b7) and output as a signal 804.
  • Log likelihood calculation section 805A receives signal 804, calculates the log likelihood of bits b0 and b1, and b2 and b3, and outputs log likelihood signal 806A. However, in the calculation of the log likelihood, the log likelihood when “1” and the log likelihood when “0” are calculated.
  • the calculation method is as shown in Formula (31), Formula (32), Formula (33), Formula (34), and Formula (35), and is shown in Non-Patent Document 2 and Non-Patent Document 3. .
  • log likelihood calculation section 805B receives signal 804 as input, calculates log likelihood of bits b4 and b5 and b6 and b7, and outputs log likelihood signal 806B.
  • the operation after the deinterleaver is the same as the initial detection.
  • FIG. 8 shows the configuration of the signal processing unit in the case of performing iterative detection. However, iterative detection is not necessarily an essential configuration for obtaining good reception quality, and is a component required only for iterative detection.
  • the interleaver 813A or 813B may be omitted. At this time, the INNER MIMO detection unit 803 does not perform repetitive detection.
  • An important part of the present embodiment is to perform an operation of H (t) ⁇ Y (t) ⁇ F.
  • initial detection and iterative detection may be performed using QR decomposition.
  • linear calculation of MMSE (Minimum Mean Square Error) and ZF (Zero Forcing) is performed based on H (t) ⁇ Y (t) ⁇ F, and initial detection is performed. You may go.
  • FIG. 9 shows a configuration of a signal processing unit different from that in FIG. 8, and is a signal processing unit for a modulated signal transmitted by the transmission apparatus in FIG.
  • the difference from FIG. 8 is the number of soft-in / soft-out decoders.
  • the soft-in / soft-out decoder 901 receives log likelihood ratio signals 810A and 810B as inputs, performs decoding, and performs decoding.
  • a log likelihood ratio 902 is output.
  • the distribution unit 903 receives the log likelihood ratio 902 after decoding as input, and performs distribution.
  • the other parts are the same as in FIG.
  • the precoding matrix is multiplied and the phase is changed with time.
  • the operation of the receiving apparatus is described with the number of antennas being limited, but it can be similarly implemented even when the number of antennas is increased. That is, the number of antennas in the receiving apparatus does not affect the operation and effect of the present embodiment.
  • the LDPC code has been described as an example.
  • the present invention is not limited to this, and the decoding method is not limited to the sum-product decoding as a soft-in / soft-out decoder.
  • the decoding method is not limited to the sum-product decoding as a soft-in / soft-out decoder.
  • soft-in / soft-out decoding methods such as BCJR algorithm, SOVA algorithm, Max-log-MAP algorithm, and the like. Details are described in Non-Patent Document 6.
  • the single carrier method has been described as an example.
  • the present invention is not limited to this, and the same can be performed even when multicarrier transmission is performed. Therefore, for example, spread spectrum communication system, OFDM (Orthogonal Frequency-Division Multiplexing) system, SC-FDMA (Single Carrier Frequency Access, etc.), Multiple-Multiple Access (SC) -OFDM (SingleCurrencyMid- wise).
  • OFDM Orthogonal Frequency-Division Multiplexing
  • SC-FDMA Single Carrier Frequency Access, etc.
  • SC Multiple-Multiple Access
  • symbols other than data symbols for example, pilot symbols (preamble, unique word, etc.), control information transmission symbols, and the like may be arranged in any manner.
  • FIG. 12 shows a configuration of a transmission apparatus when the OFDM method is used.
  • the OFDM scheme-related processing unit 1201A receives the weighted signal 309A, performs OFDM scheme-related processing, and outputs a transmission signal 1202A.
  • the OFDM scheme-related processing unit 1201B receives the signal 309B after the phase change and outputs a transmission signal 1202B.
  • FIG. 13 shows an example of the configuration after the OFDM scheme related processing units 1201A and 1201B in FIG. 12, and the portions related to 1201A to 312A in FIG. 12 are 1301A to 1310A, and the portions related to 1201B to 312B Are 1301B to 1310B.
  • the serial / parallel converter 1302A performs serial / parallel conversion on the weighted signal 1301A (corresponding to the weighted signal 309A in FIG. 12), and outputs a parallel signal 1303A.
  • Rearranger 1304A receives parallel signal 1303A as input, performs rearrangement, and outputs rearranged signal 1305A.
  • the rearrangement will be described in detail later.
  • the inverse fast Fourier transform unit 1306A receives the rearranged signal 1305A, performs inverse fast Fourier transform, and outputs a signal 1307A after the inverse Fourier transform.
  • Radio section 1308A receives signal 1307A after inverse Fourier transform as input, performs processing such as frequency conversion and amplification, outputs modulated signal 1309A, and modulated signal 1309A is output from antenna 1310A as a radio wave.
  • the serial / parallel converter 1302B performs serial / parallel conversion on the weighted signal 1301B whose phase has been changed (corresponding to the signal 309B after the phase change in FIG. 12), and outputs a parallel signal 1303B.
  • Rearranger 1304B receives parallel signal 1303B as input, performs rearrangement, and outputs rearranged signal 1305B. The rearrangement will be described in detail later.
  • the inverse fast Fourier transform unit 1306B receives the rearranged signal 1305B, performs an inverse fast Fourier transform, and outputs a signal 1307B after the inverse Fourier transform.
  • Radio section 1308B receives signal 1307B after inverse Fourier transform as input, performs processing such as frequency conversion and amplification, outputs modulated signal 1309B, and modulated signal 1309B is output as a radio wave from antenna 1310B.
  • phase 3 is not a transmission system using multicarriers, the phase is changed so as to be four periods as shown in FIG. 6, and the symbols after the phase change are arranged in the time axis direction.
  • a multi-carrier transmission scheme such as the OFDM scheme shown in FIG. 12
  • the symbols after precoding and changing the phase are arranged in the time axis direction as shown in FIG.
  • a method for each (sub) carrier is conceivable, but in the case of a multicarrier transmission method, a method of arranging using the frequency axis direction or both the frequency axis and the time axis is conceivable.
  • this point will be described.
  • FIG. 14 shows an example of the symbol rearrangement method in the rearrangement units 1301A and 1301B in FIG. 13 at the horizontal axis frequency and the vertical axis time, and the frequency axis ranges from (sub) carrier 0 to (sub) carrier 9.
  • the modulation signals z1 and z2 use the same frequency band at the same time (time), and
  • FIG. 14A shows a symbol rearrangement method of the modulation signal z1, and
  • FIG. Indicates a rearrangement method of symbols of the modulation signal z2. Numbers such as # 0, # 1, # 2, # 3,... Are sequentially assigned to the symbols of the weighted signal 1301A input to the serial / parallel conversion unit 1302A.
  • # 0, # 1, # 2, and # 3 are equivalent to one period.
  • # 4n, # 4n + 1, # 4n + 2, # 4n + 3 (n is an integer of 0 or more) is one cycle.
  • symbols # 0, # 1, # 2, # 3,... are arranged in order from carrier 0, and symbols # 0 to # 9 are arranged at time $ 1. Thereafter, symbols # 10 to # 19 are regularly arranged such that they are arranged at time $ 2.
  • the modulation signals z1 and z2 are complex signals.
  • # 0, # 1, # 2, # 3,... are sequentially assigned to the symbols of the signal 1301B after the weighted and phase-changed input, which is input to the serial / parallel converter 1302B. .
  • # 0, # 1, # 2, and # 3 are changed in different phases, and # 0, # 1, # 2, and # 3 are equal. This is the period.
  • # 4n, # 4n + 1, # 4n + 2, and # 4n + 3 are changed in phase, and # 4n, # 4n + 1, # 4n + 2, and # 4n + 3 are one. This is the period.
  • symbols # 0, # 1, # 2, # 3,... are arranged in order from carrier 0, and symbols # 0 to # 9 are arranged at time $ 1.
  • symbols # 10 to # 19 are regularly arranged such that they are arranged at time $ 2.
  • a symbol group 1402 shown in FIG. 14B is a symbol for one period when the phase changing method shown in FIG. 6 is used, and symbol # 0 is a symbol when the phase at time u in FIG. 6 is used.
  • Symbol # 1 is a symbol when the phase at time u + 1 in FIG. 6 is used, symbol # 2 is a symbol when the phase at time u + 2 in FIG. 6 is used, and symbol # 3 is the symbol in FIG.
  • symbol #x when x mod 4 is 0 (the remainder when x is divided by 4, and therefore mod: modulo), symbol #x is a symbol when the phase at time u in FIG. 6 is used.
  • symbol #x when x mod 4 is 1, symbol #x is a symbol when the phase at time u + 1 in FIG. 6 is used, and when x mod 4 is 2, symbol #x has the phase at time u + 2 in FIG.
  • symbol #x is a symbol when the phase at time u + 3 in FIG. 6 is used.
  • the phase of modulated signal z1 shown in FIG. 14A is not changed.
  • symbols can be arranged in the frequency axis direction.
  • the way of arranging symbols is not limited to the arrangement as shown in FIG. Another example will be described with reference to FIGS. 15 and 16.
  • FIG. 15 shows an example of the symbol rearrangement method in the rearrangement units 1301A and 1301B in FIG. 13 at the horizontal axis frequency and the vertical axis time different from FIG. 14, and FIG. 15A shows the modulation signal z1.
  • FIG. 15B shows a symbol rearrangement method of the modulation signal z2.
  • 15A and 15B is different from FIG. 14 in that the symbol rearrangement method of the modulation signal z1 and the symbol rearrangement method of the modulation signal z2 are different.
  • FIG. 0 to # 5 are allocated from carrier 4 to carrier 9
  • symbols # 6 to # 9 are allocated to carriers 0 to 3
  • symbols # 10 to # 19 are allocated to each carrier according to the same rule.
  • the symbol group 1502 shown in FIG. 15B is a symbol for one period when the phase changing method shown in FIG. 6 is used.
  • FIG. 16 shows an example of a symbol rearrangement method in the rearrangement units 1301A and 1301B in FIG. 13 at a horizontal frequency and vertical axis time different from FIG. 14, and FIG. 16 (A) shows the modulation signal z1.
  • FIGS. 16A and 16B differ from FIG. 14 in that symbols are arranged in order on the carrier in FIG. 14, whereas symbols are not arranged in order on the carrier in FIG. Is a point.
  • the rearrangement method of the symbols of the modulation signal z1 and the rearrangement method of the modulation signal z2 may be different.
  • FIG. 17 shows an example of a symbol rearrangement method in rearrangement units 1301A and 1301B in FIG. 13 at a horizontal axis frequency and a vertical axis time different from those in FIGS. 14 to 16, and FIG.
  • the symbol rearrangement method for the signal z1 and FIG. 17B shows the symbol rearrangement method for the modulation signal z2.
  • symbols are arranged in the frequency axis direction, but in FIG. 17, symbols are arranged using both the frequency and time axes.
  • FIG. 6 illustrates an example in which the phase change is switched in 4 slots, but here, an example in which switching is performed in 8 slots will be described.
  • a symbol group 1702 shown in FIG. 17 is a symbol for one period when using the phase changing method (thus, eight symbols), symbol # 0 is a symbol when using the phase at time u, and symbol # 0 1 is a symbol when using the phase at time u + 1, symbol # 2 is a symbol when using the phase at time u + 2, and symbol # 3 is a symbol when using the phase at time u + 3.
  • # 4 is a symbol when using the phase at time u + 4
  • symbol # 5 is a symbol when using the phase at time u + 5
  • symbol # 6 is a symbol when using the phase at time u + 6
  • Symbol # 7 is a symbol when the phase at time u + 7 is used.
  • symbol #x when x mod 8 is 0, symbol #x is a symbol when the phase at time u is used, and when x mod 8 is 1, symbol #x uses the phase at time u + 1
  • symbol #x is a symbol when the phase at time u + 2 is used, and when x mod 8 is 3, symbol #x uses the phase at time u + 3
  • symbol #x is a symbol when the phase at time u + 4 is used, and when x mod 8 is 5, symbol #x uses the phase at time u + 5
  • symbol #x is a symbol when the phase at time u + 6 is used, and symbol when x mod 8 is 7 x is a symbol when using the phase of the time u + 7.
  • the number of symbols per minute is m ⁇ n symbols (that is, there are m ⁇ n types of phases to be multiplied) n slots in the frequency axis direction (number of carriers) used to arrange symbols for one period, the time axis If the slot used in the direction is m, m> n is preferable. This is because the phase of the direct wave is more gradual in fluctuation in the time axis direction than in the frequency axis direction.
  • FIG. 18 shows an example of the symbol rearrangement method in the rearrangement units 1301A and 1301B in FIG. 13 at the horizontal axis frequency and the vertical axis time different from FIG. 17, and FIG. 18 (A) shows the modulation signal z1.
  • FIG. 18B shows a symbol rearrangement method of the modulation signal z2.
  • symbols are arranged using both the frequency and the time axis as in FIG. 17, but the difference from FIG. 17 is that in FIG. 17, the frequency direction is prioritized, and then the time axis direction.
  • the time axis direction is prioritized, and then symbols are arranged in the time axis direction.
  • a symbol group 1802 is a symbol for one period when the phase changing method is used.
  • FIGS. 17 and 18 similarly to FIG. 15, even if the symbol arrangement method of the modulation signal z ⁇ b> 1 and the symbol arrangement method of the modulation signal z ⁇ b> 2 are different, the implementation can be similarly performed. An effect that reception quality can be obtained can be obtained. Further, in FIGS. 17 and 18, even if symbols are not sequentially arranged as in FIG. 16, it can be implemented in the same manner, and an effect that high reception quality can be obtained can be obtained. it can.
  • FIG. 22 shows an example of the symbol rearrangement method in the rearrangement units 1301A and 130B in FIG. 13 at the horizontal axis frequency and the vertical axis time different from the above.
  • the phase change using the phase of the time u is used for the symbol # 0
  • the phase change using the phase of the time u + 1 is used for the # 1
  • the phase change using the phase of the time u + 2 is used for the # 2
  • the phase of the time u + 3 is used.
  • the phase change that was made shall be performed.
  • the phase change using the phase at time u is used for the symbol # 4
  • the phase change using the phase at time u + 1 is used for the symbol # 5
  • the phase at time u + 2 is used for # 6.
  • # 7 the phase change using the phase at time u + 3 is performed.
  • phase change as described above was performed for the symbol at time $ 1, since the cyclic shift is performed in the time axis direction, the phase change is performed as follows for the symbol groups 2201, 2202, 2203, and 2204. Will do.
  • the phase change using the phase of the time u is used for the symbol # 0
  • the phase change using the phase of the time u + 1 is used for the # 9
  • the phase change using the phase of the time u + 2 is used for the # 18.
  • the phase is changed using the phase at time u + 3.
  • the phase change using the phase of the time u is used for the symbol # 28
  • the phase change using the phase of the time u + 1 is used for the # 1
  • the phase change using the phase of the time u + 2 is used for the # 10
  • the phase is changed using the phase at time u + 3.
  • the phase change using the phase at time u is performed for the symbol # 20
  • the phase change using the phase at time u + 1 is performed at # 29
  • the phase change using the phase at time u + 2 is performed at # 2.
  • the phase change using the phase at time u + 3 is performed.
  • the phase change using the phase of the time u is used for the symbol # 12
  • the phase change using the phase of the time u + 1 is used for the symbol # 21
  • the phase change using the phase of the time u + 2 is used for the # 30.
  • the phase change using the phase at time u + 3 is performed.
  • the feature in FIG. 22 is that, for example, when attention is paid to the symbol # 11, both the adjacent symbols (# 10 and # 12) in the frequency axis direction at the same time change the phase using a phase different from # 11.
  • both the symbols (# 2 and # 20) adjacent to each other in the time axis direction of the same carrier of the symbol # 11 are changed in phase using a phase different from # 11.
  • the above-mentioned characteristics are realized by providing the characteristic of cyclically shifting the symbol arrangement order.
  • the phase changing unit 317 ⁇ / b> B is configured to change the phase only for one output from the weighting synthesis unit 600.
  • the timing for changing the phase may be executed before the precoding by the weighting synthesis unit 600, and the transmission apparatus may replace the configuration shown in FIG.
  • the phase changing unit 317B may be provided in the preceding stage of the weighting synthesis unit 600.
  • phase change may be performed on both of the modulation signals s1 (t) and s2 (t), and the transmission apparatus is configured as shown in FIG. 26 instead of the configuration shown in FIG.
  • the phase changing unit may be provided for both outputs of the weighting synthesis unit 600.
  • the phase changing unit 317A regularly changes the phase of the input signal in the same manner as the phase changing unit 317B, changes the phase of the precoded signal z1 ′ (t) from the weighting synthesis unit, The signal z1 (t) whose phase has been changed is output to the transmitter.
  • phase changing unit 317A and the phase changing unit 317B change the phases as shown in FIG. (However, the following is one example, and the phase changing method is not limited to this.)
  • the period which changes a phase regularly may be the same in the phase change part 317A and the phase change part 317B, and may differ.
  • the timing for changing the phase may be before execution of precoding by the weighting synthesis section, and the transmission apparatus may have the configuration shown in FIG. 27 instead of the configuration shown in FIG.
  • each transmission signal includes information on each phase change pattern, for example, as control information, and the receiving apparatus obtains this control information.
  • the phase change method that is, the phase change pattern, which is regularly switched by the transmission apparatus, and thereby correct demodulation (detection) can be performed.
  • FIG. 28 differs from FIG. 6 in that information 2800 regarding phase change ON / OFF exists, and the phase change is performed to either z1 ′ (t) or z2 ′ (t) (at the same time). Alternatively, the phase change is applied to either z1 ′ (t) or z2 ′ (t) at the same frequency.). Therefore, since the phase change is performed to either z1 ′ (t) or z2 ′ (t), the phase change unit 317A and the phase change unit 317B in FIG. 28 perform the phase change (ON). In some cases, the phase is not changed (OFF).
  • This control information related to ON / OFF is information 2800 related to phase change ON / OFF. Information 2800 regarding this phase change ON / OFF is output from the signal processing method information generation unit 314 shown in FIG.
  • the phase change period is composed of the time for changing the phase only for z1 ′ (t) and the time for changing the phase only for z2 ′ (t).
  • the cycle in which the phase change is performed only for z1 ′ (t) and the cycle in which the phase change is performed only for z2 ′ (t) are the same.
  • the present invention is not limited to this, and z1 ′ ( The period when the phase is changed only for t) and the period when the phase is changed only for z2 ′ (t) may be different.
  • z1 ′ (t) is described to change the phase in 4 cycles and then z2 ′ (t) is changed in 4 cycles.
  • Z1 ′ (t) and z2 ′ (t) may be changed in any order (for example, z1 ′ (t) and z2 ′ (t) may be alternately changed).
  • the phase change period is composed of the time for changing the phase only for s1 (t) and the time for changing the phase for only s2 (t).
  • the cycle for changing the phase only for s1 (t) and the cycle for changing the phase for only s2 (t) are the same, but this is not restrictive, and only s1 (t) is used.
  • the period for changing the phase may be different from the period for changing the phase only for s2 (t).
  • phase change of (t) and the phase change of s2 (t) may be used (for example, the phase change of s1 (t) and the phase change of s2 (t) may be performed alternately, (The order may be according to a certain rule, or the order may be random.)
  • the phase change of s1 (t) and the phase change of s2 (t) may be performed alternately, (The order may be according to a certain rule, or the order may be random.)
  • the phase is periodically switched in the symbol, the error correction capability after error correction decoding can be improved, so that the reception quality in the LOS environment can be improved.
  • the single carrier method is described as an example, that is, the case where the phase change is performed with respect to the time axis.
  • the present invention is not limited to this, and the same applies even when multicarrier transmission is performed Can do. Therefore, for example, spread spectrum communication method, OFDM (Orthogonal Frequency-Division Multiplexing) method, SC-FDMA (Single Carrier Frequency Multiple Access), SC-OFDM (Single Carrier Multiple Access), SC-OFDM (Single Carrier Multiple Access) The same can be applied to the case of using the wavelet OFDM method shown in FIG.
  • OFDM Orthogonal Frequency-Division Multiplexing
  • SC-FDMA Single Carrier Frequency Multiple Access
  • SC-OFDM Single Carrier Multiple Access
  • SC-OFDM Single Carrier Multiple Access
  • the phase change is performed in the frequency axis direction. That is, in this embodiment, in the description of the phase change in the t direction, by replacing t with f (f: frequency ((sub) carrier)), the phase change method described in this embodiment is considered. Can be applied to change the phase in the frequency direction. Further, the phase changing method of the present embodiment can also be applied to the phase change in the time-frequency direction as in the description of the first embodiment.
  • FIGS. 6, 25, 26, and 27 show the case where the phase is changed in the time axis direction.
  • time t is replaced with carrier f.
  • it corresponds to changing the phase in the frequency direction, and by changing the time t to the time t and the frequency f, that is, (t) is replaced with (t, f), the phase is changed in the time-frequency block.
  • symbols other than data symbols for example, pilot symbols (preamble, unique word, etc.), control information transmission symbols, and the like may be arranged in any manner.
  • the phase is regularly changed.
  • each receiving device in the receiving devices that are scattered in various places as viewed from the transmitting device, each receiving device can obtain good data reception quality regardless of where the receiving devices are arranged. Disclose the method.
  • FIG. 31 shows an example of a frame configuration of a part of symbols of a signal on the time-frequency axis when a multicarrier scheme such as the OFDM scheme is used in a transmission scheme that regularly changes the phase.
  • a multicarrier scheme such as the OFDM scheme
  • FIG. 6 shows a case where the phase change is performed in the time axis direction, but in FIG. 6, by replacing the time t with the carrier f, this corresponds to performing the phase change in the frequency direction. (By replacing time t with time t and frequency f, ie, (t) with (t, f), this corresponds to performing phase change in a block of time frequency.)
  • FIG. 31 shows a frame configuration of the modulated signal z2 ′ that is an input of the phase changing unit 317B shown in FIG. 12, and one square is a symbol (however, both pre-coding and s1 and s2 are both performed). However, depending on the configuration of the precoding matrix, only one of the signals s1 and s2 may be included).
  • carrier 2 may be called a subcarrier.
  • the channel status of the most adjacent symbol in time $ 2 that is, the symbol 3103 at time $ 1 of carrier 2 and the symbol 3101 at time $ 3 are the channel states of carrier 2 and symbol 3100 at time $ 2. It is highly correlated with channel conditions.
  • each channel state of the symbols 3101, 3102, 3103, and 3104 has a very high correlation with the channel state of the symbol 3100.
  • N types of phases are prepared as phases to be multiplied in a transmission method that regularly changes phases.
  • e j0 is added to the symbol shown in FIG. 31. This is because the signal z2 ′ in FIG. 6 in this symbol is multiplied by “e j0 ” to change the phase.
  • Means that That is, the values described in each symbol in FIG. 31 are the same as y (t) in equation (42) and z2 (t) y 2 (t) z2 ′ (t) described in the second embodiment. This is the value of y 2 (t).
  • a high data reception quality is obtained on the receiving apparatus side by utilizing the high correlation between the channel states of symbols adjacent in the frequency axis direction and / or symbols adjacent in the time axis direction. Disclose the symbol arrangement of the symbols whose phase is changed. ⁇ Condition # 1> and ⁇ Condition # 2> can be considered as conditions for obtaining high data reception quality on the receiving side.
  • time X and carrier Y are data.
  • Symbols for transmission (hereinafter referred to as data symbols), and adjacent symbols in the time axis direction, that is, time X ⁇ 1 ⁇ carrier Y and time X + 1 ⁇ carrier Y are all data symbols.
  • the baseband signal z2 ′ after precoding corresponding to the data symbol that is, the baseband signal z2 ′ after precoding in time X ⁇ carrier Y, time X ⁇ 1 ⁇ carrier Y and time X + 1 ⁇ carrier Y, In either case, a different phase change is performed.
  • Symbols for transmission (hereinafter referred to as data symbols), which are adjacent in the frequency axis direction, that is, when time X ⁇ carrier Y ⁇ 1 and time X ⁇ carrier Y + 1 are both data symbols, these 3
  • the baseband signal z2 ′ after precoding corresponding to one data symbol that is, the baseband signal z2 ′ after precoding at time X ⁇ carrier Y, time X ⁇ carrier Y ⁇ 1 and time X ⁇ carrier Y + 1, respectively In both cases, different phase changes are performed.
  • a data symbol satisfying ⁇ condition # 1> is preferably present.
  • the reason why ⁇ Condition # 1> ⁇ Condition#2> is derived is as follows. There is a certain symbol (hereinafter referred to as symbol A) in the transmission signal, and the channel state of each symbol temporally adjacent to the symbol A is highly correlated with the channel state of symbol A as described above.
  • symbol A has poor reception quality in the LOS environment (although high reception quality is obtained as an SNR, the phase relationship of direct waves is poor). It is very likely that good reception quality can be obtained with the two symbols adjacent to the remaining symbol A even if the reception quality is poor because of this situation, and as a result, after error correction decoding. Can obtain good reception quality.
  • symbol A there is a certain symbol (hereinafter referred to as symbol A) in the transmission signal, and the channel state of each symbol adjacent to the symbol A in frequency is highly correlated with the channel state of symbol A as described above. . Therefore, if different phases are used for three symbols that are adjacent in terms of frequency, symbol A has poor reception quality in the LOS environment (although it has high reception quality as an SNR, the direct wave phase relationship is poor). It is very likely that good reception quality can be obtained with the two symbols adjacent to the remaining symbol A even if the reception quality is poor because of this situation, and as a result, after error correction decoding. Can obtain good reception quality.
  • ⁇ Condition # 3> As shown in FIG. 6, in the transmission method in which the phase is regularly changed with respect to the baseband signal z2 ′ after precoding, when a multicarrier transmission method such as OFDM is used, time X and carrier Y are data.
  • Symbols for transmission which are adjacent in the time axis direction, that is, time X ⁇ 1 ⁇ carrier Y and time X + 1 ⁇ carrier Y are both data symbols, and frequency
  • the baseband signal z2 ′ after precoding corresponding to these five data symbols that is, , Time X ⁇ carrier Y and time X ⁇ 1 ⁇ carrier Y and time X + 1 ⁇ carrier Y and time X ⁇
  • Yaria Y-1 and time-based band signal of each precoded in X ⁇ carrier Y + 1 z2 ' both different phase changes are made.
  • phase change will be defined from 0 radians to 2 ⁇ radians.
  • the phase change applied to the baseband signal z2 ′ after precoding in FIG. 6 is changed to e j ⁇ X, Y , and at time X ⁇ 1 ⁇ carrier Y, the base after precoding shown in FIG.
  • FIG. 31 shows an example of ⁇ Condition # 3>.
  • the baseband signals z2 ′ after precoding in FIG. 6 corresponding to 3102 and the baseband signals z2 ′ after precoding in FIG. 6 corresponding to 3104 are arranged to be different from each other. Even if the reception quality of the symbol 3100 is poor on the receiving side, the reception quality of the adjacent symbol is Since very high, we can ensure high reception quality after error correction decoding.
  • FIG. 32 An example of symbol arrangement obtained by changing the phase under this condition is shown in FIG. 32, in any data symbol, the degree of the phase changed with respect to the symbols whose phases are adjacent in both the frequency axis direction and the time axis direction is different from each other. ing. By doing in this way, the error correction capability in the receiving apparatus can be further improved.
  • phase change is performed on the two baseband signals after precoding described in Embodiment 2 (see FIG. 26).
  • FIG. 26 when the phase change is applied to both the baseband signal z1 ′ after precoding and the baseband signal z2 ′ after precoding, there are several methods for phase change. This will be described in detail.
  • the phase change of the baseband signal z2 ′ after the precoding is performed as shown in FIG. 32 as described above.
  • the phase change of the baseband signal z2 ′ after precoding is set to a period of 10.
  • the subband carrier 1 is applied to the baseband signal z2 ′ after precoding.
  • the phase change is changing with time. (Although such a change is made in FIG. 32, the period 10 may be used and another phase change method may be used.)
  • the phase change of the baseband signal z1 ′ after the precoding is as shown in FIG.
  • the phase change of the baseband signal z2 ′ after precoding is constant for one period of period 10.
  • the value of the phase change of the baseband signal z1 ′ after precoding is e j0
  • the value of the phase change of the baseband signal z1 ′ after precoding is e j ⁇ / 9 , ... and so on.
  • the phase change of the baseband signal z1 ′ after the precoding is performed by changing the phase of the baseband signal z2 ′ after the precoding with a constant value for the phase change of one cycle of the period 10. The value is changed together with the number for one cycle. (As described above, in FIG. 33, e j0 is set for the first period, and e j ⁇ / 9 ,... Are set for the second period.)
  • the phase change of the baseband signal z2 ′ after precoding is the period 10, but the phase change of the baseband signal z1 ′ after precoding and the baseband signal z2 ′ after precoding are changed.
  • the effect that the period when both of the phase changes are taken into account can be made larger than 10. As a result, there is a possibility that the reception quality of the data of the receiving apparatus is improved.
  • the phase change of the baseband signal z2 'after precoding is performed as shown in FIG. 32 as described above.
  • the phase change of the baseband signal z ⁇ b> 2 ′ after precoding is a period 10.
  • the subband carrier 1 is applied to the baseband signal z2 ′ after precoding.
  • the phase change is changing with time. (Although such a change is made in FIG. 32, the period 10 may be used and another phase change method may be used.)
  • the phase change of the baseband signal z1 ′ after precoding is shown in FIG.
  • the phase change of the baseband signal z2 ′ after precoding is performed in a period 3 different from the period 10.
  • the phase change of the baseband signal z2 ′ after precoding is the period 10, but the phase change of the baseband signal z1 ′ after precoding and the baseband signal z2 ′ after precoding are changed.
  • the period when considering both of the phase changes is 30, and the period when considering both the phase change of the baseband signal z1 ′ after precoding and the phase change of the baseband signal z2 ′ after precoding is larger than 10. The effect that it can be done can be obtained. As a result, there is a possibility that the reception quality of the data of the receiving apparatus is improved.
  • One effective method 2 is that when the phase change period of the baseband signal z1 ′ after precoding is N and the phase change period of the baseband signal z2 ′ after precoding is M, , N and M are relatively prime, the period when considering both the phase change of the baseband signal z1 ′ after precoding and the phase change of the baseband signal z2 ′ after precoding is N ⁇ M However, even if N and M are relatively prime, it is possible to increase the period.
  • the phase change method according to the third embodiment is an example, and is not limited to this.
  • the phase change method may be performed in the frequency axis direction, or the time may be changed. Even if the phase is changed in the axial direction or the phase is changed in the time-frequency block, the reception quality of data in the receiving apparatus can be improved.
  • a pilot symbol SP (Scattered Pilot)
  • a symbol for transmitting control information or the like may be inserted between data symbols. The phase change in this case will be described in detail.
  • FIG. 47 shows a frame configuration on the time-frequency axis of the modulated signal (baseband signal after precoding) z1 or z1 ′ and the modulated signal (baseband signal after precoding) z2 ′.
  • FIG. 47B is the time of the modulated signal (baseband signal after precoding) z2′— It is a frame configuration on the frequency axis.
  • 4701 indicates a pilot symbol
  • 4702 indicates a data symbol
  • the data symbol 4702 is a symbol subjected to precoding or precoding and phase change.
  • FIG. 47 shows a symbol arrangement in the case where the phase is changed with respect to the baseband signal z2 ′ after the precoding as shown in FIG. 6 (the phase is not changed in the baseband signal z1 after the precoding). ).
  • FIG. 6 shows a case where the phase change is performed in the time axis direction, but in FIG. 6, by replacing the time t with the carrier f, this corresponds to performing the phase change in the frequency direction.
  • time t time t and frequency f
  • (t) is replaced with (t, f)
  • this corresponds to performing phase change in a time frequency block.
  • the numerical value described in the symbol of the baseband signal z2 ′ indicates a phase change value.
  • the symbol of the baseband signal z1 '(z1) after precoding in FIG. 47 does not change the phase, and thus no numerical value is described.
  • phase change with respect to the baseband signal z2 'after precoding is performed on the data symbol, that is, the symbol subjected to precoding. (Here, it is described as a symbol, but the symbol described here includes both the s1 symbol and the s2 symbol because it has been pre-coded). , Z2 ′ is not subjected to phase change.
  • FIG. 48 shows a frame configuration on the time-frequency axis of the modulation signal (baseband signal after precoding) z1 or z1 ′ and the modulation signal (baseband signal after precoding) z2 ′.
  • FIG. 48B is the time of the modulation signal (baseband signal after precoding) z2′— It is a frame configuration on the frequency axis.
  • 4701 indicates a pilot symbol
  • 4702 indicates a data symbol
  • the data symbol 4702 is a symbol subjected to precoding and phase change.
  • FIG. 48 shows the symbol arrangement when the phase is changed for the baseband signal z1 'after precoding and the baseband signal z2' after precoding as shown in FIG.
  • FIG. 26 shows the case where the phase change is performed in the time axis direction, but in FIG. 26, by replacing the time t with the carrier f, this corresponds to performing the phase change in the frequency direction.
  • time t By replacing time t with time t and frequency f, that is, (t) is replaced with (t, f), this corresponds to performing phase change in the block of time frequency.
  • Numerical values described in the symbols of the baseband signal z1 ′ and the baseband signal z2 ′ after precoding indicate a phase change value.
  • phase change with respect to the baseband signal z1 ′ after precoding is performed on the data symbol, that is, the symbol subjected to precoding, and the baseband signal z2 after precoding.
  • the phase change for ' is applied to data symbols, that is, precoded symbols. (Here, it is described as a symbol, but the symbol described here includes both the s1 symbol and the s2 symbol because it has been pre-coded).
  • Z1 ′ is not subjected to phase change
  • pilot symbols inserted into z2 ′ is not subjected to phase change.
  • FIG. 49 shows a frame structure on the time-frequency axis of the modulated signal (baseband signal after precoding) z1 or z1 ′ and the modulated signal (baseband signal after precoding) z2 ′.
  • 49, 4701 is a pilot symbol
  • 4702 is a data symbol
  • 4901 is a null symbol
  • the in-phase component I 0 of the baseband signal
  • the quadrature component Q 0.
  • the data symbol 4702 is a symbol subjected to precoding or precoding and phase change.
  • the difference between FIG. 49 and FIG. 47 is a method of constructing symbols other than data symbols.
  • the modulation signal z2 ′ is a null symbol in the time and carrier in which the pilot symbol is inserted in the modulation signal z1 ′, and vice versa.
  • the modulation signal z1 ′ is a null symbol in the time and carrier in which the pilot symbol is inserted in the modulation signal z2 ′.
  • FIG. 49 shows a symbol arrangement when the phase is changed with respect to the baseband signal z2 ′ after the precoding as shown in FIG. 6 (the phase is not changed in the baseband signal z1 after the precoding). ).
  • FIG. 6 shows a case where the phase change is performed in the time axis direction, but in FIG. 6, by replacing the time t with the carrier f, this corresponds to performing the phase change in the frequency direction. 49.
  • the numerical value described in the symbol of the baseband signal z2 ′ indicates a phase change value. Note that the symbol of the baseband signal z1 '(z1) after precoding in FIG. 49 does not change the phase, so that no numerical value is described.
  • phase change with respect to the baseband signal z2 'after precoding is performed on the data symbols, that is, the symbols subjected to precoding. (Here, it is described as a symbol, but the symbol described here includes both the s1 symbol and the s2 symbol because it has been pre-coded). , Z2 ′ is not subjected to phase change.
  • FIG. 50 shows a frame configuration on the time-frequency axis of the modulation signal (baseband signal after precoding) z1 or z1 ′ and the modulation signal (baseband signal after precoding) z2 ′.
  • 4701 is a pilot symbol
  • 4702 is a data symbol
  • 4901 is a null symbol
  • the in-phase component I 0 of the baseband signal
  • the quadrature component Q 0.
  • the data symbol 4702 is a symbol subjected to precoding or precoding and phase change.
  • the difference between FIG. 50 and FIG. 48 is a method of constructing symbols other than data symbols.
  • the modulation signal z2 ′ is a null symbol in the time and carrier in which the pilot symbol is inserted in the modulation signal z1 ′, and vice versa.
  • the modulation signal z1 ′ is a null symbol in the time and carrier in which the pilot symbol is inserted in the modulation signal z2 ′.
  • FIG. 50 shows the symbol arrangement when the phase is changed for the baseband signal z1 'after precoding and the baseband signal z2' after precoding as shown in FIG.
  • FIG. 26 shows the case where the phase change is performed in the time axis direction, but in FIG. 26, by replacing the time t with the carrier f, this corresponds to performing the phase change in the frequency direction.
  • Numerical values described in the symbols of the baseband signal z1 ′ and the baseband signal z2 ′ after precoding indicate a phase change value.
  • phase change with respect to the baseband signal z1 ′ after precoding is performed on the data symbol, that is, the symbol subjected to precoding, and the baseband signal z2 after precoding.
  • the phase change for ' is applied to data symbols, that is, precoded symbols. (Here, it is described as a symbol, but the symbol described here includes both the s1 symbol and the s2 symbol because it has been pre-coded).
  • Z1 ′ is not subjected to phase change
  • pilot symbols inserted into z2 ′ is not subjected to phase change.
  • FIG. 51 shows an example of the configuration of a transmission apparatus that generates and transmits the modulation signal having the frame configuration of FIGS. 47 and 49, and the components that operate in the same way as in FIG. 4 are given the same reference numerals. .
  • the weighting / combining units 308A and 308B and the phase changing unit 317B operate only when the frame configuration signal 313 indicates the timing of data symbols.
  • pilot symbol (which also serves as null symbol generation) generation unit 5101 indicates that base frame signal 5102A of the pilot symbol is used when frame configuration signal 313 indicates that it is a pilot symbol (and null symbol), and 5102B is output.
  • precoding and no phase rotation is not performed, for example, a method of transmitting a modulation signal from one antenna (in this case, the other antenna)
  • the control information symbol 5104 includes the control information 5103, the frame,
  • the configuration signal 313 is input and the frame configuration signal 313 indicates that it is a control information symbol
  • baseband signals 5102A and 5102B of the control information symbol are output.
  • FIG. 51 selects a desired baseband signal from the plurality of baseband signals based on the frame configuration signal 313 among the plurality of baseband signals to be input. Then, OFDM-related signal processing is performed, and modulated signals 311A and 311B according to the frame configuration are output, respectively.
  • FIG. 52 shows an example of the configuration of a transmitting apparatus that generates and transmits the modulation signal having the frame configuration shown in FIGS. 48 and 50. Components that operate in the same manner as FIGS. 4 and 51 are denoted by the same reference numerals. is doing.
  • the phase changing unit 317A added to FIG. 51 operates only when the frame configuration signal 313 indicates a timing that is a data symbol. The other operations are the same as those in FIG.
  • FIG. 53 is a configuration method of a transmission apparatus different from that in FIG. Hereinafter, different points will be described.
  • the phase changing unit 317B receives a plurality of baseband signals as shown in FIG.
  • phase changing section 317B changes the phase of baseband signal 316B after precoding.
  • phase changing section 317B stops the operation of changing the phase, and the baseband signal of each symbol Is output as is.
  • the selection unit 5301 receives a plurality of baseband signals, selects a baseband signal of a symbol indicated by the frame configuration signal 313, and outputs it.
  • FIG. 54 shows a configuration method of a transmission apparatus different from that in FIG.
  • the phase changing unit 317B receives a plurality of baseband signals as shown in FIG. If frame configuration signal 313 indicates that it is a data symbol, phase changing section 317B changes the phase of baseband signal 316B after precoding. When frame configuration signal 313 indicates that it is a pilot symbol (or null symbol) or a control information symbol, phase changing section 317B stops the operation of changing the phase, and the baseband signal of each symbol Is output as is.
  • phase changing unit 5201 receives a plurality of baseband signals as shown in FIG. If frame configuration signal 313 indicates that it is a data symbol, phase changing section 5201 changes the phase of baseband signal 309A after precoding. When frame configuration signal 313 indicates that it is a pilot symbol (or null symbol) or a control information symbol, phase changing section 5201 stops the phase changing operation, and the baseband signal of each symbol. Is output as is. (For interpretation, it may be considered that the phase rotation corresponding to “e j0 ” is forcibly performed.) In the above description, pilot symbols, control symbols, and data symbols have been described as examples.
  • the present invention is not limited to this, and a transmission method different from precoding, for example, transmission using one antenna transmission and a space-time block code.
  • a transmission method different from precoding for example, transmission using one antenna transmission and a space-time block code.
  • the phase change is not performed on all symbols in the frame structure on the time-frequency axis, and the feature of the present invention is that the phase change is applied only to the precoded signal.
  • the phase change is applied only to the precoded signal.
  • phase change method may be different depending on the modulation scheme used by the transmission apparatus and the coding rate of the error correction code.
  • Table 1 shows an example of a phase change method set in accordance with various setting parameters set by the transmission apparatus.
  • # 1 is the modulation signal s1 of the first embodiment (the modulation system baseband signal s1 set by the transmission apparatus), and # 2 is the modulation signal s2 (the modulation system baseband signal s2 set by the transmission apparatus).
  • the coding rate column in Table 1 indicates the coding rate set by the error correction code for the modulation schemes # 1 and # 2.
  • the phase change pattern column in Table 1 is a phase change method applied to the baseband signals z1 (z1 ′) and z2 (z2 ′) after precoding.
  • the phase change pattern is defined as A, B, C, D, E,..., But this is actually information indicating a change in the degree of changing the phase.
  • the change pattern as shown in the above formula (46) or formula (47) is shown.
  • “ ⁇ ” is described, which means that the phase change is not performed.
  • modulation schemes and coding rates shown in Table 1 are examples, and modulation schemes other than the modulation schemes shown in Table 1 (for example, 128QAM and 256QAM) and coding rates (for example, 7/8) Etc.) may be included.
  • error correction codes may be set separately for s1 and s2 (in the case of Table 1, one error correction code is encoded as shown in FIG. 4). ).
  • a plurality of different phase change patterns may be associated with the same modulation scheme and coding rate.
  • the transmission device transmits information indicating each phase change pattern to the reception device, the reception device identifies the phase change pattern by referring to the information and Table 1, and performs demodulation and decoding. Become.
  • the transmission device transmits information on the modulation scheme and the error correction scheme to the reception device. Since the phase change pattern can be known by obtaining the information, the phase change pattern information is not necessarily required in this case.
  • the transmission apparatus may include an amplitude changing unit that changes the amplitude after the weighting combining unit 308A in FIGS. 3 and 4 and an amplitude changing unit that changes the amplitude after the weighting combining unit 308B.
  • the amplitude may be changed for one of the baseband signals z1 (t) and z2 (t) after the precoding (in this case, the amplitude changing unit is placed after one of the weighting combining units 308A and 308B). Amplitude change may be applied to both.
  • mapping method may be changed regularly by the mapping unit instead of changing the phase regularly. That is, the mapping method for applying the modulation method of the modulation signal s1 (t) to 16QAM and the mapping method of the modulation signal s2 (t) to 16QAM, for example, to the modulation signal s2 (t) is regularly set to 16QAM.
  • the present invention may be any combination of a method for regularly changing the phase, a method for regularly changing the mapping method, and a method for changing the amplitude, and all of them are taken into consideration. It is good also as a structure which transmits a transmission signal. In this embodiment, it can be carried out in either case of single carrier system or multicarrier transmission. Therefore, for example, spread spectrum communication method, OFDM (Orthogonal Frequency-Division Multiplexing) method, SC-FDMA (Single Carrier Frequency Multiple Access), SC-OFDM (Single Carrier Multiple Access), SC-OFDM (Single Carrier Multiple Access) It is also possible to implement the case where the wavelet OFDM method shown in FIG.
  • OFDM Orthogonal Frequency-Division Multiplexing
  • SC-FDMA Single Carrier Frequency Multiple Access
  • SC-OFDM Single Carrier Multiple Access
  • SC-OFDM Single Carrier Multiple Access
  • phase change, amplitude change, and mapping change As described above, in the present embodiment, as an explanation of performing phase change, amplitude change, and mapping change, the case of performing phase change, amplitude change, and mapping change in the time t-axis direction has been described.
  • t in the description of phase change, amplitude change, and mapping change in the t direction, t is expressed as f (f: frequency ((sub) By replacing with () carrier)), the phase change, amplitude change, and mapping change described in this embodiment can be applied to the phase change, amplitude change, and mapping change in the frequency direction.
  • the phase change, amplitude change, and mapping change method of the present embodiment can be applied to the phase change, amplitude change, and mapping change in the time-frequency direction, as described in the first embodiment. It is.
  • symbols other than data symbols for example, pilot symbols (preamble, unique word, etc.), control information transmission symbols, and the like may be arranged in any manner.
  • a QC (Quasi Cyclic) LDPC (Low-Density Prity-Check) code (not a QC-LDPC code, an LDPC code)
  • the phase is regularly changed when block codes such as concatenated codes of LDPC codes and BCH codes (Bose-Chaudhuri-Hocquenghem codes), turbo codes using tail biting, or Duo-Binary Turbo Codes are used.
  • the number of bits constituting the block after coding is the number of bits constituting the block code (however, Control information etc. as described may be included.)
  • control information or the like for example, CRC (cyclic redundancy check), transmission parameters, etc.
  • the number of bits constituting the block after encoding is the block code. It may be the sum of the number of bits and the number of bits such as control information.
  • FIG. 34 is a diagram showing changes in the number of symbols and the number of slots necessary for one encoded block when a block code is used.
  • 34 for example, as shown in the transmission apparatus of FIG. 4, two blocks s1 and s2 are transmitted and the transmission apparatus has one encoder. When used, it is a diagram showing changes in the number of symbols and the number of slots necessary for one encoded block. " (At this time, as a transmission method, either single carrier transmission or multicarrier transmission such as OFDM may be used.) As shown in FIG. 34, it is assumed that the number of bits constituting one encoded block in the block code is 6000 bits. In order to transmit 6000 bits, 3000 symbols are required when the modulation method is QPSK, 1500 symbols when 16 QAM, and 1000 symbols when 64 QAM.
  • the transmission apparatus in FIG. 4 transmits two streams at the same time, when the modulation scheme is QPSK, the above-described 3000 symbols are allocated 1500 symbols to s1 and 1500 symbols to s2. In order to transmit 1500 symbols transmitted in s1 and 1500 symbols transmitted in s2, 1500 slots (herein referred to as “slots”) are required.
  • phase change values or phase change sets
  • the number of phase change values (or phase change sets) prepared for the method of changing the phase regularly is 5. That is, it is assumed that five phase change values (or phase change sets) are prepared for the phase change unit of the transmission apparatus in FIG. 4 (the “cycle” in the first to fourth embodiments).
  • five phase change values may be prepared.
  • the slot using phase PHASE [0] is 300 slots
  • phase PHASE [ Slots using 1] are 300 slots
  • slots using phase PHASE [2] are 300 slots
  • slots using phase PHASE [3] are 300 slots
  • slots using phase PHASE [4] are 300 slots.
  • the modulation method is 16QAM
  • the number of slots using phase PHASE [0] is 150 slots, 150 slots using phase PHASE [1], 150 slots using phase PHASE [2], 150 slots using phase PHASE [3], 150 slots using phase PHASE [4] Must be a slot.
  • the slot using the phase PHASE [0] is 100 slots, 100 slots using phase PHASE [1], 100 slots using phase PHASE [2], 100 slots using phase PHASE [3], and 100 slots using phase PHASE [4] Must be a slot.
  • ⁇ Condition # A01> should be satisfied in the supported modulation schemes.
  • the number of bits that can be transmitted in one symbol is generally different depending on each modulation scheme (there may be the same in some cases).
  • FIG. 35 is a diagram showing changes in the number of symbols and the number of slots necessary for two encoded blocks when a block code is used.
  • FIG. 35 shows a case where two streams s1 and s2 are transmitted as shown in the transmission apparatus in FIG. 3 and the transmission apparatus in FIG. 12, and the transmission apparatus has two encoders.
  • FIG. 6 is a diagram showing changes in the number of symbols and the number of slots required for one encoded block when a block code is used. (At this time, as a transmission method, either single carrier transmission or multicarrier transmission such as OFDM may be used.) As shown in FIG. 35, it is assumed that the number of bits constituting one encoded block in the block code is 6000 bits. In order to transmit 6000 bits, 3000 symbols are required when the modulation method is QPSK, 1500 symbols when 16 QAM, and 1000 symbols when 64 QAM.
  • 3 and 12 transmit two streams at the same time, and since there are two encoders, two streams transmit different code blocks. become. Therefore, when the modulation scheme is QPSK, two encoded blocks are transmitted in the same section by s1 and s2, and for example, the first encoded block is transmitted by s1, and the second block is transmitted by s2. Since two encoded blocks are transmitted, 3000 slots are required to transmit the first and second encoded blocks.
  • phase change values or phase change sets
  • the number of phase change values (or phase change sets) prepared for the method of changing the phase regularly is 5. That is, it is assumed that five phase change values (or phase change sets) are prepared for the phase change unit of the transmission apparatus in FIGS. 3 and 12 (“period” in the first to fourth embodiments).
  • five phase change values may be prepared.
  • two phase change values are required for one slot.
  • phase change set The value is referred to as a phase change set.
  • five phase change sets may be prepared in order to perform a phase change of period 5).
  • These five phase change values are represented as PHASE [0], PHASE [1], PHASE [2], PHASE [3], and PHASE [4].
  • the slot using the phase PHASE [0] is 600 slots
  • Slots that use PHASE [1] are 600 slots
  • slots that use phase PHASE [2] are 600 slots
  • slots that use phase PHASE [3] are 600 slots
  • slots that use phase PHASE [4] are 600 slots Need to be. This is because, depending on the phase to be used, the influence of the phase using a large number is large, and the reception quality of data depending on this influence is obtained in the receiving apparatus.
  • the slot using phase PHASE [0] is 600 times
  • the slot using phase PHASE [1] is 600 times
  • the slot using phase PHASE [2] is 600 times
  • the slot using phase PHASE [3] must be 600 times
  • the slot using phase PHASE [4] must be 600 times
  • the phase PHASE Slots that use [0] are 600 times
  • slots that use phase PHASE [1] are 600 times
  • slots that use phase PHASE [2] are 600 times
  • slots that use phase PHASE [3] are 600 times
  • the slot using phase PHASE [4] should be 600 times.
  • the slot using phase PHASE [0] is 300 times
  • the slot using phase PHASE [1] is 300 times
  • the slot using phase PHASE [2] is It is necessary that the slot using the phase PHASE [3] is 300 times
  • the slot using the phase PHASE [4] is 300 times
  • the phase PHASE is transmitted in order to transmit the second coding block.
  • Slots that use [0] are 300 times
  • slots that use phase PHASE [1] are 300 times
  • slots that use phase PHASE [2] are 300 times
  • slots that use phase PHASE [3] are 300 times
  • the number of slots using the phase PHASE [4] is 300 times.
  • the slot using phase PHASE [0] is 200 times
  • the slot using phase PHASE [1] is 200 times
  • the slot using phase PHASE [2] is 200 times
  • the slot using the phase PHASE [3] needs to be 200 times
  • the slot using the phase PHASE [4] needs to be 200 times
  • the phase PHASE is transmitted in order to transmit the second coding block.
  • Slots that use [0] are 200 times
  • slots that use phase PHASE [1] are 200 times
  • slots that use phase PHASE [2] are 200 times
  • slots that use phase PHASE [3] are 200 times
  • the number of slots using phase PHASE [4] may be 200.
  • the prepared phase change value (or phase change set) is PHASE [0], PHASE [1], PHASE [2], ..., PHASE [N -2] and PHASE [N-1])
  • the number of slots using phase PHASE [0] is K 0
  • the number of slots using phase PHASE [1] is K 1
  • K 0,2 K 0,2
  • K 1, 2 K 1, 2.
  • ⁇ condition # A03> ⁇ condition#A04> ⁇ condition in the supported modulation schemes # A05> is satisfied.
  • the number of bits that can be transmitted in one symbol is generally different depending on each modulation scheme (there may be the same in some cases).
  • the following conditions may be satisfied.
  • N phase change values are required for the phase change method of period N.
  • PHASE [0], PHASE [1], PHASE [2], ..., PHASE [N-2], PHASE [N-1] are used as N phase change values (or phase change sets).
  • N phase change values (or phase change sets) PHASE [0], PHASE [1], PHASE [2], ..., PHASE [N-2], Similarly to Embodiment 1, PHASE [N-1] can also change the phase by arranging symbols in the time-axis and frequency-time-axis blocks. Although described as a phase change method of period N, the same effect can be obtained even when N phase change values (or phase change sets) are randomly used. It is not necessary to use N phase change values (or phase change sets) so as to have a periodic period, but satisfying the above-described conditions is necessary for obtaining high data reception quality in the receiving apparatus. , Become important.
  • a spatial multiplexing MIMO transmission system may be able to select one of the transmission methods from these modes.
  • the spatial multiplexing MIMO transmission scheme is a method of transmitting signals s1 and s2 mapped by a selected modulation scheme from different antennas as shown in Non-Patent Document 3, and the precoding matrix is fixed.
  • the MIMO transmission scheme is a scheme that performs only precoding (no phase change) in the first to fourth embodiments.
  • the space-time block coding method is a transmission method shown in Non-Patent Documents 9, 16, and 17.
  • the transmission of only one stream is a method of performing a predetermined process on the signal s1 mapped by the selected modulation method and transmitting the signal from the antenna.
  • a multi-carrier transmission scheme such as OFDM is used, a first carrier group composed of a plurality of carriers, a second carrier group different from the first carrier group composed of a plurality of carriers,...
  • multi-carrier transmission is realized with a plurality of carrier groups, and for each carrier group, a spatial multiplexing MIMO transmission scheme, a MIMO transmission scheme with a fixed precoding matrix, a space-time block coding scheme, and transmission of only one stream, It can be set to one of the methods to change the phase regularly, In particular, this embodiment may be implemented for a (sub) carrier group for which a method of regularly changing the phase is selected.
  • phase change is performed on one precoded baseband signal
  • the phase change value of PHASE [i] is “X radians”, FIG. 3, FIG. 4, FIG. 6, FIG. 25, FIG. 29, FIG. 51, and FIG. 53
  • e jX is multiplied by the baseband signal z2 ′ after precoding.
  • the phase change is performed on both precoded baseband signals, for example, when the phase change set of PHASE [i] is “X radians” and “Y radians”, FIG. 26, FIG. 27, 28, 52, and 54
  • e jX is multiplied by the precoded baseband signal z2 ′
  • e jY is multiplied by the precoded baseband signal z1 ′.
  • FIG. 36 is a diagram illustrating a configuration example of a system including an apparatus that executes the transmission method and the reception method described in the above embodiment.
  • the transmission method and reception method shown in each of the above embodiments include a broadcasting station as shown in FIG. It is implemented in a digital broadcast system 3600 that includes various types of receivers such as 3641 and mobile phone 3630.
  • the broadcast station 3601 transmits multiplexed data obtained by multiplexing video data, audio data, and the like to a predetermined transmission band using the transmission method described in each of the above embodiments.
  • a signal transmitted from the broadcasting station 3601 is received by an antenna (for example, antennas 3660 and 3640) built in each receiver or connected to the receiver.
  • Each receiver demodulates the signal received by the antenna using the reception method described in each of the above embodiments, and acquires multiplexed data.
  • the digital broadcasting system 3600 can obtain the effects of the present invention described in the above embodiments.
  • the video data included in the multiplexed data is encoded using a moving image encoding method compliant with standards such as MPEG (Moving Picture Experts Group) 2, MPEG4-AVC (Advanced Video Coding), VC-1, and the like.
  • the audio data included in the multiplexed data includes, for example, Dolby AC (Audio Coding) -3, Dolby Digital Plus, MLP (Merdian Lossless Packing), DTS (Digital Theater Systems), DTS-HD, Linear PCM (PuldMod).
  • Dolby AC Audio Coding
  • MLP Mobile Lossless Packing
  • DTS Digital Theater Systems
  • DTS-HD Linear PCM (PuldMod).
  • the audio encoding method is used.
  • FIG. 37 is a diagram illustrating an example of a configuration of a receiver 7900 that performs the reception method described in each of the above embodiments.
  • a receiver 3700 illustrated in FIG. 37 corresponds to a configuration included in the television (television) 3611, the DVD recorder 3612, the STB (Set Top Box) 3613, the computer 3620, the in-vehicle television 3641, the mobile phone 3630, and the like illustrated in FIG. To do.
  • Receiver 3700 includes a tuner 3701 that converts a high-frequency signal received by antenna 3760 into a baseband signal, and a demodulator 3702 that demodulates the frequency-converted baseband signal to obtain multiplexed data.
  • the receiving method shown in each of the above embodiments is implemented in the demodulator 3702, whereby the effect of the present invention described in each of the above embodiments can be obtained.
  • the receiver 3700 also uses a stream input / output unit 3720 that separates video data and audio data from the multiplexed data obtained by the demodulation unit 3702, and a video decoding method corresponding to the separated video data.
  • a signal processing unit 3704 that decodes data into a video signal and decodes the audio data into an audio signal using an audio decoding method corresponding to the separated audio data, and an audio output unit such as a speaker that outputs the decoded audio signal 3706 and a video display unit 3707 such as a display for displaying the decoded video signal.
  • the user uses the remote controller (remote controller) 3750 to transmit information on the selected channel (selected (TV) program, selected audio broadcast) to the operation input unit 3710.
  • receiver 3700 performs processing such as demodulation and error correction decoding on the signal corresponding to the selected channel in the received signal received by antenna 3760, and obtains received data.
  • the receiver 3700 transmits a transmission method (such as the transmission method, modulation method, and error correction method described in the above embodiment) included in the signal corresponding to the selected channel (this is illustrated in FIGS.
  • receiver 3700 of this embodiment can perform demodulation on demodulated data by demodulating by demodulator 3702 and performing error correction decoding (in some cases, a signal obtained by demodulating by demodulator 3702).
  • the receiver 3700 may be subjected to other signal processing after the error correction decoding, and the following description is also applied to the portion where the same expression is performed.
  • a recording unit (drive) 3708 for recording on a recording medium such as an optical disk or a non-volatile semiconductor memory are examples of the data obtained by processing moving images and audio.
  • the optical disk is a recording medium that stores and reads information using laser light, such as a DVD (Digital Versatile Disc) and a BD (Blu-ray Disc).
  • the magnetic disk is a recording medium that stores information by magnetizing a magnetic material using a magnetic flux, such as an FD (Floppy Disk) (registered trademark) or a hard disk (Hard Disk).
  • the non-volatile semiconductor memory is a recording medium composed of a semiconductor element such as a flash memory or a ferroelectric memory (Ferroelectric Random Access Memory), for example, an SD card or a flash SSD (Solid State Drive) using the flash memory. ) And the like. Note that the types of recording media listed here are merely examples, and it goes without saying that recording may be performed using recording media other than the recording media described above.
  • the user records and stores a program received by the receiver 3700 by the reception method described in each of the above embodiments, and data recorded at an arbitrary time after the broadcast time of the program Can be read and viewed.
  • the receiver 3700 records the multiplexed data obtained by demodulating by the demodulating unit 3702 and decoding the error correction by the recording unit 3708, but the data included in the multiplexed data Some of the data may be extracted and recorded.
  • the recording unit 3708 includes the demodulating unit 3702.
  • New multiplexed data obtained by extracting and multiplexing video data and audio data from the multiplexed data demodulated in (5) may be recorded. Further, the recording unit 3708 demodulates by the demodulating unit 3702 and new multiplexed data obtained by multiplexing only one of the video data and audio data included in the multiplexed data obtained by performing error correction decoding. May be recorded. Then, the recording unit 3708 may record the content of the data broadcasting service included in the multiplexed data described above.
  • the demodulator 3702 The outflow of data, personal information, and recorded data for correcting defects (bugs) in software used to operate a television or recording device on multiplexed data obtained by performing error correction decoding If data for correcting a software defect (bug) for preventing the image is included, the software defect of the television or the recording device may be corrected by installing the data.
  • the data includes data for correcting a software defect (bug) of the receiver 3700, the data can correct the defect of the receiver 3700. Accordingly, a television set, a recording device, and a mobile phone in which the receiver 3700 is mounted can be operated more stably.
  • a process of extracting and multiplexing a part of data from a plurality of data included in the multiplexed data obtained by demodulating by the demodulating unit 3702 and performing error correction decoding is, for example, a stream input / output unit 3703 Done in Specifically, the stream input / output unit 3703 converts the multiplexed data demodulated by the demodulation unit 3702 into video data, audio data, data broadcasting service content, etc. according to an instruction from a control unit such as a CPU (not shown).
  • the data is separated into a plurality of data, and only specified data is extracted from the separated data and multiplexed to generate new multiplexed data.
  • the data to be extracted from the separated data may be determined by the user, for example, or may be determined in advance for each type of recording medium.
  • the receiver 3700 can extract and record only the data necessary for viewing the recorded program, so that the data size of the data to be recorded can be reduced.
  • the recording unit 3708 records the multiplexed data obtained by demodulating by the demodulating unit 3702 and decoding error correction, but the demodulating unit 3702 demodulates and decodes error correction.
  • the video data included in the multiplexed data obtained by performing the video encoding is different from the video encoding method applied to the video data so that the data size or bit rate is lower than the video data. It may be converted into video data encoded by the encoding method, and new multiplexed data obtained by multiplexing the converted video data may be recorded.
  • the moving image encoding method applied to the original video data and the moving image encoding method applied to the converted video data may conform to different standards or conform to the same standard. Only the parameters used at the time of encoding may be different.
  • the recording unit 3708 demodulates the audio data included in the multiplexed data obtained by demodulating by the demodulating unit 3702 and performing error correction decoding so that the data size or bit rate is lower than that of the audio data.
  • new multiplexed data obtained by converting into voice data encoded by a voice encoding method different from the voice encoding method applied to the voice data and multiplexing the converted voice data may be recorded.
  • the processing of converting the video data and audio data included in the multiplexed data obtained by demodulating by the demodulator 3702 and performing error correction decoding into video data and audio data having different data sizes or bit rates is as follows. For example, this is performed by the stream input / output unit 3703 and the signal processing unit 3704. Specifically, in response to an instruction from a control unit such as a CPU, the stream input / output unit 3703 demodulates the multiplexed data obtained by demodulating by the demodulating unit 3702 and performing error correction decoding, video data, audio data, Separated into a plurality of data such as data broadcasting service content.
  • the signal processing unit 3704 converts the separated video data into video data encoded by a video encoding method different from the video encoding method applied to the video data in accordance with an instruction from the control unit. And the process which converts the audio
  • the stream input / output unit 3703 multiplexes the converted video data and the converted audio data, and generates new multiplexed data.
  • the signal processing unit 3704 may perform conversion processing on only one of the video data and audio data in accordance with an instruction from the control unit, or perform conversion processing on both. Also good.
  • the data size or bit rate of the converted video data and audio data may be determined by the user, or may be determined in advance for each type of recording medium.
  • the receiver 3700 changes the data size or bit rate of video data or audio data according to the data size that can be recorded on the recording medium and the speed at which the recording unit 3708 records or reads the data. can do.
  • the recording unit records or reads the data. Since the recording unit can record the program even when the speed at which the recording is performed is lower than the bit rate of the multiplexed data demodulated by the demodulation unit 3702, the user can select an arbitrary time after the program is broadcast. It is possible to read and view the data recorded in the.
  • the receiver 3700 also includes a stream output IF (Interface) 3709 that transmits the multiplexed data demodulated by the demodulator 3702 to an external device via the communication medium 3730.
  • stream output IF 3709 include wireless communication standards such as Wi-Fi (registered trademark) (IEEE802.11a, IEEE802.11b, IEEE802.11g, IEEE802.11n, etc.), WiGiG, WirelessHD, Bluetooth, Zigbee, etc.
  • Examples include a wireless communication apparatus that transmits multiplexed data modulated using a communication method to an external device via a wireless medium (corresponding to the communication medium 3730).
  • the stream output IF 3709 is modulated using a communication method compliant with a wired communication standard such as Ethernet (registered trademark), USB (Universal Serial Bus), PLC (Power Line Communication), HDMI (High-Definition Multimedia Interface), or the like.
  • a wired communication device that transmits the multiplexed data to an external device via a wired transmission path (corresponding to the communication medium 3730) connected to the stream output IF 3709 may be used.
  • the user can use multiplexed data received by the receiver 3700 by the reception method described in each of the above embodiments in an external device.
  • the use of multiplexed data here means that the user views the multiplexed data in real time using an external device, records the multiplexed data with a recording unit provided in the external device, and further from the external device. Including transmitting multiplexed data to another external device.
  • the receiver 3700 demodulates by the demodulator 3702, and the stream output IF 3709 outputs multiplexed data obtained by performing error correction decoding.
  • the data included in the multiplexed data Some data may be extracted and output.
  • the stream output IF 3709 includes the demodulating unit 3702. Then, new multiplexed data obtained by extracting and multiplexing video data and audio data from multiplexed data obtained by demodulation and error correction decoding may be output.
  • the stream output IF 3709 may output new multiplexed data obtained by multiplexing only one of the video data and audio data included in the multiplexed data demodulated by the demodulator 3702.
  • a process of extracting and multiplexing a part of data from a plurality of data included in the multiplexed data obtained by demodulating by the demodulating unit 3702 and performing error correction decoding is, for example, a stream input / output unit 3703 Done in Specifically, the stream input / output unit 3703 converts the multiplexed data demodulated by the demodulation unit 3702 into video data, audio data, and data broadcasting in response to an instruction from a control unit such as a CPU (Central Processing Unit) (not shown).
  • the data is separated into a plurality of data such as service contents, and only designated data is extracted and multiplexed from the separated data to generate new multiplexed data.
  • the data to be extracted from the separated data may be determined by the user, for example, or may be determined in advance for each type of the stream output IF 3709.
  • the receiver 3700 can extract and output only the data necessary for the external device, so that it is possible to reduce the communication bandwidth consumed by the output of the multiplexed data.
  • the stream output IF 3709 outputs the multiplexed data obtained by demodulating by the demodulating unit 3702 and performing error correction decoding.
  • the video data included in the multiplexed data obtained by performing the video encoding is different from the video encoding method applied to the video data so that the data size or bit rate is lower than the video data. Conversion into video data encoded by the conversion method, and new multiplexed data obtained by multiplexing the converted video data may be output.
  • the moving image encoding method applied to the original video data and the moving image encoding method applied to the converted video data may conform to different standards or conform to the same standard. Only the parameters used at the time of encoding may be different.
  • the stream output IF 3709 is demodulated by the demodulator 3702 so that the audio data included in the multiplexed data obtained by performing error correction decoding has a data size or bit rate lower than that of the audio data.
  • it may be converted into audio data encoded by an audio encoding method different from the audio encoding method applied to the audio data, and new multiplexed data obtained by multiplexing the converted audio data may be output.
  • the processing of converting the video data and audio data included in the multiplexed data obtained by demodulating by the demodulator 3702 and performing error correction decoding into video data and audio data having different data sizes or bit rates is as follows. For example, this is performed by the stream input / output unit 3703 and the signal processing unit 3704. Specifically, in response to an instruction from the control unit, the stream input / output unit 3703 demodulates by the demodulation unit 3702 and decodes the error correction, thereby converting the multiplexed data obtained as video data, audio data, and data broadcasting service. It is separated into a plurality of data such as contents.
  • the signal processing unit 3704 converts the separated video data into video data encoded by a video encoding method different from the video encoding method applied to the video data in accordance with an instruction from the control unit. And the process which converts the audio
  • the stream input / output unit 3703 multiplexes the converted video data and the converted audio data, and generates new multiplexed data.
  • the signal processing unit 3704 may perform conversion processing on only one of the video data and audio data in accordance with an instruction from the control unit, or perform conversion processing on both. Also good.
  • the data size or bit rate of the converted video data and audio data may be determined by the user, or may be determined in advance for each type of stream output IF 3709.
  • the receiver 3700 can change and output the bit rate of video data or audio data in accordance with the communication speed with the external device. As a result, even if the communication speed with the external device is lower than the bit rate of the multiplexed data obtained by demodulating by the demodulator 3702 and performing error correction decoding, a new multiplex from the stream output IF is obtained. Therefore, the user can use the new multiplexed data in another communication apparatus.
  • the receiver 3700 includes an AV (Audio and Visual) output IF (Interface) 3711 that outputs the video signal and the audio signal decoded by the signal processing unit 3704 to an external device to an external communication medium.
  • AV output IF 3711 wireless communication conforming to wireless communication standards such as Wi-Fi (registered trademark) (IEEE802.11a, IEEE802.11b, IEEE802.11g, IEEE802.11n, etc.), WiGiG, WirelessHD, Bluetooth, Gigbee, etc.
  • Wi-Fi registered trademark
  • IEEE802.11b IEEE802.11b
  • IEEE802.11g IEEE802.11g
  • IEEE802.11n IEEE802.11n
  • WiGiG WirelessHD
  • Bluetooth Gigbee
  • the stream output IF 3709 is a wired transmission in which a video signal and an audio signal modulated using a communication method compliant with a wired communication standard such as Ethernet (registered trademark), USB, PLC, and HDMI are connected to the stream output IF 3709. It may be a wired communication device that transmits to an external device via a path. Further, the stream output IF 3709 may be a terminal for connecting a cable that outputs the video signal and the audio signal as analog signals.
  • a wired communication standard such as Ethernet (registered trademark), USB, PLC, and HDMI
  • the receiver 3700 includes an operation input unit 3710 that receives an input of a user operation. Based on a control signal input to the operation input unit 3710 according to a user operation, the receiver 3700 switches power ON / OFF, switches a channel to be received, whether to display subtitles, and switches a language to be displayed. Then, various operations such as a change in volume output from the audio output unit 3706 are switched, and settings such as setting of receivable channels are changed.
  • the receiver 3700 may have a function of displaying an antenna level indicating the reception quality of a signal being received by the receiver 3700.
  • the antenna level refers to, for example, RSSI (Received Signal Strength Indication, Received Signal Strength Indicator, received signal strength), received electric field strength, C / N (Carrier-to-noise power) of the signal received by the receiver 3700.
  • RSSI Receiveived Signal Strength Indication
  • Received Signal Strength Indicator received signal strength
  • C / N Carrier-to-noise power
  • the demodulation unit 3702 includes a reception quality measurement unit that measures RSSI, received field strength, C / N, BER, packet error rate, frame error rate, channel state information, and the like of the received signal.
  • the antenna level (signal level, signal indicating superiority or inferiority of the signal) is displayed on the video display unit 3707 in a format that the user can identify.
  • the display format of antenna level (signal level, signal indicating superiority or inferiority of signal) is to display numerical values according to RSSI, received electric field strength, C / N, BER, packet error rate, frame error rate, channel state information, etc.
  • different images may be displayed according to RSSI, received electric field strength, C / N, BER, packet error rate, frame error rate, channel state information, and the like.
  • the receiver 3700 receives a plurality of antenna levels (signal level, signal level) obtained for each of the plurality of streams s1, s2,... Received and separated by using the reception method described in the above embodiments. (Signal indicating superiority or inferiority) may be displayed, or one antenna level (signal level, signal indicating superiority or inferiority of signal) obtained from a plurality of streams s1, s2,.
  • a signal level (a signal indicating superiority or inferiority of a signal) may be indicated for each hierarchy.
  • the user can grasp numerically or visually the antenna level (signal level, signal indicating superiority or inferiority of the signal) when receiving using the reception method described in the above embodiments. Can do.
  • the receiver 3700 includes the audio output unit 3706, the video display unit 3707, the recording unit 3708, the stream output IF 3709, and the AV output IF 3711 has been described as an example. You don't have to have everything.
  • the user can use multiplexed data obtained by demodulating by demodulator 3702 and performing error correction decoding.
  • Each receiver may be provided with any combination of the above configurations according to its use.
  • Multiplexed data Next, an example of the structure of multiplexed data will be described in detail.
  • MPEG2-transport stream TS
  • MPEG2-TS MPEG2-TS
  • the data structure of the multiplexed data transmitted by the transmission method and the reception method shown in each of the above embodiments is not limited to MPEG2-TS, and any other data structure will be described in each of the above embodiments. Needless to say, the same effect can be obtained.
  • FIG. 38 is a diagram illustrating an example of a configuration of multiplexed data.
  • the multiplexed data is an element that constitutes a program (program or an event that is a part thereof) currently provided by each service, for example, a video stream, an audio stream, a presentation graphics stream (PG). ) Or an elementary stream such as an interactive graphics stream (IG).
  • a program program or an event that is a part thereof
  • PG presentation graphics stream
  • IG interactive graphics stream
  • the program provided by the multiplexed data is a movie
  • the video stream is the main video and sub video of the movie
  • the audio stream is the main audio portion of the movie and the sub audio mixed with the main audio
  • the presentation graphics stream Shows the subtitles of the movie.
  • the main video is a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video (for example, video of text data showing a movie outline).
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • Each stream included in the multiplexed data is identified by a PID that is an identifier assigned to each stream. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 39 is a diagram schematically showing an example of how multiplexed data is multiplexed.
  • a video stream 3901 composed of a plurality of video frames and an audio stream 3904 composed of a plurality of audio frames are converted into PES packet sequences 3902 and 3905, respectively, and converted into TS packets 3903 and 3906.
  • the data of the presentation graphics stream 3911 and the interactive graphics 3914 are converted into PES packet sequences 3912 and 3915, respectively, and further converted into TS packets 3913 and 3916.
  • the multiplexed data 3917 is configured by multiplexing these TS packets (3903, 3906, 3913, 3916) into one stream.
  • FIG. 40 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 40 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in a video stream are divided into pictures, B pictures, and P pictures, and are stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 41 shows the format of a TS packet that is finally written into the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • source packets are arranged in the multiplexed data, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), and PCR (Program Clock Reference) in addition to each stream such as a video stream, an audio stream, and a presentation graphics stream. and so on.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the stream attribute information (frame rate, aspect ratio, etc.) corresponding to each PID, and various descriptors related to the multiplexed data. Have.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • ATC Arriv Time Clock
  • STC System Time Clock
  • FIG. 42 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information is composed of a stream descriptor that describes a stream type for identifying a compression codec of the stream, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.).
  • FIG. 43 shows the structure of the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • FIG. 44 is a diagram showing a configuration of stream attribute information included in the multiplexed data information file.
  • attribute information for each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 45 shows an example of the configuration of a video / audio output device 4500 including a receiving device 4504 that receives video and audio data or a modulated signal including data for data broadcasting transmitted from a broadcasting station (base station). Is shown. Note that the configuration of the reception device 4504 corresponds to the reception device 3700 in FIG.
  • the video / audio output device 4500 includes, for example, an OS (Operating System), and a communication device 4506 for connecting to the Internet (for example, a wireless local area network (LAN) or Ethernet). Communication device).
  • OS Operating System
  • LAN wireless local area network
  • a remote controller which may be a mobile phone or a keyboard
  • either the video 4502 in the data for data broadcasting or the hypertext 4503 provided on the Internet is selected and the operation is changed. Will do.
  • hypertext 4503 provided on the Internet is selected, the displayed WWW site is changed by operating the remote controller.
  • the remote controller 4507 selects a channel selected (selected (TV) program, selected audio broadcast). Send information.
  • IF 4505 acquires information transmitted by the remote controller, and receiving apparatus 4504 performs processing such as demodulation and error correction decoding on a signal corresponding to the selected channel, and obtains received data.
  • receiving apparatus 4504 receives the control symbol information including information on the transmission method (this is as described in FIG. 5) included in the signal corresponding to the selected channel.
  • the control symbol information including information on the transmission method (this is as described in FIG. 5) included in the signal corresponding to the selected channel.
  • the video / audio output device 4500 may be operated using the Internet. For example, a recording (storage) reservation is made to the video / audio output device 4500 from another terminal connected to the Internet. (Therefore, the video / audio output device 4500 has a recording unit 3708 as shown in FIG. 37.)
  • the channel is selected and the receiving device 4504 is selected.
  • the signal corresponding to the selected channel is subjected to processing such as demodulation and error correction decoding to obtain received data.
  • the receiving apparatus 4504 transmits a transmission method (transmission method, modulation method, error correction method, etc. described in the above embodiment) included in a signal corresponding to the selected channel (this is described in FIG. 5).
  • a transmission method transmission method, modulation method, error correction method, etc. described in the above embodiment
  • the receiving operation, the demodulation method, the error correction decoding and the like are correctly set, so that the data symbol transmitted by the broadcasting station (base station) is set.
  • the included data can be obtained.
  • the transmission device is equipped with a communication / broadcasting device such as a broadcasting station, a base station, an access point, a terminal, a mobile phone, and the like.
  • the receiving device is equipped with a communication device such as a television, a radio, a terminal, a personal computer, a mobile phone, an access point, and a base station.
  • the transmission device and the reception device in the present invention are devices having a communication function, and the devices have some interface (for example, a device for executing an application such as a television, a radio, a personal computer, and a mobile phone). For example, it may be possible to connect via USB).
  • pilot symbols may be called preambles, unique words, postambles, reference symbols, scattered pilots, etc.
  • symbols for control information may be arranged in any manner in the frame.
  • the pilot symbol and the control information symbol are named, but any naming method may be used, and the function itself is important.
  • the pilot symbol is, for example, a known symbol modulated by using PSK modulation in a transmitter / receiver (or the receiver may know the symbol transmitted by the transmitter by synchronizing the receiver). .), And the receiver uses this symbol to perform frequency synchronization, time synchronization, channel estimation (for each modulated signal) (estimation of CSI (Channel State Information)), signal detection, and the like. Become.
  • control information symbol is information (for example, a modulation method, an error correction coding method used for communication, a communication information symbol) that needs to be transmitted to a communication partner in order to realize communication other than data (such as an application).
  • This is a symbol for transmitting an error correction coding method coding rate, setting information in an upper layer, and the like.
  • the present invention is not limited to all the embodiments, and can be implemented with various modifications. For example, in the above-described embodiment, the case of performing as a communication device has been described. However, the present invention is not limited to this, and this communication method can also be performed as software.
  • the phase changing method in the method of transmitting two modulated signals from two antennas has been described.
  • the method is not limited to this, and precoding is performed on the four mapped signals and the phase is changed.
  • the method is modified to generate four modulated signals and transmit from four antennas, that is, N-coded signals are precoded to generate N modulated signals, and N antennas are generated.
  • the method of transmitting from can be similarly implemented as a phase changing method in which the phase is changed regularly.
  • a MIMO communication system that transmits two modulated signals from two antennas and receives them by two antennas.
  • (Multiple ⁇ ⁇ Input ⁇ ⁇ ⁇ ⁇ ⁇ Single Output) communication system is also applicable.
  • the receiving apparatus has a configuration without the antenna 701_Y, the radio unit 703_Y, the channel fluctuation estimation unit 707_1 of the modulation signal z1, and the channel fluctuation estimation unit 707_2 of the modulation signal z2 in the configuration illustrated in FIG. Even in this case, each of r1 and r2 can be estimated by executing the process shown in the first embodiment.
  • a MIMO communication system that transmits two modulated signals from two antennas and receives them by two antennas.
  • (Multiple ⁇ ⁇ Input ⁇ ⁇ ⁇ ⁇ ⁇ Single Output) communication system is also applicable.
  • the point that precoding and phase change are applied in the transmission apparatus is as described above.
  • the receiving apparatus has a configuration without the antenna 701_Y, the radio unit 703_Y, the channel fluctuation estimation unit 707_1 of the modulation signal z1, and the channel fluctuation estimation unit 707_2 of the modulation signal z2 in the configuration illustrated in FIG.
  • the data transmitted by the transmission device can be estimated by executing the processing shown in this specification.
  • a plurality of transmitted signals can be received and decoded by one antenna in the same frequency band and at the same time (in one antenna reception, processing such as ML calculation (Max-log APP etc.) is performed.
  • the signal processor 711 in FIG. 7 may perform demodulation (detection) in consideration of precoding and phase change used on the transmission side.
  • precoding precoding weight
  • precoding matrix any name may be used (for example, a codebook)
  • the signal processing itself is important.
  • the description has been focused on the case where the OFDM method is used as the transmission method.
  • the present invention is not limited to this, and the same applies when a multicarrier method other than the OFDM method or a single carrier method is used. It is possible to implement.
  • a spread spectrum communication method may be used.
  • the single carrier method the phase change is performed in the time axis direction.
  • the receiving device is described using ML calculation, APP, Max-log APP, ZF, MMSE, etc., but as a result, the soft decision result of each bit of the data transmitted by the transmitting device (Log likelihood, log likelihood ratio) and a hard decision result (“0” or “1”) are obtained. These may be collectively referred to as detection, demodulation, detection, estimation, and separation.
  • Different data may be transmitted by the streams s1 (t), s2 (t) (s1 (i), s2 (i)), or the same data may be transmitted.
  • regular phase change and precoding are performed for two streams of baseband signals s1 (i) and s2 (i) (where i represents the order of time or frequency (carrier)).
  • the baseband signals z1 (i) and z2 (i) after the signal processing of both generated are generated.
  • the in-phase I component is I 1 (i)
  • the quadrature component is Q 1 (i)
  • the in-phase I component of the baseband signal z2 (i) after both signal processing is I 2 (i)
  • the quadrature component is Q 2 ( i).
  • the baseband component is replaced,
  • the in-phase component of the baseband signal r1 (i) after replacement is I 1 (i)
  • the quadrature component is Q 2 (i)
  • the in-phase component of the baseband signal r2 (i) after replacement is I 2 (i)
  • Let the orthogonal component be Q 1 (i)
  • the modulation signal corresponding to the baseband signal r1 (i) after replacement is transmitted from the transmission antenna 1, and the modulation signal corresponding to the baseband signal r2 (i) after replacement is transmitted from the transmission antenna 2 at the same time.
  • the modulated signal corresponding to the replaced baseband signal r1 (i) and the replaced baseband signal r2 (i) are transmitted from different antennas using the same frequency at the same time. Also good. Also, The in-phase component of the baseband signal r1 (i) after replacement is I 1 (i), the quadrature component is I 2 (i), and the in-phase component of the baseband signal r2 (i) after replacement is Q 1 (i), Let the orthogonal component be Q 2 (i) The in-phase component of the baseband signal r1 (i) after replacement is I 2 (i), the quadrature component is I 1 (i), and the in-phase component of the baseband signal r2 (i) after replacement is Q 1 (i), Let the orthogonal component be Q 2 (i) The in-phase component of the baseband signal r1 (i) after replacement is I 1 (i), the quadrature component is I 2 (i), and the in-phase component of the baseband signal r2 (i) after replacement is Q 2 (i),
  • the signal processing of both of the two stream signals is performed and the in-phase component and the quadrature component of the signal after both signal processing are replaced.
  • the present invention is not limited to this, and there are more than two streams. It is also possible to perform both signal processing on the signal and replace the in-phase component and the quadrature component of the signal after both signal processing.
  • the quadrature component is Q 1 (i)
  • the in-phase I component of the baseband signal z2 (i) 5501_2 after both signal processing is I 2 (i)
  • the quadrature component is Q 2 (i).
  • the in-phase component of the baseband signal r1 (i) 5503_1 after replacement is I r1 (i)
  • the quadrature component is Q r1 (i)
  • the in-phase component of the baseband signal r2 (i) 5503_2 after replacement is I r2 ( i)
  • the quadrature component is Q r2 (i)
  • the quadrature component Q r1 (i) of the baseband signal r1 (i) 5503_1 after replacement and the baseband signal r2 ( i)
  • the in-phase component I r2 (i) of 5503_2 and the quadrature component Q r2 (i) shall be expressed as described above.
  • the baseband signal may be replaced after the signal processing.
  • Both the transmitting antenna of the transmitting device and the receiving antenna of the receiving device may be configured by a plurality of antennas.
  • represents a universal quantifier
  • represents an existent quantifier.
  • the unit of phase, such as declination, in the complex plane is “radian”.
  • a complex plane it can be displayed in polar form as a display of complex polar coordinates.
  • the baseband signals s1, s2, z1, and z2 are complex signals.
  • the in-phase signal is I and the quadrature signal is Q
  • the complex signal is I + jQ ( j is an imaginary unit). At this time, I may be zero or Q may be zero.
  • FIG. 46 shows an example of a broadcasting system using the phase changing method described in this specification.
  • a video encoding unit 4601 receives video as input, performs video encoding, and outputs data 4602 after video encoding.
  • the speech encoding unit 4603 receives speech as input, performs speech encoding, and outputs speech-encoded data 4604.
  • the data encoding unit 4605 receives data, performs data encoding (for example, data compression), and outputs data 4606 after data encoding. These are collectively referred to as an information source encoding unit 4600.
  • the transmission unit 4607 receives the data 4602 after video encoding, the data 4604 after audio encoding, and the data 4606 after data encoding as one of these data or all of these data as transmission data. Processing such as error correction coding, modulation, precoding, and phase change (for example, signal processing in the transmission apparatus in FIG. 3) is performed, and transmission signals 4608_1 to 4608_N are output. The transmission signals 4608_1 to 4608_N are transmitted as radio waves by the antennas 4609_1 to 4609_N, respectively.
  • the receiving unit 4612 receives the received signals 4611_1 to 4611_M received by the antennas 4610_1 to 4610_M, and performs processing such as frequency conversion, phase change, precoding decoding, log likelihood ratio calculation, error correction decoding, and the like (for example, FIG. 7).
  • the reception device 4613, 4615, 4617 is output.
  • the information source decoding unit 4619 receives the received data 4613, 4615, and 4617
  • the video decoding unit 4614 receives the received data 4613, decodes the video, and outputs a video signal. Appears on the display.
  • the voice decoding unit 4616 receives the received data 4615 as an input. Audio decoding is performed and an audio signal is output, and the audio flows from the speaker.
  • the data decoding unit 4618 receives the received data 4617, performs data decoding, and outputs data information.
  • the number of encoders possessed by the transmission apparatus is any number. May be. Therefore, for example, as shown in FIG. 4, it is naturally possible to apply a method in which the transmission apparatus includes one encoder and distributes the output to a multicarrier transmission scheme such as the OFDM scheme.
  • the radio units 310A and 310B in FIG. 4 may be replaced with the OFDM system related processing units 1301A and 1301B in FIG.
  • the description of the OFDM scheme-related processing unit is as in the first embodiment.
  • the formula (36) is given as an example of the precoding matrix, but a method using the following formula as a precoding matrix can be considered.
  • the formula (37) and the formula (38) are set as the value of ⁇ .
  • the present invention is not limited to this. If set, it becomes a simple precoding matrix, so this value is one of the effective values.
  • the phase change value for the period N (FIG. 3, FIG. 3) in the phase change unit in FIGS. 3, 4, 6, 12, 25, 29, 51, and 53. 4, FIG. 6, FIG. 12, FIG. 25, FIG. 29, FIG. 51, and FIG. 53, the phase change is given to only one baseband signal, so that it becomes the phase change value.
  • I 0, 1, 2,..., N-2, N-1 (i is an integer from 0 to N-1)).
  • phase change is performed on one precoded baseband signal (that is, FIG. 3, FIG. 4, FIG. 6, FIG. 12, FIG. 25, FIG. 29, FIG. 51, FIG. 53).
  • baseband signal z ⁇ b> 2 ′ after precoding is subjected to phase change.
  • PHASE [k] is given as follows.
  • the phase change method in the case where two modulated signals are transmitted by a plurality of antennas has been described in detail.
  • the present invention is not limited to this, but a base on which mapping of three or more modulation methods is performed. The same applies to the case where the band signal is precoded and phase-changed, the baseband signal after precoding and phase change is subjected to predetermined processing, and transmitted from a plurality of antennas.
  • a program for executing the communication method may be stored in a ROM (Read Only Memory) in advance and the program may be operated by a CPU (Central Processor Unit). Further, a program for executing the communication method is stored in a computer-readable storage medium, the program stored in the storage medium is recorded in a computer RAM (Random Access Memory), and the computer is operated according to the program. You may do it.
  • ROM Read Only Memory
  • CPU Central Processor Unit
  • Each configuration such as the above-described embodiments may be typically realized as an LSI (Large Scale Integration) that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include all or part of the configurations of the respective embodiments. Here, it is referred to as LSI, but depending on the degree of integration, it may also be referred to as IC (Integrated Circuit), system LSI, super LSI, or ultra LSI. Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI, or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • LSI Large Scale Integration
  • Embodiment C1 In the present embodiment, the case where the precoding matrix to be used is switched when the transmission parameter is changed in the first embodiment has been described. However, in the present embodiment, the detailed example is described above (other supplements). As described in the above), as a transmission parameter, a method of switching a precoding matrix to be used when switching between transmission of the same data and transmission of different data in the streams s1 (t) and s2 (t). A phase change method associated therewith will be described.
  • FIG. 56 shows an example of the configuration of the transmission apparatus when the transmission method is switched as described above.
  • 56 that operate in the same manner as in FIG. 54 are denoted by the same reference numerals.
  • 56 differs from FIG. 54 in that distribution section 404 receives frame configuration signal 313 as an input. The operation of the distribution unit 404 will be described with reference to FIG.
  • FIG. 57 shows the operation of the distribution unit 404 when different data is transmitted than when the same data is transmitted.
  • the encoded data is x1, x2, x3, x4, x5, x6,...
  • the distributed data 405A is x1, x2, x3.
  • the distributed data 405B is represented as x1, x2, x3, x4, x5, x6,.
  • the distributed data 405A is represented as x1, x3, x5, x7, x9,...
  • the distributed data 405B includes x2, x4, x6, x8, x10, It is expressed as ...
  • the distribution unit 404 determines, based on the frame configuration signal 313 that is an input signal, whether the transmission mode transmits the same data or transmits different data.
  • the distribution unit 404 when performing the same data transmission, the distribution unit 404 outputs x1, x2, x3, x4, x5, x6,... As data 405A after distribution.
  • the data 405B after distribution is not output. Therefore, when frame configuration signal 313 indicates “same data transmission”, operation of distribution section 404 is as described above, and interleaver 304B and mapping section 306B in FIG. 56 do not operate. Then, only the baseband signal 307A, which is the output of the mapping unit 306A in FIG. 56, is valid and becomes an input signal for both the weighting synthesis units 308A and 308B.
  • one feature is that the precoding matrix is switched when the transmission mode is switched between the case of transmitting the same data and the case of transmitting different data.
  • the precoding matrix when transmitting the same data is as follows: It is good to express like this.
  • Equation (52) a is a real number (a may be a complex number, but the phase change is given to the input baseband signal by precoding, so the circuit scale is as large as possible and does not become complicated. In view of this, it is better to use a real number.)
  • a 1
  • the weighting / combining units 308A and 308B output the input signal as it is without performing the weighting / combining operation. .
  • the baseband signal 309A after weighted synthesis and the baseband signal 316B after weighted synthesis, which are output signals of the weighted synthesis sections 308A and 308B, are the same signal.
  • the phase change unit 5201 changes the phase of the baseband signal 309A after the weighted synthesis, and the baseband signal after the phase change 5202 is output.
  • the phase changing unit 317B changes the phase of the baseband signal 316B after the weighted synthesis, and the baseband signal after the phase change 309B is output.
  • phase change performed by the phase change unit 5201 is e jA (t) (or e jA (f) or e jA (t, f) ) (where t is time and f is frequency) (therefore, e jA (t) (or e jA (f) or e jA (t, f) ) is a value to be multiplied by the input baseband signal.), and e jB (T) (or e jB (f) or e jB (t, f) ) (where t is time and f is frequency) (hence e jB (t) (or e jB (f) Or, e jB (t, f) ) is a value to be multiplied with the input baseband signal.) It is important that the following condition is satisfied.
  • the transmission signal can reduce the influence of multipath, so that the reception quality of the data can be improved in the reception device.
  • the phase change may be performed on only one of the baseband signal 309A after weighted synthesis and the baseband signal 316B after weighted synthesis.
  • the baseband signal 5202 after the phase change is subjected to processing such as IFFT and frequency conversion when OFDM is used, and is transmitted from the transmission antenna.
  • processing such as IFFT and frequency conversion when OFDM is used
  • the baseband signal 5202 after the phase change may be considered to be the signal 1301A in FIG. 13).
  • the baseband signal 309B after the phase change uses OFDM , IFFT, frequency conversion, etc. are performed and transmitted from the transmitting antenna.
  • the baseband signal 309B after the phase change may be considered as the signal 1301B in FIG. 13).
  • “transmit different data” is selected as the transmission mode, as shown in the first embodiment, it is expressed by any one of Expression (36), Expression (39), and Expression (50). Shall.
  • the phase changing units 5201 and 317B in FIG. 56 it is important for the phase changing units 5201 and 317B in FIG. 56 to perform a phase changing method different from the case of “transmitting the same data”.
  • the phase changing unit 5201 changes the phase and the phase changing unit 317B does not change the phase, or the phase changing unit 5201 does not change the phase.
  • the phase change unit 317B changes the phase, for example, only one of the two phase change units changes the phase, the receiving apparatus can be used in both the LOS environment and the NLOS environment. Good data reception quality can be obtained.
  • Expression (52) may be used as the precoding matrix, but Expression (36), Expression (50), or Expression ( If a precoding matrix expressed by (39) and different from Equation (52) is used, there is a possibility that the reception quality of data, particularly in the LOS environment, can be further improved in the receiving apparatus.
  • the present invention is not limited to this, and the same applies when a multicarrier method other than the OFDM method or a single carrier method is used. It is possible to implement. At this time, a spread spectrum communication method may be used. When the single carrier method is used, the phase change is performed in the time axis direction.
  • the phase change is not limited to data symbols, but symbols such as pilot symbols and control symbols inserted in the transmission frame of the transmission signal. Therefore, the phase change is also performed. (However, the phase change may not be performed on symbols such as pilot symbols and control symbols, but the phase change may be performed in order to obtain diversity gain.) (Embodiment C2) In this embodiment, a method for configuring a base station to which Embodiment C1 is applied will be described.
  • FIG. 59 shows the relationship between a base station (broadcast station) and terminals.
  • Terminal P receives transmission signal 5903A transmitted from antenna 5904A of base station A (5902A) and transmission signal 5905A transmitted from antenna 5906A, and performs predetermined processing to obtain received data.
  • Terminal Q receives transmission signal 5903A transmitted from antenna 5904A of base station A (5902A) and transmission signal 5903B transmitted from antenna 5904B of base station B (5902B), performs a predetermined process, It is assumed that received data is obtained.
  • the base station A (5902A) transmits from the antenna 5904A, the transmission signal 5903A transmitted from the antenna 5906A, the frequency allocation of the transmission signal 5905A, and the base station B (5902B) transmits from the antenna 5904B and the antenna 5906B.
  • the frequency allocation of the transmission signal 5903B and the transmission signal 5905B is shown.
  • the horizontal axis represents frequency and the vertical axis represents transmission power.
  • the transmission signal 5903A and transmission signal 5905A transmitted by the base station A (5902A) and the transmission signal 5903B and transmission signal 5905B transmitted by the base station B (5902B) are at least the frequency band X and the frequency band.
  • Y is used, the first channel data is transmitted using the frequency band X, and the second channel data is transmitted using the frequency band Y. To do.
  • terminal P receives transmission signal 5903A transmitted from antenna 5904A of base station A (5902A) and transmission signal 5905A transmitted from antenna 5906A, extracts frequency band X, and performs predetermined processing. To obtain data of the first channel.
  • Terminal Q receives transmission signal 5903A transmitted from antenna 5904A of base station A (5902A) and transmission signal 5903B transmitted from antenna 5904B of base station B (5902B). Extraction and predetermined processing are performed to obtain data of the second channel.
  • base station A (5902A) and base station B (5902B) The configuration and operation of base station A (5902A) and base station B (5902B) at this time will be described.
  • Each of base station A (5902A) and base station B (5902B) includes the transmission apparatus configured in FIGS. 56 and 13 as described in Embodiment C1.
  • the base station A (5902A) When transmitting as shown in FIG. 60, the base station A (5902A) generates two different modulation signals (precoding and phase change) in the frequency band X as described in the embodiment C1. 2) Transmit two modulated signals from antennas 5904A and 5906A in FIG.
  • base station A (5902A) operates interleaver 304A, mapping section 306A, weighting combining section 308A, and phase changing section 5201 in FIG.
  • base station B (5902B) operates interleaver 304A, mapping section 306A, weighting combining section 308A, and phase changing section 5201 in FIG. 56 to generate modulated signal 5202, and a transmission signal corresponding to modulated signal 5202 Is transmitted from the antenna 1310A of FIG. 13, that is, the antenna 5904B of FIG.
  • the base station may individually generate the encoded data as shown in FIG. 56, but the encoding created by any of the base stations Later data may be transferred to another base station.
  • one of the base stations may generate a modulated signal, and the generated modulated signal may be passed to another base station.
  • a signal 5901 includes information on a transmission mode (“send the same data” or “send different data”), and the base station obtains this signal, The modulation signal generation method in each frequency band is switched.
  • the signal 5901 is input from another device or network as shown in FIG. 59.
  • the base station A (5902A) is the master station
  • the base station B (5902B) is a signal corresponding to the signal 5901. You may make it pass.
  • the base station when the base station “transmits different data”, a precoding matrix and a phase change method suitable for the transmission method are set, and a modulated signal is generated.
  • the two base stations when “same data is transmitted”, the two base stations respectively generate and transmit modulated signals. At this time, each base station generates a modulated signal for transmission from one antenna.
  • the precoding matrix of Equation (52) is calculated by two base stations. It corresponds to setting.
  • the phase changing method is as described in the embodiment C1, and for example, the condition of (Equation 53) may be satisfied.
  • the frequency band X and the frequency band Y may change the transmission method with time. Therefore, as shown in FIG. 61, the time may pass and the frequency assignment as shown in FIG. 60 may be changed to the frequency assignment as shown in FIG.
  • the phase change unit can be shared in the transmission apparatus.
  • the present invention is not limited to this, and the same applies when a multicarrier method other than the OFDM method or a single carrier method is used. It is possible to implement. At this time, a spread spectrum communication method may be used. When the single carrier method is used, the phase change is performed in the time axis direction.
  • the phase change is not limited to data symbols, but symbols such as pilot symbols and control symbols inserted in the transmission frame of the transmission signal. Therefore, the phase change is also performed. (However, the phase change may not be performed on symbols such as pilot symbols and control symbols, but the phase change may be performed in order to obtain diversity gain.)
  • Embodiment C3 In this embodiment, a configuration method of a repeater to which Embodiment C1 is applied will be described. Note that the repeater may be referred to as a relay station.
  • FIG. 62 shows the relationship between a base station (broadcast station), a repeater, and a terminal.
  • the base station 6201 transmits a modulated signal of at least the frequency band X and the frequency band Y.
  • Base station 6201 transmits modulated signals from antenna 6202A and antenna 6202B, respectively.
  • the transmission method at this time will be described later with reference to FIG.
  • Repeater A (6203A) performs processing such as demodulation on reception signal 6205A received by reception antenna 6204A and reception signal 6207A received by reception antenna 6206A to obtain reception data.
  • transmission processing is performed to generate modulated signals 6209A and 6211A, which are transmitted from antennas 6210A and 6212A, respectively.
  • repeater B (6203B) performs processing such as demodulation on reception signal 6205B received by reception antenna 6204B and reception signal 6207B received by reception antenna 6206B to obtain reception data. Then, in order to transmit the received data to the terminal, transmission processing is performed to generate modulated signals 6209B and 6211B, which are transmitted from antennas 6210B and 6212B, respectively.
  • repeater B (6203B) is a master repeater and outputs control signal 6208, and repeater A (6203A) receives this signal. Note that it is not always necessary to provide a master repeater, and the base station 6201 may individually transmit control information to the repeater A (6203A) and the repeater B (6203B).
  • the terminal P (5907) receives the modulation signal transmitted from the repeater A (6203A) and obtains data.
  • Terminal Q receives signals transmitted from repeater A (6203A) and repeater B (6203B) and obtains data.
  • the terminal R (6213) receives the modulation signal transmitted from the repeater B (6203B) and obtains data.
  • FIG. 63 shows the frequency allocation of the modulation signal transmitted from the antenna 6202A and the frequency allocation of the modulation signal transmitted from the antenna 6202B among the transmission signals transmitted by the base station.
  • the horizontal axis represents frequency and the vertical axis represents transmission power.
  • the modulation signal transmitted from the antenna 6202A and the modulation signal transmitted from the antenna 6202B use at least the frequency band X and the frequency band Y, and the first channel is transmitted using the frequency band X. It is assumed that the data of the second channel different from the first channel is transmitted using the frequency band Y.
  • the data of the first channel is transmitted in the mode of “sending different data” using the frequency band X as described in the embodiment C1. Therefore, as shown in FIG. 63, the modulation signal transmitted from antenna 6202A and the modulation signal transmitted from antenna 6202B include components of frequency band X. The component of the frequency band X is received by the relay A and the relay B. Therefore, as described in Embodiment 1 and Embodiment C1, the modulation signal of frequency band X is subjected to precoding (weighting synthesis) and phase change on the mapped signal. .
  • FIG. 63 the data of the second channel is transmitted using the frequency band Y component transmitted from the antenna 6202A of FIG.
  • the component of the frequency band Y is received by the repeater A and the repeater B.
  • FIG. 64 shows the frequency allocation of the modulation signal 6209A transmitted from the antenna 6210A of the relay A, the modulation signal 6211A transmitted from the antenna 6212A, and the transmission of the relay B, among the transmission signals transmitted by the relay A and the relay B.
  • the frequency allocation of the modulation signal 6209B transmitted from the antenna 6210B and the modulation signal 6211B transmitted from the antenna 6212B is shown.
  • the horizontal axis represents frequency and the vertical axis represents transmission power.
  • the modulation signal 6209A transmitted from the antenna 6210A and the modulation signal 6211A transmitted from the antenna 6212A use at least the frequency band X and the frequency band Y
  • the modulation signal transmitted from the antenna 6210B uses at least the frequency band X and the frequency band Y.
  • the frequency band X is used to transmit data of the first channel, and the frequency It is assumed that data of the second channel is transmitted using the band Y.
  • modulated signal 6209A transmitted from antenna 6210A and modulated signal 6211A transmitted from antenna 6212A include components of frequency band X.
  • the component of the frequency band X is received by the terminal P.
  • modulated signal 6209B transmitted from antenna 6210B and modulated signal 6211B transmitted from antenna 6212B include components of frequency band X.
  • the component of the frequency band X is received by the terminal R. Therefore, as described in Embodiment 1 and Embodiment C1, the modulation signal of frequency band X is subjected to precoding (weighting synthesis) and phase change on the mapped signal. .
  • the data of the second channel is obtained by using the component of the frequency band Y of the modulated signal transmitted from the antenna 6210A of the repeater A (6203A) and the antenna 6210B of the repeater B (6203B) in FIG. Will be transmitted.
  • the “same data transmission” transmission mode described in the embodiment C1 is used.
  • the component of the frequency band Y is received by the terminal Q.
  • FIG. 65 shows an example of the configuration of the receiving unit and the transmitting unit of the repeater, and components that operate in the same manner as in FIG.
  • the reception unit 6203X receives the reception signal 6502a received by the reception antenna 6501a and the reception signal 6502b received by the reception antenna 6501b, and performs signal processing (signal separation or synthesis, error correction decoding) on the frequency band X component.
  • the data 6204X transmitted by the base station using the frequency band X is obtained and output to the distribution unit 404, and information on the transmission method included in the control information is obtained (transmitted by the repeater). Information on the transmission method at the time of acquisition is also obtained), and the frame configuration signal 313 is output.
  • the receiving unit 6203X and the subsequent units are processing units for generating a modulated signal for transmission in the frequency band X.
  • the receiving unit includes not only the receiving unit of the frequency band X but also other receiving units of other frequency bands, and each receiving unit has its frequency band.
  • the outline of the operation of distribution section 404 is the same as the operation of the distribution section in the base station described in Embodiment C2.
  • repeater A (6203A) and repeater B (6203B) When transmitting as shown in FIG. 64, repeater A (6203A) and repeater B (6203B) generate two different modulation signals in frequency band X as described in the embodiment C1 (preliminary).
  • the relay A (6203A) transmits the two modulated signals from the antennas 6210A and 6212A in FIG. 62, and the relay B (6203B) transmits from the antennas 6210B and 6212B in FIG. 62, respectively.
  • repeater A (6203A) is shown in FIG. 65 in processing unit 6500 related to frequency band Y corresponding to signal processing unit 6500 related to frequency band X (6500 is related to frequency band X). Although it is a signal processing unit, the frequency band Y is also provided with the same signal processing unit, and will be described with the number added in 6500.), interleaver 304A, mapping unit 306A, weighting synthesis unit 308A, phase change unit 5201 To generate a modulation signal 5202 and transmit a transmission signal corresponding to the modulation signal 5202 from the antenna 1310A in FIG. 13, that is, the antenna 6210A in FIG.
  • repeater B (6203B) operates interleaver 304A, mapping unit 306A, weighting combining unit 308A, and phase changing unit 5201 in frequency band Y in FIG. 62 to generate modulated signal 5202 and generate modulated signal 5202. Is transmitted from the antenna 1310A of FIG. 13, that is, the antenna 6210B of FIG.
  • FIG. 66 shows a frame configuration of a modulated signal transmitted by the base station, and the horizontal axis time and the vertical axis frequency
  • information 6601 regarding the transmission method As shown in FIG. 66 (FIG. 66 shows a frame configuration of a modulated signal transmitted by the base station, and the horizontal axis time and the vertical axis frequency), information 6601 regarding the transmission method, repeater Transmits the information 6602 regarding the phase change to be applied and the data symbol 6603, and the repeater obtains the information 6601 regarding the transmission method and the information 6602 regarding the phase change applied by the repeater, thereby determining the phase change method to be applied to the transmission signal. can do. If the information 6602 regarding the phase change performed by the repeater in FIG. 66 is not included in the signal transmitted by the base station, as shown in FIG. 62, repeater B (6203B) becomes the master, and repeater A (6203A) may be instructed to change the phase.
  • the repeater when the repeater “transmits different data”, a precoding matrix and a phase change method suitable for the transmission method are set, and a modulated signal is generated.
  • each of the two repeaters in the case of “transmitting the same data”, each of the two repeaters generates and transmits a modulated signal. At this time, each repeater generates a modulated signal to be transmitted from one antenna.
  • the precoding matrix of Equation (52) is calculated by two repeaters. It corresponds to setting.
  • the phase changing method is as described in the embodiment C1, and for example, the condition of (Equation 53) may be satisfied.
  • both the base station and the repeater transmit modulated signals from the two antennas, and transmit the same data from the two antennas. May be.
  • the operations of the base station and the repeater at this time are as described in the embodiment C1.
  • the present invention is not limited to this, and the same applies when a multicarrier method other than the OFDM method or a single carrier method is used. It is possible to implement. At this time, a spread spectrum communication method may be used. When the single carrier method is used, the phase change is performed in the time axis direction.
  • the phase change is not limited to data symbols, but symbols such as pilot symbols and control symbols inserted in the transmission frame of the transmission signal. Therefore, the phase change is also performed. (However, the phase change may not be performed on symbols such as pilot symbols and control symbols, but the phase change may be performed in order to obtain diversity gain.) (Embodiment C4) In the present embodiment, a phase change method different from the phase change methods described in “Embodiment 1” and “Other supplements” will be described.
  • k 0, 1, 2,..., N-2, N-1 (k is an integer from 0 to N-1).
  • PHASE [k] may be given as follows.
  • PHASE [k] may be given as follows.
  • PHASE [k] may be given as follows.
  • phase change As described above, by performing the phase change as in the present embodiment, it is possible to obtain an effect that the reception apparatus is more likely to obtain good reception quality.
  • the phase change of the present embodiment is not limited to the application to the single carrier scheme, and can be applied to the case of multicarrier transmission. Therefore, for example, the case of using the spread spectrum communication system, the OFDM system, the SC-FDMA, the SC-OFDM system, the wavelet OFDM system shown in Non-Patent Document 7, etc. can be similarly implemented.
  • phase change is performed in the time t-axis direction as an explanation for performing the phase change, but as in the first embodiment, when the phase change is performed in the frequency axis direction Similarly, in other words, in the present embodiment, the description of the phase change in the t direction has been described in the present embodiment by replacing t with f (f: frequency ((sub) carrier)).
  • the phase change change can be applied to the phase change in the frequency direction.
  • the phase changing method of the present embodiment can also be applied to the phase change in the time-frequency direction as in the description of the first embodiment.
  • Expression (36) is given as an example of the precoding matrix
  • Expression (50) is given as an example of the precoding matrix in the other supplements.
  • the phase change value for the period N (FIG. 3, FIG. 3) in the phase change unit in FIGS. 3, 4, 6, 12, 25, 29, 51, and 53. 4, 6, 12, 25, 29, 51, and 53, the phase change is given to only one of the baseband signals, so that the phase change value is obtained.)
  • PHASE [i ] (I 0, 1, 2,..., N-2, N-1 (i is an integer from 0 to N-1)).
  • the phase change is performed on one precoded baseband signal (that is, FIG. 3, FIG. 4, FIG. 6, FIG. 12, FIG. 25, FIG. 29, FIG. 51, FIG. 53). 3, 4, 6, 12, 25, 29, 51, and 53, only the baseband signal z ⁇ b> 2 ′ after precoding is subjected to phase change.
  • the phase change value at this time will be described in detail.
  • PHASE [0], PHASE [1], ..., n + 1 different phase change values required to realize a phase change method for switching the phase change values regularly with a period N 2n + 1.
  • PHASE [i], ..., PHASE [n-1], PHASE [n] (i 0,1,2, ..., n-2, n-1, n (where i is 0 or more and n Integer below)).
  • k 0, 1, 2,..., N-2, n-1, n (k is an integer from 0 to n).
  • PHASE [k] may be given as follows.
  • k 0, 1, 2,..., N-2, n-1, n (k is an integer from 0 to n).
  • PHASE [k] may be given as follows.
  • k 0, 1, 2,..., N-2, n-1, n (k is an integer of 0 to n), and Z is a fixed value.
  • PHASE [k] may be given as follows.
  • k 0, 1, 2,..., N-2, n-1, n (k is an integer of 0 to n), and Z is a fixed value.
  • phase change As described above, by performing the phase change as in the present embodiment, it is possible to obtain an effect that the reception apparatus is more likely to obtain good reception quality.
  • the phase change according to the present embodiment is not limited to the application to the single carrier method, and can also be applied to multicarrier transmission. Therefore, for example, the case of using the spread spectrum communication system, the OFDM system, the SC-FDMA, the SC-OFDM system, the wavelet OFDM system shown in Non-Patent Document 7, etc. can be similarly implemented.
  • phase change is performed in the time t-axis direction as an explanation for performing the phase change, but as in the first embodiment, when the phase change is performed in the frequency axis direction Similarly, in other words, in the present embodiment, the description of the phase change in the t direction has been described in the present embodiment by replacing t with f (f: frequency ((sub) carrier)).
  • the phase change change can be applied to the phase change in the frequency direction.
  • the phase changing method of the present embodiment can also be applied to the phase change in the time-frequency direction as in the description of the first embodiment.
  • a QC (Quasi Cyclic) LDPC (Low-Density Prity-Check) code (however, an LDPC (block) that is not a QC-LDPC code)
  • block codes such as concatenated codes of LDPC codes and BCH codes (Bose-Chaudhuri-Hocquenghem code)
  • block codes such as turbo codes or Duo-Binary Turbo Codes, etc.
  • the number of bits constituting the block after coding is the number of bits constituting the block code (however, Control information etc. as described may be included.)
  • control information or the like for example, CRC (cyclic redundancy check), transmission parameters, etc.
  • the number of bits constituting the block after encoding is the block code. It may be the sum of the number of bits and the number of bits such as control information.
  • FIG. 34 is a diagram showing changes in the number of symbols and the number of slots necessary for one encoded block when a block code is used.
  • 34 for example, as shown in the transmission apparatus of FIG. 4, two blocks s1 and s2 are transmitted and the transmission apparatus has one encoder. When used, it is a diagram showing changes in the number of symbols and the number of slots necessary for one encoded block. " (At this time, as a transmission method, either single carrier transmission or multicarrier transmission such as OFDM may be used.) As shown in FIG. 34, it is assumed that the number of bits constituting one encoded block in the block code is 6000 bits. In order to transmit 6000 bits, 3000 symbols are required when the modulation method is QPSK, 1500 symbols when 16 QAM, and 1000 symbols when 64 QAM.
  • the transmission apparatus in FIG. 4 transmits two streams at the same time, when the modulation scheme is QPSK, the above-described 3000 symbols are allocated 1500 symbols to s1 and 1500 symbols to s2. In order to transmit 1500 symbols transmitted in s1 and 1500 symbols transmitted in s2, 1500 slots (herein referred to as “slots”) are required.
  • phase change values or phase change sets
  • the number of phase change values (or phase change sets) prepared for a method of changing the phase regularly in period 5 is 5. That is, it is assumed that five phase change values (or phase change sets) for period 5 are prepared for the phase change unit of the transmission apparatus in FIG. However, as described in the embodiment C5, there are three different phase change values. Therefore, among the five phase change values for the period 5, the same phase change value exists. (As shown in FIG. 6, when the phase is changed only to the baseband signal z2 ′ after the precoding, in order to change the phase of the period 5, five phase change values may be prepared.
  • phase change values are required for one slot. Therefore, in this case, in order to perform the phase change of the period 5, five phase change sets may be prepared).
  • the five phase change values (or phase change sets) for cycle 5 are represented as P [0], P [1], P [2], P [3], and P [4].
  • the slot using the phase change value P [0] is 300 slots
  • the phase The slots using the change value P [1] are 300 slots
  • the slots using the phase change value P [2] are 300 slots
  • the slots using the phase change value P [3] are 300 slots
  • the phase change value P [4 ] Need to be 300 slots. This is because, depending on the phase change value to be used, the reception quality of data having a large influence of the phase change value using a large number is obtained.
  • the modulation scheme is 64QAM
  • the 500 slots described above for transmitting the number of bits of 6000 bits constituting one encoded block there are 100 slots using the phase change value P [0].
  • 100 slots that use the phase change value P [1] 100 slots that use the phase change value P [2]
  • 100 slots that use the phase change value P [3] 100 slots that use the phase change value P [3]
  • the slot using P [4] needs to be 100 slots.
  • phase change values P [0], P [1],. .., P [2n-1], P [2n] are PHASE [0], PHASE [1], PHASE [2],..., PHASE [n-1], PHASE [n] (see Embodiment C5)).
  • the number of slots using the phase change value P [0] is K 0
  • the number of slots using the phase change value P [1] is K 1
  • ⁇ Condition # C03> The difference between K a and K b is 0 or 1, that is,
  • is 0 or 1. (For ⁇ a, ⁇ b, where a, b 0,1,2, ..., 2n-1,2n (a is an integer from 0 to 2n, b is an integer from 0 to 2n), a ⁇ b) If ⁇ Condition # C03> is expressed in another way, the following conditions are satisfied.
  • FIG. 35 is a diagram showing changes in the number of symbols and the number of slots necessary for two encoded blocks when a block code is used.
  • FIG. 35 shows a case where two streams s1 and s2 are transmitted as shown in the transmission apparatus in FIG. 3 and the transmission apparatus in FIG. 12, and the transmission apparatus has two encoders.
  • FIG. 6 is a diagram showing changes in the number of symbols and the number of slots required for one encoded block when a block code is used. (At this time, as a transmission method, either single carrier transmission or multicarrier transmission such as OFDM may be used.)
  • the number of bits constituting one encoded block in the block code is 6000 bits. In order to transmit 6000 bits, 3000 symbols are required when the modulation method is QPSK, 1500 symbols when 16 QAM, and 1000 symbols when 64 QAM.
  • 3 and 12 transmit two streams at the same time, and since there are two encoders, two streams transmit different code blocks. become. Therefore, when the modulation scheme is QPSK, two encoded blocks are transmitted in the same section by s1 and s2, and for example, the first encoded block is transmitted by s1, and the second block is transmitted by s2. Since two encoded blocks are transmitted, 3000 slots are required to transmit the first and second encoded blocks.
  • phase change values or phase change sets
  • the number of phase change values (or phase change sets) prepared for a method of changing the phase regularly in period 5 is 5. That is, it is assumed that five phase change values (or phase change sets) for period 5 are prepared for the phase change unit of the transmission apparatus in FIG. However, as described in the embodiment C5, there are three different phase change values. Therefore, among the five phase change values for the period 5, the same phase change value exists. (As shown in FIG. 6, when the phase is changed only to the baseband signal z2 ′ after the precoding, in order to change the phase of the period 5, five phase change values may be prepared.
  • phase change values are required for one slot. Therefore, in this case, in order to perform the phase change of the period 5, five phase change sets may be prepared).
  • the five phase change values (or phase change sets) for cycle 5 are represented as P [0], P [1], P [2], P [3], and P [4].
  • the slot using the phase change value P [0] is 600 slots
  • the slot using the phase change value P [1] is 600 slots
  • the slot using the phase change value P [2] is 600 slots
  • the slot using the phase change value P [3] is 600 slots
  • the slot using [4] needs to be 600 slots. This is because, depending on the phase change value to be used, the reception quality of the data is greatly affected by the phase change value using a large number.
  • the slot using the phase change value P [0] is 600 times
  • the slot using the phase change value P [1] is 600 times
  • the phase change value P [2 ] Is 600 times
  • the slot using the phase change value P [3] is 600 times
  • the slot using the phase change value P [4] is 600 times
  • the second In order to transmit the encoded block the slot using the phase change value P [0] is 600 times
  • the slot using the phase change value P [1] is 600 times
  • the slot using the phase change value P [2] Is 600 times
  • the slot using the phase change value P [3] is 600 times
  • the slot using the phase change value P [4] is 600 times.
  • the slot using the phase change value P [0] in the 1500 slot described above for transmitting the number of bits of 6000 ⁇ 2 bits constituting the two encoded blocks 300 slots, 300 slots using the phase change value P [1], 300 slots using the phase change value P [2], 300 slots using the phase change value P [3], phase
  • the slot using the change value P [4] needs to be 300 slots.
  • the slot using the phase change value P [0] is 300 times
  • the slot using the phase change value P [1] is 300 times
  • the phase change value P [2 ] Is 300 times
  • the slot using the phase change value P [3] is 300 times
  • the slot using the phase change value P [4] is 300 times
  • the second code In order to transmit the block, the slot using the phase change value P [0] is 300 times, the slot using the phase change value P [1] is 300 times, and the slot using the phase change value P [2] is It is preferable that the slot using the phase change value P [3] is 300 times and the slot using the phase change value P [4] is 300 times.
  • the number of slots that use the change value P [4] needs to be 200 slots.
  • the slot using the phase change value P [0] is 200 times
  • the slot using the phase change value P [1] is 200 times
  • the phase change value P [2 ] Needs to be 200 times
  • the slot using the phase change value P [3] needs to be 200 times
  • the slot using the phase change value P [4] needs to be 200 times
  • the second code In order to transmit the block, the slot using the phase change value P [0] is 200 times, the slot using the phase change value P [1] is 200 times, and the slot using the phase change value P [2] is It is preferable that the slot using the phase change value P [3] is 200 times, and the slot using the phase change value P [4] is 200 times.
  • the phase change values P [0], P [1],. .., P [2n-1], P [2n] are PHASE [0], PHASE [1], PHASE [2], ..., PHASE [n-1], PHASE [n] (see Embodiment C5)
  • the number of times the phase change value P [0] is used when transmitting all the bits constituting the block after the first encoding is the number of times K 0,1 and the phase change value P [1] are used.
  • K 2n, 1 ⁇ Condition # C06>
  • the number of times the phase change value P [0] is used when transmitting all the bits constituting the block after the second encoding is the number of times K 0,2 and the phase change value P [1] are used.
  • K 1,2 and the number of times the phase change value P [i] is used as K i, 2 (i 0,1,2,..., 2n-1,2n (i is an integer from 0 to 2n) )
  • K 2n, 2 ⁇ Condition # C07>
  • phase change method for regularly switching the phase change value described in the embodiment C5 different phase change values PHASE [0], PHASE [1], PHASE [2], ..., in PHASE [n-1] and PHASE [n], the number of slots using the phase change value PHASE [0] is set to G 0 when all the bits constituting the two encoded blocks are transmitted.
  • G 1 is the number of slots using the phase change value PHASE [1]
  • the number of slots using the phase change value PHASE [n] is G n
  • ⁇ Condition # C05> can be expressed as follows.
  • G 1, 2 and the number of times the phase change value PHASE [i] is used as G i, 2 (i 0,1,2,..., N-1, n (i is an integer from 0 to n) )
  • ⁇ condition # C05> ⁇ condition#C06> ⁇ condition in the supported modulation schemes # C07>( ⁇ condition#C08> ⁇ condition#C09> ⁇ condition#C10>) should be satisfied.
  • the number of bits that can be transmitted in one symbol is generally different depending on each modulation scheme (there may be the same in some cases).
  • N phase change values are required for the phase change method of period N.
  • P [0], P [1], P [2], ..., P [N-2], P] [N-1] are required for the phase change method of period N.
  • P [0], P [1], P [2], ..., P [N-2], P] [N-1] are required for the phase change method of period N.
  • P [0], P [1], P [2], ..., P [N-2], P] [N-1] are required for the phase change method of period N.
  • P [0], P [1], P [2], ..., P [N-2], P] [N-1] are required for the phase change method of period N.
  • P [0], P [1], P [2], ..., P [N-2], P] [N-1] are required for the phase change method of period N.
  • PN [N ⁇ 1] can be changed in phase by arranging symbols in the time axis and frequency-time axis blocks.
  • N phase change values (or phase change sets) are randomly used. It is not necessary to use N phase change values (or phase change sets) so as to have a periodic period, but satisfying the above-described conditions is necessary for obtaining high data reception quality in the receiving apparatus. , Become important.
  • the base station may be able to select one of the transmission methods from these modes.
  • the spatial multiplexing MIMO transmission scheme is a method of transmitting signals s1 and s2 mapped by a selected modulation scheme from different antennas as shown in Non-Patent Document 3, and the precoding matrix is fixed.
  • the MIMO transmission scheme is a scheme that performs only precoding (no phase change).
  • the space-time block coding method is a transmission method shown in Non-Patent Documents 9, 16, and 17.
  • the transmission of only one stream is a method of performing a predetermined process on the signal s1 mapped by the selected modulation method and transmitting the signal from the antenna.
  • a multi-carrier transmission scheme such as OFDM is used, a first carrier group composed of a plurality of carriers, a second carrier group different from the first carrier group composed of a plurality of carriers,...
  • multi-carrier transmission is realized with a plurality of carrier groups, and for each carrier group, a spatial multiplexing MIMO transmission scheme, a MIMO transmission scheme with a fixed precoding matrix, a space-time block coding scheme, and transmission of only one stream,
  • This method may be set to any one of the methods for changing the phase regularly.
  • this embodiment may be implemented for a (sub) carrier group for which the method for changing the phase regularly is selected.
  • phase change is performed on one precoded baseband signal
  • the phase change value of P [i] is “X radians”, FIG. 3, FIG. 4, FIG. 6, FIG. 25, FIG. 29, FIG. 51, and FIG. 53
  • e jX is multiplied by the baseband signal z2 ′ after precoding.
  • the phase change is performed on both precoded baseband signals, for example, when the phase change set of P [i] is “X radians” and “Y radians”, FIG. 26, FIG. 27, 28, 52, and 54, e jX is multiplied by the precoded baseband signal z2 ′, and e jY is multiplied by the precoded baseband signal z1 ′.
  • e jX is multiplied by the precoded baseband signal z2 ′
  • e jY is multiplied by the precoded baseband signal z1 ′.
  • a QC (Quasi Cyclic) LDPC (Low-Density Prity-Check) code (however, an LDPC (block) that is not a QC-LDPC code)
  • block codes such as concatenated codes of LDPC codes and BCH codes (Bose-Chaudhuri-Hocquenghem code)
  • block codes such as turbo codes or Duo-Binary Turbo Codes are used
  • a case where A1 and Embodiment C6 are generalized will be described.
  • a case where two streams s1 and s2 are transmitted will be described as an example.
  • the number of bits constituting the block after coding is the number of bits constituting the block code (however, Control information etc. as described may be included.)
  • control information or the like for example, CRC (cyclic redundancy check), transmission parameters, etc.
  • the number of bits constituting the block after encoding is the block code. It may be the sum of the number of bits and the number of bits such as control information.
  • FIG. 34 is a diagram showing changes in the number of symbols and the number of slots necessary for one encoded block when a block code is used.
  • 34 for example, as shown in the transmission apparatus of FIG. 4, two blocks s1 and s2 are transmitted and the transmission apparatus has one encoder.
  • it is a diagram showing changes in the number of symbols and the number of slots necessary for one encoded block. " (At this time, as a transmission method, either single carrier transmission or multicarrier transmission such as OFDM may be used.)
  • the number of bits constituting one encoded block in the block code is 6000 bits.
  • 3000 symbols are required when the modulation method is QPSK, 1500 symbols when 16 QAM, and 1000 symbols when 64 QAM. Since the transmission apparatus in FIG. 4 transmits two streams at the same time, when the modulation method is QPSK, the above-described 3000 symbols are allocated 1500 symbols to s1 and 1500 symbols to s2. In order to transmit 1500 symbols transmitted at s1 and 1500 symbols transmitted at s2, 1500 slots (herein referred to as “slots”) are required.
  • phase change values or phase change sets prepared for a method of changing the phase regularly in period 5
  • P [0], P [1], P [2], P [3], P [4 are the phase change values (or phase change sets) prepared for the method of changing the phase regularly in period 5.
  • P [0], P [1], P [2], P [3], and P [4] need only include at least two different phase change values (P [0] , P [1], P [2], P [3], P [4] may contain the same phase change value.
  • five phase change values may be prepared.
  • phase change when the phase change is performed on both of the baseband signals z1 ′ and z2 ′ after the precoding, two phase change values are required for one slot. Therefore, in this case, in order to perform the phase change of the period 5, five phase change sets may be prepared).
  • the slot using the phase change value P [0] is 300 slots
  • the phase The slots using the change value P [1] are 300 slots
  • the slots using the phase change value P [2] are 300 slots
  • the slots using the phase change value P [3] are 300 slots
  • the phase change value P [4 ] Need to be 300 slots. This is because, depending on the phase change value to be used, the reception quality of the data is greatly affected by the phase change value using a large number.
  • the modulation scheme is 64QAM
  • the 500 slots described above for transmitting the number of bits of 6000 bits constituting one encoded block there are 100 slots using the phase change value P [0].
  • 100 slots that use the phase change value P [1] 100 slots that use the phase change value P [2]
  • 100 slots that use the phase change value P [3] 100 slots that use the phase change value P [3]
  • the slot using P [4] needs to be 100 slots.
  • phase change values P [0], P [1],..., P [N-2], P [N-1] in the phase change method for switching the phase change values regularly in the period N It shall be expressed as However, P [0], P [1],..., P [N-2], P [N-1] are assumed to be composed of at least two different phase change values.
  • P [0], P [1], ..., P [N-2], P [N-1] may contain the same phase change value.
  • K i 0,1,2, ..., N-1 (i is an integer between 0 and N-1)
  • ⁇ Condition # C17> should be satisfied in the supported modulation schemes.
  • the number of bits that can be transmitted in one symbol is generally different depending on each modulation scheme (there may be the same in some cases).
  • FIG. 35 is a diagram showing changes in the number of symbols and the number of slots necessary for two encoded blocks when a block code is used.
  • FIG. 35 shows a case where two streams s1 and s2 are transmitted as shown in the transmission apparatus in FIG. 3 and the transmission apparatus in FIG. 12, and the transmission apparatus has two encoders.
  • FIG. 6 is a diagram showing changes in the number of symbols and the number of slots required for one encoded block when a block code is used. (At this time, as a transmission method, either single carrier transmission or multicarrier transmission such as OFDM may be used.) As shown in FIG. 35, it is assumed that the number of bits constituting one encoded block in the block code is 6000 bits. In order to transmit 6000 bits, 3000 symbols are required when the modulation method is QPSK, 1500 symbols when 16 QAM, and 1000 symbols when 64 QAM.
  • 3 and 12 transmit two streams at the same time, and since there are two encoders, two streams transmit different code blocks. become. Therefore, when the modulation scheme is QPSK, two encoded blocks are transmitted in the same section by s1 and s2, and for example, the first encoded block is transmitted by s1, and the second block is transmitted by s2. Since two encoded blocks are transmitted, 3000 slots are required to transmit the first and second encoded blocks.
  • phase change values or phase change sets prepared for a method of changing the phase regularly in period 5
  • P [0], P [1], P [2], P [3 for the period 5 for the phase change unit of the transmission apparatus of FIG. ] shall be prepared.
  • P [0], P [1], P [2], P [3], and P [4] need only include at least two different phase change values (P [0] , P [1], P [2], P [3], P [4] may contain the same phase change value. (As shown in FIG.
  • phase change values may be prepared.
  • the five phase change values (or phase change sets) for cycle 5 are represented as P [0], P [1], P [2], P [3], and P [4].
  • the slot using the phase change value P [0] is 600 slots
  • the slot using the phase change value P [1] is 600 slots
  • the slot using the phase change value P [2] is 600 slots
  • the slot using the phase change value P [3] is 600 slots
  • the slot using [4] needs to be 600 slots. This is because, depending on the phase change value to be used, the reception quality of the data is greatly affected by the phase change value using a large number.
  • the slot using the phase change value P [0] is 600 times
  • the slot using the phase change value P [1] is 600 times
  • the phase change value P [2 ] Is 600 slots
  • the slot using the phase change value P [3] is 600 times
  • the slot using the phase change value P [4] is 600 times
  • the second In order to transmit the encoded block, the slot using the phase change value P [0] is 600 times, the slot using the phase change value P [1] is 600 times, and the slot using the phase change value P [2] Is 600 slots, the slot using the phase change value P [3] is 600 times, and the slot using the phase change value P [4] is 600 times.
  • the slot using the phase change value P [0] in the 1500 slot described above for transmitting the number of bits of 6000 ⁇ 2 bits constituting the two encoded blocks 300 slots, 300 slots using the phase change value P [1], 300 slots using the phase change value P [2], 300 slots using the phase change value P [3], phase
  • the slot using the change value P [4] needs to be 300 slots.
  • the slot using the phase change value P [0] is 300 times
  • the slot using the phase change value P [1] is 300 times
  • the phase change value P [2 ] Is 300 slots
  • the slot using the phase change value P [3] is 300 times
  • the slot using the phase change value P [4] is 300 times
  • the second code In order to transmit the block, the slot using the phase change value P [0] is 300 times, the slot using the phase change value P [1] is 300 times, and the slot using the phase change value P [2] is 300 slots, 300 slots using the phase change value P [3], and 300 slots using the phase change value P [4] may be used.
  • the number of slots that use the change value P [4] needs to be 200 slots.
  • the slot using the phase change value P [0] is 200 times
  • the slot using the phase change value P [1] is 200 times
  • the phase change value P [2 ] is 200 times
  • the second code In order to transmit the block, the slot using the phase change value P [0] is 200 times, the slot using the phase change value P [1] is 200 times, and the slot using the phase change value P [2] is It is preferable that there are 200 slots, the slot using the phase change value P [3] is 200 times, and the slot using the phase change value P [4] is 200 times.
  • the phase change values in the phase change method for switching the phase change values regularly in the period N are P [0], P [1], P [2],..., P [N-2], It shall be represented as P [N-1].
  • P [0], P [1], P [2], ..., P [N-2], P [N-1] consist of at least two different phase change values And (P [0], P [1], P [2], ..., P [N-2], P [N-1] may contain the same phase change value.)
  • the number of slots using the phase change value P [0] is K 0
  • the number of slots using the phase change value P [1] is K 1
  • the phase is changed
  • the number of times the phase change value P [0] is used when transmitting all the bits constituting the block after the first encoding is the number of times K 0,1 and the phase change value P [1] are used.
  • K 1, 1, and the number of times the phase change value P [i] is used as K i, 1 (i 0, 1, 2,..., N-1 (i is an integer from 0 to N-1) )
  • K N-1,1 ⁇ Condition # C20>
  • the number of times the phase change value P [0] is used when transmitting all the bits constituting the block after the second encoding is the number of times K 0,2 and the phase change value P [1] are used.
  • K 1,2 and the number of times the phase change value P [i] is used as K i, 2 (i 0, 1, 2,..., N-1 (i is an integer between 0 and N-1) )
  • K N-1,2 K N-1,2 , ⁇ Condition # C21>
  • ⁇ condition # C19> ⁇ condition#C20> ⁇ condition in the supported modulation schemes # C21> should be satisfied.
  • the number of bits that can be transmitted in one symbol is generally different depending on each modulation scheme (there may be the same in some cases).
  • the following conditions may be satisfied instead of ⁇ Condition # C19> ⁇ Condition#C20> ⁇ Condition#C21>.
  • N phase change values are required for the phase change method of period N.
  • P [0], P [1], P [2], ..., P [N-2], P] [N-1] are required for the phase change method of period N.
  • P [0], P [1], P [2], ..., P [N-2], P] [N-1] are required for the phase change method of period N.
  • P [0], P [1], P [2], ..., P [N-2], P] [N-1] are required for the phase change method of period N.
  • P [0], P [1], P [2], ..., P [N-2], P] [N-1] are required for the phase change method of period N.
  • P [0], P [1], P [2], ..., P [N-2], P] [N-1] are required for the phase change method of period N.
  • PN [N ⁇ 1] can be changed in phase by arranging symbols in the time axis and frequency-time axis blocks.
  • N phase change values (or phase change sets) are randomly used. It is not necessary to use N phase change values (or phase change sets) so as to have a periodic period, but satisfying the above-described conditions is necessary for obtaining high data reception quality in the receiving apparatus. , Become important.
  • the base station may be able to select one of the transmission methods from these modes.
  • the spatial multiplexing MIMO transmission scheme is a method of transmitting signals s1 and s2 mapped by a selected modulation scheme from different antennas as shown in Non-Patent Document 3, and the precoding matrix is fixed.
  • the MIMO transmission scheme is a scheme that performs only precoding (no phase change).
  • the space-time block coding method is a transmission method shown in Non-Patent Documents 9, 16, and 17.
  • the transmission of only one stream is a method of performing a predetermined process on the signal s1 mapped by the selected modulation method and transmitting the signal from the antenna.
  • a multi-carrier transmission scheme such as OFDM is used, a first carrier group composed of a plurality of carriers, a second carrier group different from the first carrier group composed of a plurality of carriers,...
  • multi-carrier transmission is realized with a plurality of carrier groups, and for each carrier group, a spatial multiplexing MIMO transmission scheme, a MIMO transmission scheme with a fixed precoding matrix, a space-time block coding scheme, and transmission of only one stream,
  • This method may be set to any one of the methods for changing the phase regularly.
  • this embodiment may be implemented for a (sub) carrier group for which the method for changing the phase regularly is selected.
  • phase change is performed on one precoded baseband signal
  • the phase change value of P [i] is “X radians”, FIG. 3, FIG. 4, FIG. 6, FIG. 25, FIG. 29, FIG. 51, and FIG. 53
  • e jX is multiplied by the baseband signal z2 ′ after precoding.
  • the phase change is performed on both precoded baseband signals, for example, when the phase change set of P [i] is “X radians” and “Y radians”, FIG. 26, FIG. 27, 28, 52, and 54, e jX is multiplied by the precoded baseband signal z2 ′, and e jY is multiplied by the precoded baseband signal z1 ′.
  • e jX is multiplied by the precoded baseband signal z2 ′
  • e jY is multiplied by the precoded baseband signal z1 ′.
  • FIG. 67 shows an example of the configuration of the transmission apparatus according to the present embodiment. Elements that operate in the same manner as in FIG. 3 are given the same reference numerals, and hereinafter the same as described in FIG. The description of the operation element portion is omitted. 67 is different from FIG. 3 in that a baseband signal switching unit 6702 is inserted immediately after the weighting synthesis unit. Therefore, hereinafter, the description will focus on the operation around the baseband signal switching unit 6702.
  • FIG. 21 shows the configuration of the weighting synthesis unit (308A, 308B).
  • a region surrounded by a dotted line is a weighting synthesis unit.
  • the baseband signal 307A is multiplied by w11 to generate w11 ⁇ s1 (t), and is multiplied by w21 to generate w21 ⁇ s1 (t).
  • the baseband signal 307B is multiplied by w12 to generate w12 ⁇ s2 (t), and is multiplied by w22 to generate w22 ⁇ s2 (t).
  • s1 (t) and s2 (t) are BPSK (Binary Phase Shift Keying), QPSK, 8PSK (8 Phase Shift Keying), 16 QAM, 32 QAM (32 Quadrature Amplitude). Modulation), 64QAM, 256QAM, 16APSK (16 Amplitude Phase Shift Keying) and other modulation system baseband signals.
  • both weighting combining sections perform weighting using a fixed precoding matrix.
  • the precoding matrix under the condition of the following expression (63) or expression (64), There is a method using formula (62).
  • is not limited to the equations (63) and (64), and other values, for example, ⁇ may be 1, and ⁇ is 0. ( ⁇ may be a real number greater than or equal to 0, and ⁇ may be an imaginary number).
  • the precoding matrix is a
  • the precoding matrix is not limited to the equation (62),
  • any one of a, b, c, and d may be “zero”.
  • a is zero, b, c, d is not zero, (2) b is zero, a, c, d is not zero, (3) c is zero, a, b , D may be non-zero, (4) d may be zero, and a, b, c may be non-zero.
  • two values of a, b, c, and d may be zero.
  • a method in which (1) a and d are zero, b and c are not zero, and (2) b and c are zero and a and d are not zero is effective.
  • the precoding matrix to be used may be set and changed, and the precoding matrix may be used fixedly.
  • Baseband signal switching section 6702 receives weighted signal 309A and weighted signal 316B as inputs, performs baseband signal switching, and outputs a replaced baseband signal 6701A and a replaced baseband signal 6701B. . Details of the replacement of the baseband signal are as described with reference to FIG.
  • the replacement of the baseband signal according to the present embodiment is different from the signal for replacement of the baseband signal shown in FIG.
  • replacement of baseband signals according to the present embodiment will be described with reference to FIG.
  • the in-phase I component I p1 (i) and the quadrature Q component of the signal 309A (p1 (i)) after weighted synthesis are represented as Q p1 (i), and the signal 316B after weighted synthesis (p2 (i))
  • the in-phase I component I p2 (i) and the quadrature Q component are represented as Q p2 (i).
  • the in-phase I component I q1 (i) and the quadrature Q component of the baseband signal 6701A (q1 (i)) after replacement are represented as Q q1 (i), and the in-phase of the baseband signal 6701B (q2 (i)) after replacement.
  • the I component I q2 (i) and the orthogonal Q component are expressed as Q q2 (i). (Where i represents the order of time or frequency (carrier)) In the example of Fig. 67, i is time, but Fig. 67 is used when the OFDM method is used as shown in Fig. 12.
  • i When applied, i may be a frequency (carrier), which will be described later.
  • the baseband signal switching unit 6702 replaces baseband components, The in-phase component of the baseband signal q1 (i) after replacement is I p1 (i), the quadrature component is Q p2 (i), and the in-phase component of the baseband signal q2 (i) after replacement is I p2 (i), Let the orthogonal component be Q p1 (i) The modulated signal corresponding to the baseband signal q1 (i) after replacement is transmitted from the transmission antenna 1, and the modulation signal corresponding to the baseband signal q2 (i) after replacement is transmitted from the transmission antenna 2 at the same time.
  • the modulated signal corresponding to the replaced baseband signal q1 (i) and the replaced baseband signal q2 (i) are transmitted from different antennas using the same frequency at the same time. Also good. Also, The in-phase component of the baseband signal q1 (i) after replacement is I p1 (i), the orthogonal component is I p2 (i), and the in-phase component of the baseband signal q2 (i) after replacement is Q p1 (i), Let the orthogonal component be Q p2 (i) The in-phase component of the baseband signal q1 (i) after replacement is I p2 (i), the orthogonal component is I p1 (i), and the in-phase component of the baseband signal q2 (i) after replacement is Q p1 (i), Let the orthogonal component be Q p2 (i) The in-phase component of the baseband signal q1 (i) after replacement is I p1 (i), the orthogonal component is I p2 (i), the in-phase component
  • the in-phase component of the baseband signal q1 (i) after replacement is I p1 (i + v), the quadrature component is Q p2 (i + w), the in-phase component of the baseband signal q2 (i) after replacement is I p2 (i + w), Let the orthogonal component be Q p1 (i + v) The in-phase component of the baseband signal q1 (i) after replacement is I p1 (i + v), the quadrature component is I p2 (i + w), the in-phase component of the baseband signal q2 (i) after replacement is Q p1 (i + v), Let the orthogonal component be Q p2 (i + w) The in-phase component of the baseband signal q1 (i) after replacement is I p2 (i + w), the quadrature component is I p1 (i + v), the in-phase component of the baseband signal q2 (i) after replacement is Q p1 (i +
  • the in-phase I component I q1 (i) and the quadrature Q component of the baseband signal 6701A (q1 (i)) after replacement are represented as Q q1 (i), and the in-phase of the baseband signal 6701B (q2 (i)) after replacement.
  • the I component I q2 (i) and the orthogonal Q component are expressed as Q q2 (i).
  • FIG. 68 is a diagram for explaining the above description.
  • the in-phase I component I p1 (i) and the quadrature Q component of the signal 309A (p1 (i)) after weighted synthesis are expressed as Q p1.
  • This is expressed as (i)
  • the in-phase I component I p2 (i) and the quadrature Q component of the weighted signal 316B (p2 (i)) are expressed as Q p2 (i).
  • the in-phase I component I q1 (i) and the quadrature Q component of the baseband signal 6701A (q1 (i)) after replacement are represented as Q q1 (i)
  • the in-phase of the baseband signal 6701B (q2 (i)) after replacement are expressed as Q q2 (i).
  • the I component I q2 (i) and the orthogonal Q component are expressed as Q q2 (i).
  • the I component I q2 (i) and the orthogonal Q component are represented by Q q2 (i) as described above.
  • the modulated signal corresponding to the baseband signal 6701A (q1 (i)) after replacement is transmitted from the transmission antenna 312A, and the modulation signal corresponding to the baseband signal 6701B (q2 (i)) after replacement is transmitted from the transmission antenna 312B at the same time.
  • the modulated signal corresponding to the replaced baseband signal 6701A (q1 (i)) and the modulated signal corresponding to the replaced baseband signal 6701B (q2 (i)) are transmitted from different antennas, such as transmitting using the same frequency.
  • the same frequency is used for transmission at the same time.
  • the phase changing unit 317B receives the baseband signal 6701B after replacement and information 315 regarding the signal processing method as inputs, and regularly changes and outputs the phase of the baseband signal 6701B after signal replacement. To change regularly, the phase is changed according to a predetermined phase change pattern at a predetermined cycle (for example, every n symbols (n is an integer of 1 or more) or every predetermined time). .
  • a predetermined phase change pattern for example, every n symbols (n is an integer of 1 or more) or every predetermined time).
  • Radio section 310B receives signal 309B after the phase change, performs processing such as quadrature modulation, band limitation, frequency conversion, and amplification, and outputs transmission signal 311B. Transmission signal 311B is output as a radio wave from antenna 312B.
  • the 67 has been described in the case where there are a plurality of encoders as shown in FIG. 3. However, FIG. 67 is different from FIG. 67 in that it includes an encoder and a distributor as shown in FIG. Are used as input signals to the interleaver, and thereafter, the same operation as described above can be performed even when the configuration shown in FIG. 67 is followed.
  • FIG. 5 shows an example of a frame configuration on the time axis of the transmission apparatus according to this embodiment.
  • Symbol 500_1 is a symbol for notifying the receiving apparatus of the transmission method. For example, an error correction method used for transmitting a data symbol, information on its coding rate, and a modulation method used for transmitting a data symbol The information etc. is transmitted.
  • Symbol 501_1 is a symbol for estimating channel fluctuation of modulated signal z1 (t) ⁇ where t is time ⁇ transmitted by the transmission apparatus.
  • Symbol 502_1 is a data symbol transmitted by modulated signal z1 (t) to symbol number u (on the time axis), and symbol 503_1 is a data symbol transmitted by modulated signal z1 (t) to symbol number u + 1.
  • Symbol 501_2 is a symbol for estimating channel fluctuation of modulated signal z2 (t) ⁇ where t is time ⁇ transmitted by the transmission apparatus.
  • Symbol 502_2 is a data symbol transmitted from modulated signal z2 (t) to symbol number u
  • symbol 503_2 is a data symbol transmitted from modulated signal z2 (t) to symbol number u + 1.
  • symbols at the same time are transmitted from the transmission antenna using the same (common) frequency.
  • the channel fluctuation of each transmission antenna of the transmission device and each antenna of the reception device is set to h11 (t), h12 (t), h21 (t), and h22 (t), respectively, and reception received by the reception antenna 505 # 1 of the reception device.
  • the signal is r1 (t) and the received signal received by the receiving antenna 505 # 2 of the receiving device is r2 (t)
  • the following relational expression is established.
  • FIG. 69 is a diagram related to the weighting method (precoding method), baseband signal replacement and phase changing method in the present embodiment, and weighting synthesis section 600 includes weighting synthesis section 308A in FIG. It is a weighting synthesis unit that integrates both of 308B.
  • the stream s1 (t) and the stream s2 (t) correspond to the baseband signals 307A and 307B of FIG. 3, that is, the bases according to the mapping of modulation schemes such as QPSK, 16QAM, and 64QAM.
  • the in-phase I component and quadrature Q component of the band signal is shown in FIG. 69, the stream s1 (t) and the stream s2 (t) correspond to the baseband signals 307A and 307B of FIG. 3, that is, the bases according to the mapping of modulation schemes such as QPSK, 16QAM, and 64QAM.
  • the in-phase I component and quadrature Q component of the band signal are examples of modulation schemes.
  • the stream s1 (t) represents the signal with symbol number u as s1 (u), the signal with symbol number u + 1 as s1 (u + 1), and so on.
  • a signal with a symbol number u is represented as s2 (u)
  • a signal with a symbol number u + 1 is represented as s2 (u + 1), and so on.
  • the weighting synthesis unit 600 receives the baseband signals 307A (s1 (t)) and 307B (s2 (t)) and the information 315 related to the signal processing method in FIG. And outputs the signals 309A (p1 (t)) and 316B (p2 (t)) after weighted synthesis in FIG.
  • the precoding matrix F can be expressed by the following equation.
  • the relation between the in-phase I component I q2 (i) of 6701B (q2 (i)), the orthogonal Q component Q q2 (i), and p1 (t) and p2 (t) is as described above. If the phase change equation by the phase change unit is y (t), the baseband signal 309B (q2 ′ (i)) after the phase change can be expressed by the following equation (70).
  • y (t) is an expression for changing the phase according to a predetermined method.
  • the phase change expression at time u is expressed by, for example, Expression (71). be able to.
  • phase change equation at time u + 1 can be expressed by equation (72), for example.
  • phase change equation at time u + k can be expressed by equation (73).
  • the regular phase change examples shown in the equations (71) to (73) are merely examples.
  • the period of regular phase change is not limited to four. If the number of periods increases, there is a possibility that the reception performance (more precisely, error correction performance) of the receiving apparatus can be improved accordingly. It's likely that you should avoid small values such as.)
  • phase change examples shown in the above formulas (71) to (73) the configuration in which the phase is sequentially rotated by a predetermined phase (in the above formula, by ⁇ / 2) is shown.
  • the phase may be changed randomly.
  • the phase by which y (t) is multiplied in the order as shown in Expression (74) or Expression (75) may be changed according to a predetermined cycle.
  • What is important in the regular change of the phase is that the phase of the modulation signal is changed regularly, and the degree of the phase to be changed is made as uniform as possible, for example, from ⁇ radians to ⁇ radians.
  • the baseband signal replacement unit replaces the baseband signal described above to change the phase.
  • the unit changes the phase of the input signal while regularly changing the degree of change.
  • the reception quality may be greatly improved.
  • the special precoding matrix depends on the phase and amplitude components of the direct wave when received. Different.
  • there is a certain rule in the LOS environment If the phase of the transmission signal is regularly changed in accordance with this rule, the data reception quality is greatly improved.
  • the present invention proposes a signal processing method that improves the LOS environment.
  • FIG. 7 shows an example of the configuration of receiving apparatus 700 in the present embodiment.
  • Radio section 703_X receives reception signal 702_X received by antenna 701_X, performs processing such as frequency conversion and orthogonal demodulation, and outputs baseband signal 704_X.
  • Channel fluctuation estimation section 705_1 in modulated signal z1 transmitted by the transmission apparatus receives baseband signal 704_X, extracts channel estimation reference symbol 501_1 in FIG. 5, and obtains a value corresponding to h11 in equation (66).
  • the channel estimation signal 706_1 is output.
  • Channel fluctuation estimation section 705_2 in modulated signal z2 transmitted by the transmission device receives baseband signal 704_X, extracts channel estimation reference symbol 501_2 in FIG. 5, and obtains a value corresponding to h12 in equation (66).
  • the channel estimation signal 706_2 is output.
  • Radio section 703_Y receives reception signal 702_Y received by antenna 701_Y, performs processing such as frequency conversion and orthogonal demodulation, and outputs baseband signal 704_Y.
  • Channel fluctuation estimation section 707_1 in modulated signal z1 transmitted by the transmission apparatus receives baseband signal 704_Y as input, extracts channel estimation reference symbol 501_1 in FIG. 5, and obtains a value corresponding to h21 in equation (66).
  • the channel estimation signal 708_1 is output.
  • Channel fluctuation estimation section 707_2 in modulated signal z2 transmitted by the transmission apparatus receives baseband signal 704_Y, extracts channel estimation reference symbol 501_2 in FIG. 5, and obtains a value corresponding to h22 in equation (66).
  • the channel estimation signal 708_2 is output.
  • Control information decoding section 709 receives baseband signals 704_X and 704_Y, detects symbol 500_1 for notifying the transmission method of FIG. 5, and outputs a signal 710 related to the transmission method information notified by the transmission apparatus.
  • the signal processing unit 711 receives the baseband signals 704_X and 704_Y, the channel estimation signals 706_1, 706_2, 708_1, and 708_2, and the signal 710 related to the transmission method notified by the transmission apparatus, performs detection and decoding, and performs reception data 712_1 and 712_2 are output.
  • FIG. 8 shows an example of the configuration of the signal processing unit 711 in the present embodiment.
  • FIG. 8 mainly includes an INNER MIMO detection unit, a soft-in / soft-out decoder, and a coefficient generation unit.
  • the details of the iterative decoding method in this configuration are described in Non-Patent Document 2 and Non-Patent Document 3, but the MIMO transmission methods described in Non-Patent Document 2 and Non-Patent Document 3 are spatial multiplexing MIMO transmissions.
  • the transmission scheme in this embodiment is a scheme, it is a MIMO transmission scheme in which the phase of a signal is regularly changed with time, a precoding matrix is used, and a baseband signal is replaced.
  • the point is different from Non-Patent Document 2 and Non-Patent Document 3.
  • the (channel) matrix in equation (66) is H (t)
  • the precoding weight matrix in FIG. 69 is F (where the precoding matrix is a fixed one that is not changed in one received signal)
  • the coefficient generation unit 819 in FIG. 8 transmits a signal 818 related to information on the transmission method notified by the transmission apparatus (information for specifying a fixed precoding matrix and a phase change pattern when the phase is changed). (Corresponding to 710 in FIG. 7) is input, and a signal 820 relating to signal processing method information is output.
  • the INNER MIMO detection unit 803 receives a signal 820 related to information on the signal processing method, and uses this signal to perform iterative detection and decoding. The operation will be described.
  • the signal processing unit configured as shown in FIG. 8 needs to perform a processing method as shown in FIG. 10 in order to perform iterative decoding (iterative detection).
  • one codeword (or one frame) of the modulation signal (stream) s1 and one codeword (or one frame) of the modulation signal (stream) s2 are decoded.
  • one codeword (or one frame) of the modulated signal (stream) s1 and one codeword (or one frame) of the modulated signal (stream) s2 A log-likelihood ratio (LLR) is obtained.
  • detection and decoding are performed again using the LLR. This operation is performed a plurality of times (this operation is called iterative decoding (iterative detection)).
  • this operation is called iterative decoding (iterative detection)).
  • the description will focus on a method for creating a log likelihood ratio (LLR) of a symbol at a specific time in one frame.
  • the storage unit 815 has a baseband signal 801X (corresponding to the baseband signal 704_X in FIG. 7), a channel estimation signal group 802X (corresponding to the channel estimation signals 706_1 and 706_2 in FIG. 7), and a baseband.
  • the signal 801Y (corresponding to the baseband signal 704_Y in FIG. 7) and the channel estimation signal group 802Y (corresponding to the channel estimation signals 708_1 and 708_2 in FIG. 7) are input to realize iterative decoding (iterative detection).
  • the calculated matrix is stored as a modified channel signal group.
  • the storage unit 815 outputs the above signals as a baseband signal 816X, a modified channel estimation signal group 817X, a baseband signal 816Y, and a modified channel estimation signal group 817Y when necessary.
  • the INNER MIMO detection unit 803 receives the baseband signal 801X, the channel estimation signal group 802X, the baseband signal 801Y, and the channel estimation signal group 802Y.
  • the modulation scheme of the modulation signal (stream) s1 and the modulation signal (stream) s2 will be described as 16QAM.
  • the INNER MIMO detection unit 803 first obtains candidate signal points corresponding to the baseband signal 801X from the channel estimation signal group 802X and the channel estimation signal group 802Y. The state at that time is shown in FIG. In FIG. 11, ⁇ (black circle) is a candidate signal point on the IQ plane. Since the modulation method is 16QAM, there are 256 candidate signal points. (However, since FIG. 11 shows an image diagram, all 256 candidate signal points are not shown.) Here, 4 bits transmitted by the modulation signal s1 are b0, b1, b2, b3, and the modulation signal s2.
  • step b4 Assuming that the 4 bits transmitted in step b4 are b4, b5, b6, b7, there are candidate signal points corresponding to (b0, b1, b2, b3, b4, b5, b6, b7) in FIG. Then, the squared Euclidean distance between the reception signal point 1101 (corresponding to the baseband signal 801X) and each candidate signal point is obtained. Then, each square Euclidean distance is divided by the noise variance ⁇ 2 .
  • Each baseband signal and modulated signals s1 and s2 are complex signals.
  • candidate signal points corresponding to the baseband signal 801Y are obtained from the channel estimation signal group 802X and the channel estimation signal group 802Y, and the square Euclidean distance from the reception signal point (corresponding to the baseband signal 801Y) is obtained.
  • the square Euclidean distance is divided by the noise variance ⁇ 2 . Therefore, a value obtained by dividing the candidate signal point corresponding to (b0, b1, b2, b3, b4, b5, b6, b7) and the received signal point squared Euclidean distance by the variance of noise is represented by E Y (b0, b1, b2 , B3, b4, b5, b6, b7).
  • E X (b0, b1, b2, b3, b4, b5, b6, b7) + E Y (b0, b1, b2, b3, b4, b5, b6, b7) E (b0, b1, b2, b3) , B4, b5, b6, b7).
  • the INNER MIMO detection unit 803 outputs E (b0, b1, b2, b3, b4, b5, b6, b7) as a signal 804.
  • Log likelihood calculation section 805A receives signal 804, calculates the log likelihood of bits b0 and b1, and b2 and b3, and outputs log likelihood signal 806A. However, in the calculation of the log likelihood, the log likelihood when “1” and the log likelihood when “0” are calculated.
  • the calculation method is as shown in Expression (28), Expression (29), and Expression (30), and details are shown in Non-Patent Document 2 and Non-Patent Document 3.
  • log likelihood calculation section 805B receives signal 804 as input, calculates log likelihood of bits b4 and b5 and b6 and b7, and outputs log likelihood signal 806B.
  • the deinterleaver (807A) receives the log likelihood signal 806A, performs deinterleaving corresponding to the interleaver (interleaver (304A) in FIG. 67), and outputs a log likelihood signal 808A after deinterleaving.
  • the deinterleaver (807B) receives the log likelihood signal 806B, performs deinterleaving corresponding to the interleaver (interleaver (304B in FIG. 67)), and outputs a log likelihood signal 808B after deinterleaving.
  • Log-likelihood ratio calculation section 809A receives log-likelihood signal 808A after deinterleaving, and calculates the log-likelihood ratio (LLR: Log-Likelihood Ratio) of bits encoded by encoder 302A in FIG.
  • LLR Log-Likelihood Ratio
  • log-likelihood ratio calculation section 809B receives log-likelihood signal 808B after deinterleaving and inputs the log-likelihood ratio (LLR: Log-Likelihood Ratio) of bits encoded by encoder 302B in FIG. ) And a log likelihood ratio signal 810B is output.
  • the soft-in / soft-out decoder 811A receives the log likelihood ratio signal 810A, performs decoding, and outputs a log likelihood ratio 812A after decoding.
  • Soft-in / soft-out decoder 811B receives log-likelihood ratio signal 810B as input, performs decoding, and outputs decoded log-likelihood ratio 812B.
  • the interleaver (813A) receives the log-likelihood ratio 812A after decoding obtained in the (k-1) th soft-in / soft-out decoding, performs interleaving, and outputs a log-likelihood ratio 814A after interleaving.
  • the interleaving pattern of the interleaver (813A) is the same as the interleaving pattern of the interleaver (304A) of FIG.
  • the interleaver (813B) receives the log likelihood ratio 812B after decoding obtained in the (k-1) th soft-in / soft-out decoding, performs interleaving, and outputs the log likelihood ratio 814B after interleaving. .
  • the interleaving pattern of the interleaver (813B) is the same as the interleaving pattern of the interleaver (304B) of FIG.
  • the INNER MIMO detection unit 803 inputs a baseband signal 816X, a modified channel estimation signal group 817X, a baseband signal 816Y, a modified channel estimation signal group 817Y, an interleaved log likelihood ratio 814A, and an interleaved log likelihood ratio 814B. And Here, not the baseband signal 801X, the channel estimation signal group 802X, the baseband signal 801Y, and the channel estimation signal group 802Y, but the baseband signal 816X, the modified channel estimation signal group 817X, the baseband signal 816Y, and the modified channel estimation signal group 817Y. Is used because of a delay time due to iterative decoding.
  • the difference between the operation at the time of iterative decoding of the INNER MIMO detection unit 803 and the operation at the time of initial detection is that the log likelihood ratio 814A after interleaving and the log likelihood ratio 814B after interleaving are used in signal processing. It is.
  • the INNER MIMO detection unit 803 first obtains E (b0, b1, b2, b3, b4, b5, b6, b7) as in the initial detection.
  • coefficients corresponding to Equation (11) and Equation (32) are obtained from the log likelihood ratio 814A after interleaving and the log likelihood ratio 914B after interleaving.
  • E (b0, b1, b2, b3, b4, b5, b6, b7) is corrected using the obtained coefficient, and the value is changed to E ′ (b0, b1, b2, b3, b4, b5). , B6, b7) and output as a signal 804.
  • Log likelihood calculation section 805A receives signal 804, calculates the log likelihood of bits b0 and b1, and b2 and b3, and outputs log likelihood signal 806A. However, in the calculation of the log likelihood, the log likelihood when “1” and the log likelihood when “0” are calculated.
  • the calculation method is as shown in Expression (31), Expression (Expression 32), Expression (33), Expression (34), and Expression (35), and is shown in Non-Patent Document 2 and Non-Patent Document 3. Yes.
  • log likelihood calculation section 805B receives signal 804 as input, calculates log likelihood of bits b4 and b5 and b6 and b7, and outputs log likelihood signal 806B.
  • the operation after the deinterleaver is the same as the initial detection.
  • FIG. 8 shows the configuration of the signal processing unit in the case of performing iterative detection. However, iterative detection is not necessarily an essential configuration for obtaining good reception quality, and is a component required only for iterative detection.
  • the interleaver 813A or 813B may be omitted. At this time, the INNER MIMO detection unit 803 does not perform repetitive detection.
  • FIG. 9 shows a configuration of a signal processing unit different from that in FIG. 8, and is a signal processing unit for a modulated signal transmitted from a transmission apparatus to which the encoder and distribution unit of FIG. 8 differs from FIG. 8 in the number of soft-in / soft-out decoders.
  • the soft-in / soft-out decoder 901 receives log likelihood ratio signals 810A and 810B as inputs, performs decoding, and performs decoding.
  • a log likelihood ratio 902 is output.
  • Distribution section 903 receives log likelihood ratio 902 after decoding as input, and performs distribution. Other parts are the same as those in FIG.
  • the transmission apparatus of the MIMO transmission system transmits a plurality of modulated signals from a plurality of antennas as in the present embodiment
  • the precoding matrix is multiplied and the phase is changed with time.
  • the operation of the receiving apparatus is described with the number of antennas being limited, but it can be similarly implemented even when the number of antennas is increased. That is, the number of antennas in the receiving apparatus does not affect the operation and effect of the present embodiment.
  • the coding is not limited to the LDPC code, and the decoding method is not limited to the example of the sum-product decoding as the soft-in / soft-out decoder.
  • the decoding method is not limited to the example of the sum-product decoding as the soft-in / soft-out decoder.
  • There are other soft-in / soft-out decoding methods for example, BCJR algorithm, SOVA algorithm, Max-log-MAP algorithm, and the like. Details are described in Non-Patent Document 6.
  • the single carrier method has been described as an example.
  • the present invention is not limited to this, and the same can be implemented even when multicarrier transmission is performed. Therefore, for example, the case of using the spread spectrum communication system, the OFDM system, the SC-FDMA, the SC-OFDM system, the wavelet OFDM system shown in Non-Patent Document 7, etc. can be similarly implemented.
  • symbols other than data symbols for example, pilot symbols (preamble, unique word, etc.), control information transmission symbols, and the like may be arranged in any manner.
  • FIG. 70 shows the configuration of a transmission apparatus when the OFDM method is used. 70 that operate in the same manner as in FIGS. 3, 12, and 67 are given the same reference numerals.
  • the OFDM scheme-related processing unit 1201A receives the weighted signal 309A, performs OFDM scheme-related processing, and outputs a transmission signal 1202A.
  • the OFDM scheme-related processing unit 1201B receives the signal 309B after the phase change and outputs a transmission signal 1202B.
  • FIG. 13 shows an example of the configuration after the OFDM scheme-related processing units 1201A and 1201B in FIG. 70.
  • the portions related to 1201A to 312A in FIG. Are 1301B to 1310B.
  • the serial / parallel converter 1302A performs serial / parallel conversion on the baseband signal 1301A after replacement (corresponding to the baseband signal 6701A after replacement in FIG. 70), and outputs a parallel signal 1303A.
  • Rearranger 1304A receives parallel signal 1303A as input, performs rearrangement, and outputs rearranged signal 1305A.
  • the rearrangement will be described in detail later.
  • the inverse fast Fourier transform unit 1306A receives the rearranged signal 1305A, performs inverse fast Fourier transform, and outputs a signal 1307A after the inverse Fourier transform.
  • Radio section 1308A receives signal 1307A after inverse Fourier transform as input, performs processing such as frequency conversion and amplification, outputs modulated signal 1309A, and modulated signal 1309A is output from antenna 1310A as a radio wave.
  • the serial / parallel converter 1302B performs serial / parallel conversion on the signal 1301B whose phase has been changed (corresponding to the signal 309B after the phase change in FIG. 12), and outputs a parallel signal 1303B.
  • Rearranger 1304B receives parallel signal 1303B as input, performs rearrangement, and outputs rearranged signal 1305B. The rearrangement will be described in detail later.
  • the inverse fast Fourier transform unit 1306B receives the rearranged signal 1305B, performs an inverse fast Fourier transform, and outputs a signal 1307B after the inverse Fourier transform.
  • Radio section 1308B receives signal 1307B after inverse Fourier transform as input, performs processing such as frequency conversion and amplification, outputs modulated signal 1309B, and modulated signal 1309B is output as a radio wave from antenna 1310B.
  • the phase 67 is not a transmission system using multicarriers, and therefore, the phase is changed so as to be four periods as shown in FIG. 69, and the symbols after the phase change are arranged in the time axis direction.
  • a multi-carrier transmission scheme such as the OFDM scheme as shown in FIG. 70 is used, naturally, as shown in FIG.
  • a method of arranging using the frequency axis direction or both the frequency axis and the time axis is conceivable. Hereinafter, this point will be described.
  • FIG. 14 shows an example of the symbol rearrangement method in the rearrangement units 1301A and 1301B in FIG. 13 at the horizontal axis frequency and the vertical axis time, and the frequency axis ranges from (sub) carrier 0 to (sub) carrier 9.
  • the modulation signals z1 and z2 use the same frequency band at the same time (time), and
  • FIG. 14A shows a symbol rearrangement method of the modulation signal z1, and
  • FIG. Indicates a rearrangement method of symbols of the modulation signal z2. Numbers such as # 0, # 1, # 2, # 3,... Are sequentially assigned to the symbols of the baseband signal 1301A after replacement which are input to the serial / parallel conversion unit 1302A.
  • # 0, # 1, # 2, and # 3 are equivalent to one period.
  • # 4n, # 4n + 1, # 4n + 2, # 4n + 3 (n is an integer of 0 or more) is one cycle.
  • symbols # 0, # 1, # 2, # 3,... are arranged in order from carrier 0, and symbols # 0 to # 9 are arranged at time $ 1. Thereafter, symbols # 10 to # 19 are regularly arranged such that they are arranged at time $ 2.
  • the modulation signals z1 and z2 are complex signals.
  • # 0, # 1, # 2, # 3,... are sequentially assigned to the symbols of the signal 1301B after the phase input to the serial / parallel conversion unit 1302B is changed.
  • # 0, # 1, # 2, and # 3 are changed in different phases, and # 0, # 1, # 2, and # 3 are equal. This is the period.
  • # 4n, # 4n + 1, # 4n + 2, and # 4n + 3 are changed in phase, and # 4n, # 4n + 1, # 4n + 2, and # 4n + 3 are one. This is the period.
  • a symbol group 1402 shown in FIG. 14B is a symbol for one cycle when the phase changing method shown in FIG. 69 is used, and symbol # 0 is a symbol when using the phase at time u in FIG.
  • symbol # 1 is a symbol when the phase at time u + 1 in FIG. 69 is used
  • symbol # 2 is a symbol when the phase at time u + 2 in FIG. 69 is used
  • symbol # 3 is the symbol in FIG.
  • symbol #x when x mod 4 (the remainder when x is divided by 4, and therefore mod: modulo) is 0, symbol #x is a symbol when the phase at time u in FIG. 69 is used. Yes, when x mod 4 is 1, symbol #x is a symbol when the phase at time u + 1 in FIG. 69 is used, and when x mod 4 is 2, symbol #x has the phase at time u + 2 in FIG. When x mod 4 is 3, symbol #x is a symbol when the phase at time u + 3 in FIG. 69 is used.
  • the phase of modulated signal z1 shown in FIG. 14A is not changed.
  • symbols can be arranged in the frequency axis direction.
  • the way of arranging symbols is not limited to the arrangement as shown in FIG. Another example will be described with reference to FIGS. 15 and 16.
  • FIG. 15 shows an example of the symbol rearrangement method in the rearrangement units 1301A and 1301B in FIG. 13 at the horizontal axis frequency and the vertical axis time different from FIG. 14, and FIG. 15A shows the modulation signal z1.
  • FIG. 15B shows a symbol rearrangement method of the modulation signal z2.
  • 15A and 15B is different from FIG. 14 in that the symbol rearrangement method of the modulation signal z1 and the symbol rearrangement method of the modulation signal z2 are different.
  • FIG. 0 to # 5 are allocated from carrier 4 to carrier 9
  • symbols # 6 to # 9 are allocated to carriers 0 to 3
  • symbols # 10 to # 19 are allocated to each carrier according to the same rule.
  • the symbol group 1502 shown in FIG. 15B is a symbol for one period when the phase changing method shown in FIG. 6 is used.
  • FIG. 16 shows an example of a symbol rearrangement method in the rearrangement units 1301A and 1301B in FIG. 13 at a horizontal frequency and vertical axis time different from FIG. 14, and FIG. 16 (A) shows the modulation signal z1.
  • FIGS. 16A and 16B differ from FIG. 14 in that symbols are arranged in order on the carrier in FIG. 14, whereas symbols are not arranged in order on the carrier in FIG. Is a point.
  • the rearrangement method of the symbols of the modulation signal z1 and the rearrangement method of the modulation signal z2 may be different.
  • FIG. 17 shows an example of a symbol rearrangement method in rearrangement units 1301A and 1301B in FIG. 13 at a horizontal axis frequency and a vertical axis time different from those in FIGS. 14 to 16, and FIG.
  • the symbol rearrangement method for the signal z1 and FIG. 17B shows the symbol rearrangement method for the modulation signal z2.
  • symbols are arranged in the frequency axis direction, but in FIG. 17, symbols are arranged using both the frequency and time axes.
  • a symbol group 1702 shown in FIG. 17 is a symbol for one period when using the phase changing method (thus, eight symbols), symbol # 0 is a symbol when using the phase at time u, and symbol # 0 1 is a symbol when using the phase at time u + 1, symbol # 2 is a symbol when using the phase at time u + 2, and symbol # 3 is a symbol when using the phase at time u + 3.
  • # 4 is a symbol when using the phase at time u + 4
  • symbol # 5 is a symbol when using the phase at time u + 5
  • symbol # 6 is a symbol when using the phase at time u + 6
  • Symbol # 7 is a symbol when the phase at time u + 7 is used.
  • symbol #x when x mod 8 is 0, symbol #x is a symbol when the phase at time u is used, and when x mod 8 is 1, symbol #x uses the phase at time u + 1
  • symbol #x is a symbol when the phase at time u + 2 is used, and when x mod 8 is 3, symbol #x uses the phase at time u + 3
  • symbol #x is a symbol when the phase at time u + 4 is used, and when x mod 8 is 5, symbol #x uses the phase at time u + 5
  • symbol #x is a symbol when the phase at time u + 6 is used, and symbol when x mod 8 is 7 x is a symbol when using the phase of the time u + 7.
  • the number of symbols per minute is m ⁇ n symbols (that is, there are m ⁇ n types of phases to be multiplied) n slots in the frequency axis direction (number of carriers) used to arrange symbols for one period, the time axis If the slot used in the direction is m, m> n is preferable. This is because the phase of the direct wave is more gradual in fluctuation in the time axis direction than in the frequency axis direction.
  • FIG. 18 shows an example of the symbol rearrangement method in the rearrangement units 1301A and 1301B in FIG. 13 at the horizontal axis frequency and the vertical axis time different from FIG. 17, and FIG. 18 (A) shows the modulation signal z1.
  • FIG. 18B shows a symbol rearrangement method of the modulation signal z2.
  • symbols are arranged using both the frequency and the time axis as in FIG. 17, but the difference from FIG. 17 is that in FIG. 17, the frequency direction is prioritized, and then the time axis direction.
  • the time axis direction is prioritized, and then symbols are arranged in the time axis direction.
  • a symbol group 1802 is a symbol for one period when the phase changing method is used.
  • FIGS. 17 and 18 similarly to FIG. 15, even if the symbol arrangement method of the modulation signal z ⁇ b> 1 and the symbol arrangement method of the modulation signal z ⁇ b> 2 are different, the implementation can be similarly performed. An effect that reception quality can be obtained can be obtained. Further, in FIGS. 17 and 18, even if symbols are not sequentially arranged as in FIG. 16, it can be implemented in the same manner, and an effect that high reception quality can be obtained can be obtained. it can.
  • FIG. 22 shows an example of the symbol rearrangement method in the rearrangement units 1301A and 130B in FIG. 13 at the horizontal axis frequency and the vertical axis time different from the above.
  • the phase at times u to u + 3 in FIG. 69 is changed.
  • the phase change using the phase at the time u in the # 1, the phase change using the phase at the time u + 1, in # 2, the phase change using the phase at the time u + 2, and in the # 3 at the time u + 3 It is assumed that the phase is changed using the phase.
  • the phase change using the phase at time u is used for the symbol # 4
  • the phase change using the phase at time u + 1 is used for the symbol # 5
  • the phase at time u + 2 is used for # 6.
  • # 7 the phase change using the phase at time u + 3 is performed.
  • phase change as described above was performed for the symbol at time $ 1, since the cyclic shift is performed in the time axis direction, the phase change is performed as follows for the symbol groups 2201, 2202, 2203, and 2204. Will do.
  • the phase change using the phase of the time u is used for the symbol # 0
  • the phase change using the phase of the time u + 1 is used for the # 9
  • the phase change using the phase of the time u + 2 is used for the # 18.
  • the phase is changed using the phase at time u + 3.
  • the phase change using the phase of the time u is used for the symbol # 28
  • the phase change using the phase of the time u + 1 is used for the # 1
  • the phase change using the phase of the time u + 2 is used for the # 10
  • the phase is changed using the phase at time u + 3.
  • the phase change using the phase at time u is performed for the symbol # 20
  • the phase change using the phase at time u + 1 is performed at # 29
  • the phase change using the phase at time u + 2 is performed at # 2.
  • the phase change using the phase at time u + 3 is performed.
  • the phase change using the phase of the time u is used for the symbol # 12
  • the phase change using the phase of the time u + 1 is used for the symbol # 21
  • the phase change using the phase of the time u + 2 is used for the # 30.
  • the phase change using the phase at time u + 3 is performed.
  • the feature in FIG. 22 is that, for example, when attention is paid to the symbol # 11, both the adjacent symbols (# 10 and # 12) in the frequency axis direction at the same time change the phase using a phase different from # 11.
  • both the symbols (# 2 and # 20) adjacent to each other in the time axis direction of the same carrier of the symbol # 11 are changed in phase using a phase different from # 11.
  • the above-mentioned characteristics are realized by providing the characteristic of cyclically shifting the symbol arrangement order.
  • the phase changing unit 317A receives the replaced baseband signal 6701A (q1 (i)), and the phase changing unit 317B receives the replaced baseband signal 6701B (q2 (i)). It will be.
  • FIG. 31 shows an example of a frame configuration of a part of symbols of a signal on the time-frequency axis when a multicarrier scheme such as the OFDM scheme is used in a transmission scheme that regularly changes the phase.
  • FIG. 31 shows a frame configuration of the modulated signal z2 ′ corresponding to the baseband signal after replacement, which is an input of the phase changing unit 317B shown in FIG. 67, and one square is a symbol (however, precoding is performed). Therefore, it is normal that both signals of s1 and s2 are included, but depending on the configuration of the precoding matrix, there may be only one signal of s1 and s2.
  • carrier 2 the channel state of the most adjacent symbol in time $ 2, that is, the symbol 3103 at time $ 1 and the symbol 3101 at time $ 3 of carrier 2 is the carrier state of symbol 610a at carrier 2 and time $ 2. It is highly correlated with channel conditions.
  • each channel state of the symbols 3101, 3102, 3103, and 3104 has a very high correlation with the channel state of the symbol 3100.
  • N types of phases are prepared as phases to be multiplied in a transmission method that regularly changes phases.
  • e j0 is added to the symbol shown in FIG. 31. This is because the signal z2 ′ in FIG. 6 in this symbol is multiplied by “e j0 ” to change the phase.
  • a high data reception quality is obtained on the receiving apparatus side by utilizing the high correlation between the channel states of symbols adjacent in the frequency axis direction and / or symbols adjacent in the time axis direction. Disclose the symbol arrangement of the symbols whose phase has been changed. Conditions # D1-1 and # D1-2 are conceivable as conditions for obtaining high data reception quality on the receiving side. ⁇ Condition # D1-1> As shown in FIG. 69, when a multi-carrier transmission scheme such as OFDM is used in a transmission method in which the phase is regularly changed with respect to the baseband signal q2 after replacement, time X and carrier Y are used for data transmission.
  • time X and carrier Y are used for data transmission. If the symbols adjacent to each other in the frequency axis direction, ie, time X ⁇ carrier Y ⁇ 1 and time X ⁇ carrier Y + 1 are both data symbols, these three data
  • the baseband signal q2 after replacement corresponding to the symbol that is, the baseband signal q2 after replacement at time X ⁇ carrier Y, time X ⁇ carrier Y-1 and time X ⁇ carrier Y + 1, all have different phase changes. Is done.
  • ⁇ Condition # D1-1> there should be a data symbol that satisfies ⁇ condition # D1-2>.
  • symbol A There is a certain symbol (hereinafter referred to as symbol A) in the transmission signal, and the channel state of each symbol temporally adjacent to the symbol A is highly correlated with the channel state of symbol A as described above.
  • symbol A has poor reception quality in the LOS environment (although high reception quality is obtained as an SNR, the phase relationship of direct waves is poor). It is very likely that good reception quality can be obtained with the two symbols adjacent to the remaining symbol A even if the reception quality is poor because of this situation, and as a result, after error correction decoding. Can obtain good reception quality.
  • symbol A there is a symbol (hereinafter referred to as symbol A) in the transmission signal, and the channel state of each symbol adjacent to the symbol A in frequency is highly correlated with the channel state of symbol A as described above. . Therefore, if different phases are used for three symbols that are adjacent in terms of frequency, symbol A has poor reception quality in the LOS environment (although it has high reception quality as an SNR, the direct wave phase relationship is poor). It is very likely that good reception quality can be obtained with the two symbols adjacent to the remaining symbol A even if the reception quality is poor because of this situation, and as a result, after error correction decoding. Can obtain good reception quality.
  • ⁇ Condition # D1-1> and ⁇ Condition # D1-2> may further improve the data reception quality in the receiving apparatus. Therefore, the following conditions can be derived.
  • ⁇ Condition # D1-3> As shown in FIG. 69, when a multi-carrier transmission scheme such as OFDM is used in a transmission method in which the phase is regularly changed with respect to the baseband signal q2 after replacement, time X and carrier Y are used for data transmission. Symbols (hereinafter referred to as data symbols), and adjacent symbols in the time axis direction, that is, time X ⁇ 1 ⁇ carrier Y and time X + 1 ⁇ carrier Y are both data symbols, and in the frequency axis direction.
  • the time X ⁇ carrier Y ⁇ 1 and the time X ⁇ carrier Y + 1 are both data symbols
  • the baseband signal q2 after replacement corresponding to these five data symbols ie, the time X ⁇ Carrier Y and time X-1 Carrier Y and time X + 1 Carrier Y and time X Carrier Y-1
  • the baseband signal q2 after each replacement in beauty time X ⁇ carrier Y + 1, either a different phase changes are made.
  • phase change will be defined from 0 radians to 2 ⁇ radians.
  • the phase change applied to the baseband signal q2 after replacement shown in FIG. 69 is changed to e j ⁇ X, Y.
  • ⁇ X, Y ⁇ ⁇ X, Y ⁇ 1 and ⁇ X, Y ⁇ ⁇ X, Y + 1 and ⁇ X, Y ⁇ 1 ⁇ ⁇ X ⁇ 1, Y + 1 are In ⁇ Condition # D1-3>, ⁇ X, Y ⁇ ⁇ X ⁇ 1, Y and ⁇ X, Y ⁇ ⁇ X + 1, Y and ⁇ X, Y ⁇ ⁇ X, Y ⁇ 1 and ⁇ X, Y ⁇ ⁇ X, Y + 1 and ⁇ X-1, Y ⁇ ⁇ X + 1, Y and ⁇ X-1, Y ⁇ ⁇ X, Y-1 and ⁇ X-1, Y ⁇ ⁇ X, Y + 1 and ⁇ X + 1, Y ⁇ ⁇ X, Y ⁇ ⁇ X, Y + 1 and ⁇ X + 1, Y ⁇ ⁇ X, Y ⁇ 1 and ⁇ X
  • FIG. 31 shows an example of ⁇ Condition # D1-3>.
  • FIG. 32 An example of symbol arrangement obtained by changing the phase under this condition is shown in FIG. 32, in any data symbol, the degree of the phase changed with respect to the symbols whose phases are adjacent in both the frequency axis direction and the time axis direction is different from each other. ing. By doing in this way, the error correction capability in the receiving apparatus can be further improved.
  • phase change is performed on the two baseband signals q2 after replacement described above (see FIG. 68)
  • a phase change is given to both the baseband signal q1 after replacement and the baseband signal q2 after replacement, there are several methods for phase change. This will be described in detail.
  • the phase change of the baseband signal q2 after replacement is performed as shown in FIG. 32 as described above.
  • the phase change of the baseband signal q2 after replacement is set to a period 10.
  • the (sub) carrier 1 is replaced with a baseband after replacement.
  • the phase change applied to the signal q2 is changed with time. (In FIG. 32, such a change is made, but the period 10 may be used and another phase change method may be used.)
  • the phase change of the baseband signal q1 after replacement is as shown in FIG.
  • the value for changing the phase for one period of period 10 is constant.
  • the value of the phase change of the baseband signal q1 after replacement is ej0 , and the next (replacement)
  • the value of the phase change of the baseband signal q1 after the replacement is e j ⁇ / 9 , and so on.
  • the symbol “e j0 ” is attached to the symbol illustrated in FIG. 33, and this is obtained by multiplying the signal q1 in FIG. 26 in this symbol by “e j0 ” and the phase. Means changed.
  • the phase change of the baseband signal q1 after the replacement is performed by changing the phase of the baseband signal q2 after the precoding after changing the phase, with the value of the phase change for one period of 10 being constant. The value is changed together with the number for one cycle. (As described above, in FIG. 33, e j0 is set for the first period, and e j ⁇ / 9 ,...
  • the phase change of the baseband signal q2 after replacement is the cycle 10, but both the phase change of the baseband signal q1 after replacement and the phase change of the baseband signal q2 after replacement are considered.
  • the effect that the period can be made larger than 10 can be obtained. As a result, there is a possibility that the reception quality of the data of the receiving apparatus is improved.
  • the phase change of the baseband signal q2 after replacement is performed as shown in FIG. 32 as described above.
  • the phase change of the baseband signal q2 after replacement is set to a period 10.
  • the (sub) carrier 1 is replaced with a baseband after replacement.
  • the phase change applied to the signal q2 is changed with time. (In FIG. 32, such a change is made, but the period 10 may be used and another phase change method may be used.)
  • the phase change of the baseband signal q1 after replacement is as shown in FIG.
  • the phase change of the baseband signal q ⁇ b> 2 after replacement is performed in a period 3 different from the period 10.
  • the symbol “e j0 ” is attached to the symbol illustrated in FIG. 30, and this is obtained by multiplying the baseband signal q 1 after replacement in this symbol by “e j0 ”. It means that the phase has been changed.
  • the phase change of the baseband signal q2 after replacement is the cycle 10, but both the phase change of the baseband signal q1 after replacement and the phase change of the baseband signal q2 after replacement are considered.
  • the cycle is 30, and it is possible to obtain an effect that the cycle when the phase change of the baseband signal q1 after replacement and the phase change of the baseband signal q2 after replacement are taken into consideration can be made larger than 10. it can.
  • phase change is performed in the frequency axis direction, phase change is performed in the time axis direction, and phase change is performed in the time-frequency block.
  • a pilot symbol SP (Scattered Pilot)
  • a symbol for transmitting control information or the like may be inserted between data symbols. The phase change in this case will be described in detail.
  • FIG. 47 shows a frame configuration on the time-frequency axis of the modulation signal (baseband signal q1 after replacement) z1 or z1 ′ and the modulation signal (baseband signal q2 after replacement) z2 ′.
  • 4701 indicates a pilot symbol and 4702 indicates a data symbol
  • the data symbol 4702 is a baseband signal after replacement or a symbol subjected to phase change with the baseband signal after replacement.
  • FIG. 47 shows a symbol arrangement in the case where the phase is changed with respect to the baseband signal q2 after replacement as shown in FIG. 69 (the phase change is not performed on the baseband signal q1 after replacement).
  • FIG. 69 shows the case where the phase change is performed in the time axis direction, but in FIG. 69, by replacing the time t with the carrier f, this corresponds to performing the phase change in the frequency direction.
  • time t time t and frequency f
  • the base after replacement in FIG. the numerical values set forth in a symbol of the band signals q 2 shows a phase change value.
  • the symbol of the baseband signal q1 (z1) after the replacement in FIG. 47 does not change the phase, and thus no numerical value is described.
  • phase change for the baseband signal q2 after replacement is performed on the data symbols, that is, the symbols subjected to precoding and baseband signal replacement. (Here, it is described as a symbol, but the symbol described here includes both the s1 symbol and the s2 symbol because it has been pre-coded). , Z2 ′ is not subjected to phase change.
  • FIG. 48 shows a frame configuration on the time-frequency axis of the modulation signal (baseband signal q1 after replacement) z1 or z1 ′ and the modulation signal (baseband signal q2 after replacement) z2 ′.
  • 4701 indicates a pilot symbol
  • 4702 indicates a data symbol
  • the data symbol 4702 is a symbol subjected to precoding and phase change.
  • FIG. 48 shows the symbol arrangement when the phase is changed for the baseband signal q1 after replacement and the baseband signal q2 after replacement. Therefore, the numerical values described in the symbols of the baseband signal q1 after replacement and the baseband signal q2 after replacement in FIG. 48 indicate phase change values.
  • the important point in FIG. 48 is that the phase change for the baseband signal q1 after replacement is performed on data symbols, that is, symbols that have been subjected to precoding and baseband signal replacement.
  • the phase change with respect to the band signal q2 is performed on data symbols, that is, symbols on which precoding and baseband signals have been replaced. (Here, it is described as a symbol, but the symbol described here includes both the s1 symbol and the s2 symbol because it has been pre-coded).
  • Z1 ′ is not subjected to phase change
  • pilot symbols inserted into z2 ′ is not subjected to phase change.
  • FIG. 49 shows a frame configuration on the time-frequency axis of the modulation signal (baseband signal q1 after replacement) z1 or z1 ′ and the modulation signal (baseband signal q2 after replacement) z2 ′.
  • the modulation signal z2 ′ is a null symbol in the time and carrier in which the pilot symbol is inserted in the modulation signal z1 ′, and vice versa.
  • the modulation signal z1 ′ is a null symbol in the time and carrier in which the pilot symbol is inserted in the modulation signal z2 ′.
  • FIG. 49 shows a symbol arrangement in the case where the phase is changed with respect to the baseband signal q2 after replacement as shown in FIG. 69 (the phase change is not performed on the baseband signal q1 after replacement).
  • FIG. 69 the case where the phase is changed in the time axis direction is shown, but in FIG. 6, considering that the time t is replaced with the carrier f, this corresponds to performing the phase change in the frequency direction. 49.
  • time t time t and frequency f
  • (t) is replaced with (t, f)
  • this corresponds to changing the phase with a block of time frequency.
  • phase change with respect to the baseband signal q2 after replacement is performed on the data symbol, that is, the symbol subjected to precoding and baseband signal replacement. (Here, it is described as a symbol, but the symbol described here includes both the s1 symbol and the s2 symbol because it has been pre-coded). , Z2 ′ is not subjected to phase change.
  • FIG. 50 shows a frame configuration on the time-frequency axis of the modulation signal (baseband signal q1 after replacement) z1 or z1 ′ and the modulation signal (baseband signal q2 after replacement) z2 ′.
  • the difference between FIG. 50 and FIG. 48 is a method of constructing symbols other than data symbols.
  • the modulation signal z2 ′ is a null symbol in the time and carrier in which the pilot symbol is inserted in the modulation signal z1 ′, and vice versa.
  • the modulation signal z1 ′ is a null symbol in the time and carrier in which the pilot symbol is inserted in the modulation signal z2 ′.
  • FIG. 50 shows the symbol arrangement when the phase is changed for the baseband signal q1 after replacement and the baseband signal q2 after replacement. Therefore, the numerical values described in the symbols of the baseband signal q1 after replacement and the baseband signal q2 after replacement in FIG. 50 indicate phase change values.
  • the important point in FIG. 50 is that the phase change for the baseband signal q1 after replacement is performed on the data symbols, that is, the symbols subjected to precoding and baseband signal replacement, and the baseband after replacement.
  • the phase change with respect to the signal q2 is performed on data symbols, that is, on symbols subjected to precoding and baseband signal replacement.
  • Z1 ′ is not subjected to phase change
  • pilot symbols inserted into z2 ′ is not subjected to phase change.
  • FIG. 51 shows an example of the configuration of a transmission apparatus that generates and transmits the modulation signal having the frame configuration of FIGS. 47 and 49, and the components that operate in the same way as in FIG. 4 are given the same reference numerals. . 51 does not illustrate the baseband signal switching unit illustrated in FIG. 67 or 70, but in contrast to FIG. 51, the baseband signal switching unit is provided between the weighting synthesis unit and the phase change unit, as in FIG. 67 and FIG. A band signal switching unit may be inserted.
  • weighting combining sections 308A and 308B, phase changing section 317B, and baseband signal exchanging section operate only when the frame configuration signal 313 indicates a timing that is a data symbol.
  • pilot symbol (which also serves as null symbol generation) generation unit 5101 indicates that base frame signal 5102A of the pilot symbol is used when frame configuration signal 313 indicates that it is a pilot symbol (and null symbol), and 5102B is output.
  • the control information symbol 5104 includes control information 5103,
  • the frame configuration signal 313 is input and indicates that the frame configuration signal 313 is a control information symbol
  • baseband signals 5102A and 5102B of the control information symbol are output.
  • FIG. 52 shows an example of the configuration of a transmitting apparatus that generates and transmits the modulation signal having the frame configuration shown in FIGS. 48 and 50. Components that operate in the same manner as FIGS. 4 and 51 are denoted by the same reference numerals. is doing.
  • the phase changing unit 317A added to FIG. 51 operates only when the frame configuration signal 313 indicates a timing that is a data symbol. The other operations are the same as those in FIG. 52 does not show the baseband signal switching unit shown in FIG. 67 or 70, but in contrast to FIG. 52, the baseband signal switching unit is located between the weighting synthesis unit and the phase change unit, as in FIGS. A band signal switching unit may be inserted.
  • FIG. 53 is a configuration method of a transmission apparatus different from that in FIG. 53 does not illustrate the baseband signal switching unit illustrated in FIG. 67 or 70, but in contrast to FIG. 53, the baseband signal switching unit is provided between the weighting synthesis unit and the phase change unit, as in FIGS. A band signal switching unit may be inserted.
  • the phase changing unit 317B receives a plurality of baseband signals as shown in FIG. If frame configuration signal 313 indicates that it is a data symbol, phase changing section 317B changes the phase of baseband signal 316B after precoding.
  • phase changing section 317B stops the operation of changing the phase, and the baseband signal of each symbol Is output as is. (For interpretation, it may be considered that the phase rotation corresponding to “e j0 ” is forcibly performed.)
  • the selection unit 5301 receives a plurality of baseband signals, selects a baseband signal of a symbol indicated by the frame configuration signal 313, and outputs it.
  • FIG. 54 shows a configuration method of a transmission apparatus different from that in FIG. 54 does not illustrate the baseband signal switching unit illustrated in FIG. 67 or 70, but in contrast to FIG. 54, the baseband signal switching unit is provided between the weighting synthesis unit and the phase change unit, as in FIG. 67 and FIG. A band signal switching unit may be inserted.
  • the phase changing unit 317B receives a plurality of baseband signals as shown in FIG. If frame configuration signal 313 indicates that it is a data symbol, phase changing section 317B changes the phase of baseband signal 316B after precoding.
  • phase changing section 317B stops the operation of changing the phase, and the baseband signal of each symbol Is output as is. (For interpretation, it may be considered that the phase rotation corresponding to “e j0 ” is forcibly performed.)
  • the phase changing unit 5201 receives a plurality of baseband signals as shown in FIG. If frame configuration signal 313 indicates that it is a data symbol, phase changing section 5201 changes the phase of baseband signal 309A after precoding.
  • phase changing section 5201 stops the phase changing operation, and the baseband signal of each symbol.
  • phase rotation corresponding to “e j0 ” is forcibly performed.
  • pilot symbols, control symbols, and data symbols have been described as examples.
  • the present invention is not limited to this, and a transmission method different from precoding, for example, transmission using one antenna transmission and a space-time block code.
  • the symbol is transmitted using a scheme, etc., it is important not to change the phase, and conversely, for a symbol subjected to precoding and baseband signal replacement, Performing the phase change is important in the present invention.
  • Non-Patent Document 12 to Non-Patent Document 15 a QC (Quasi Cyclic) LDPC (Low-Density Prity-Check) code (which may be an LDPC code that is not a QC-LDPC code)
  • a QC (Quasi Cyclic) LDPC (Low-Density Prity-Check) code which may be an LDPC code that is not a QC-LDPC code
  • a method for regularly changing the phase when using a block code such as a concatenated code of LDPC code and BCH code (Bose-Chaudhuri-Hocquenghem code), a turbo code using tail biting, or a Duo-Binary Turbo Code explain in detail.
  • the number of bits constituting the block after coding is the number of bits constituting the block code (however, Control information etc. as described may be included.)
  • control information or the like for example, CRC (cyclic redundancy check), transmission parameters, etc.
  • the number of bits constituting the block after encoding is the block code. It may be the sum of the number of bits and the number of bits such as control information.
  • FIG. 34 is a diagram showing changes in the number of symbols and the number of slots necessary for one encoded block when a block code is used.
  • FIG. 34 applies, for example, the encoder and distribution unit shown in FIG. 4 to the transmission apparatuses in FIGS. 69 and 70, transmits two streams s1 and s2, and the transmission apparatus has one transmission apparatus.
  • FIG. 11 is a diagram showing a change in the number of symbols and the number of slots necessary for one post-encoding block when a block code is used when the encoder is included. (At this time, as a transmission method, either single carrier transmission or multicarrier transmission such as OFDM may be used.) As shown in FIG. 34, it is assumed that the number of bits constituting one encoded block in the block code is 6000 bits. In order to transmit 6000 bits, 3000 symbols are required when the modulation method is QPSK, 1500 symbols when 16 QAM, and 1000 symbols when 64 QAM.
  • the above-described transmitting apparatus transmits two streams simultaneously, when the modulation scheme is QPSK, the above-described 3000 symbols are allocated 1500 symbols to s1 and 1500 symbols to s2, so s1 1500 slots (herein referred to as “slots”) are required to transmit 1500 symbols transmitted in step S1 and 1500 symbols transmitted in step s2.
  • the base after the replacement is prepared.
  • phase change is performed on both the band signal q1 and the baseband signal q2 after replacement, two phase change values are required for one slot, and these two phase change values are referred to as a phase change set. Therefore, in this case, in order to perform the phase change of cycle 5, it is sufficient to prepare five phase change sets).
  • These five phase change values are PHASE [0], PHASE [1] , PHASE [2], PHASE [3], and PHASE [4].
  • the slot using phase PHASE [0] is 300 slots
  • phase PHASE [ Slots using 1] are 300 slots
  • slots using phase PHASE [2] are 300 slots
  • slots using phase PHASE [3] are 300 slots
  • slots using phase PHASE [4] are 300 slots.
  • the modulation method is 16QAM
  • the number of slots using phase PHASE [0] is 150 slots, 150 slots using phase PHASE [1], 150 slots using phase PHASE [2], 150 slots using phase PHASE [3], 150 slots using phase PHASE [4] Must be a slot.
  • the slot using the phase PHASE [0] is 100 slots, 100 slots using phase PHASE [1], 100 slots using phase PHASE [2], 100 slots using phase PHASE [3], and 100 slots using phase PHASE [4] Must be a slot.
  • ⁇ Condition # D1-4> should be satisfied in the supported modulation schemes. become. However, when a plurality of modulation schemes are supported, the number of bits that can be transmitted in one symbol is generally different depending on each modulation scheme (there may be the same in some cases). In some cases, there may be a modulation scheme that cannot satisfy ⁇ Condition # D1-4>. In this case, the following conditions should be satisfied instead of ⁇ Condition # D1-4>.
  • FIG. 35 is a diagram showing changes in the number of symbols and the number of slots necessary for two encoded blocks when a block code is used.
  • FIG. 35 shows a case where two streams s1 and s2 are transmitted as shown in the transmission apparatus of FIG. 67 and the transmission apparatus of FIG. 70, and the transmission apparatus has two encoders.
  • FIG. 6 is a diagram showing changes in the number of symbols and the number of slots required for one encoded block when a block code is used. (At this time, as a transmission method, either single carrier transmission or multicarrier transmission such as OFDM may be used.) As shown in FIG. 35, it is assumed that the number of bits constituting one encoded block in the block code is 6000 bits. In order to transmit 6000 bits, 3000 symbols are required when the modulation method is QPSK, 1500 symbols when 16 QAM, and 1000 symbols when 64 QAM.
  • 67 and 70 in FIG. 67 transmit two streams at the same time, and since there are two encoders, two streams transmit different code blocks. become. Therefore, when the modulation scheme is QPSK, two encoded blocks are transmitted in the same section by s1 and s2, and for example, the first encoded block is transmitted by s1, and the second block is transmitted by s2. Since two encoded blocks are transmitted, 3000 slots are required to transmit the first and second encoded blocks.
  • phase change values or phase change sets prepared for the method of changing the phase regularly is 5. That is, it is assumed that five phase change values (or phase change sets) are prepared for the phase change unit of the transmission device of FIG. 67 and the transmission device of FIG. (As shown in FIG. 69, when the phase change is performed only on the baseband signal q2 after replacement, five phase change values may be prepared in order to change the phase of cycle 5. Also, the base after the replacement is prepared. If to both band signals q 1 and replaced after the baseband signal q2 perform the phase change is called for one slot, changing the two phase values are needed.
  • phase change sets are designated as PHASE [0], PHASE [1 ], PHASE [2], PHASE [3], PHASE [4].
  • the slot using the phase PHASE [0] is 600 slots
  • Slots that use PHASE [1] are 600 slots
  • slots that use phase PHASE [2] are 600 slots
  • slots that use phase PHASE [3] are 600 slots
  • slots that use phase PHASE [4] are 600 slots Need to be. This is because, depending on the phase to be used, the influence of the phase using a large number is large, and the reception quality of data depending on this influence is obtained in the receiving apparatus.
  • the slot using phase PHASE [0] is 600 times
  • the slot using phase PHASE [1] is 600 times
  • the slot using phase PHASE [2] is 600 times
  • the slot using phase PHASE [3] must be 600 times
  • the slot using phase PHASE [4] must be 600 times
  • the phase PHASE Slots that use [0] are 600 times
  • slots that use phase PHASE [1] are 600 times
  • slots that use phase PHASE [2] are 600 times
  • slots that use phase PHASE [3] are 600 times
  • the slot using phase PHASE [4] should be 600 times.
  • the slot using phase PHASE [0] is 300 times
  • the slot using phase PHASE [1] is 300 times
  • the slot using phase PHASE [2] is It is necessary that the slot using the phase PHASE [3] is 300 times
  • the slot using the phase PHASE [4] is 300 times
  • the phase PHASE is transmitted in order to transmit the second coding block.
  • Slots that use [0] are 300 times
  • slots that use phase PHASE [1] are 300 times
  • slots that use phase PHASE [2] are 300 times
  • slots that use phase PHASE [3] are 300 times
  • the number of slots using the phase PHASE [4] is 300 times.
  • the slot using phase PHASE [0] is 200 times
  • the slot using phase PHASE [1] is 200 times
  • the slot using phase PHASE [2] is 200 times
  • the slot using the phase PHASE [3] needs to be 200 times
  • the slot using the phase PHASE [4] needs to be 200 times
  • the phase PHASE is transmitted in order to transmit the second coding block.
  • Slots that use [0] are 200 times
  • slots that use phase PHASE [1] are 200 times
  • slots that use phase PHASE [2] are 200 times
  • slots that use phase PHASE [3] are 200 times
  • the number of slots using phase PHASE [4] may be 200.
  • K 0,2 K 0,2
  • K 1, 2 K 1, 2.
  • ⁇ condition # D1-6> ⁇ condition# D1- 7> ⁇ Condition#D1-8> should be satisfied.
  • the number of bits that can be transmitted in one symbol is generally different depending on each modulation scheme (there may be the same in some cases).
  • the following conditions should be satisfied.
  • N phase change values are required for the phase change method of period N.
  • PHASE [0], PHASE [1], PHASE [2], ..., PHASE [N-2], PHASE [N-1] are used as N phase change values (or phase change sets).
  • N phase change values (or phase change sets) PHASE [0], PHASE [1], PHASE [2], ..., PHASE [N-2],
  • the phase can also be changed by placing symbols in the time axis and frequency-time axis blocks in PHASE [N-1].
  • N phase change values or phase change sets
  • N phase change values or phase change sets
  • the base station may be able to select one of the transmission methods from these modes.
  • the spatial multiplexing MIMO transmission scheme is a method of transmitting signals s1 and s2 mapped by a selected modulation scheme from different antennas as shown in Non-Patent Document 3, and the precoding matrix is fixed.
  • the MIMO transmission scheme is a scheme that performs only precoding (no phase change).
  • the space-time block coding method is a transmission method shown in Non-Patent Documents 9, 16, and 17.
  • the transmission of only one stream is a method of performing a predetermined process on the signal s1 mapped by the selected modulation method and transmitting the signal from the antenna.
  • a multi-carrier transmission scheme such as OFDM is used, a first carrier group composed of a plurality of carriers, a second carrier group different from the first carrier group composed of a plurality of carriers,...
  • multi-carrier transmission is realized with a plurality of carrier groups, and for each carrier group, a spatial multiplexing MIMO transmission scheme, a MIMO transmission scheme with a fixed precoding matrix, a space-time block coding scheme, and transmission of only one stream,
  • the method may be set to any one of the methods for changing the phase regularly.
  • the (sub) carrier group for which the method for changing the phase regularly is selected may be implemented.
  • the transmitter described in this embodiment which performs precoding, baseband signal replacement, and phase change, and the contents described in this specification can be used in combination, and in particular in this embodiment. It is possible to combine and use the contents related to all the phase changes described in this specification for the phase change unit described.
  • Embodiment D2 In the present embodiment, in the case of the transmission apparatus of FIG. 4, when the transmission apparatus of FIG. 4 is compatible with a multicarrier scheme such as the OFDM scheme, the transmission apparatus of FIGS. A description will be given of an initialization method for phase change in a case where the phase change is regularly performed as described in this specification when one encoder and a distribution unit are applied.
  • Non-Patent Document 12 to Non-Patent Document 15 QC (Quasi Cyclic) LDPC (Low-Density Prity-Check) code (not QC-LDPC code, LDPC code may be used), LDPC code And a BCH code (Bose-Chaudhuri-Hocquenghem code) concatenated code, a turbo code using tail biting, or a block code such as Duo-Binary Turbo Code is considered.
  • QC-LDPC code Low-Density Prity-Check
  • the number of bits constituting the block after coding is the number of bits constituting the block code (however, Control information etc. as described may be included.)
  • control information or the like for example, CRC (cyclic redundancy check), transmission parameter, etc.
  • the number of bits constituting the block after encoding is the block code. It may be the sum of the number of bits and the number of bits such as control information.
  • FIG. 34 is a diagram showing changes in the number of symbols and the number of slots necessary for one encoded block when a block code is used.
  • FIG. 34 shows, for example, a case where two streams s1 and s2 are transmitted to the above-described transmission apparatus, and the transmission apparatus has one encoder.
  • FIG. 7 is a diagram showing changes in the number of symbols and the number of slots necessary for one encoded block. (At this time, as a transmission method, either single carrier transmission or multicarrier transmission such as OFDM may be used.)
  • the number of bits constituting one encoded block in the block code is 6000 bits. In order to transmit 6000 bits, 3000 symbols are required when the modulation method is QPSK, 1500 symbols when 16 QAM, and 1000 symbols when 64 QAM.
  • the above-described transmitting apparatus transmits two streams simultaneously, when the modulation scheme is QPSK, the above-described 3000 symbols are allocated 1500 symbols to s1 and 1500 symbols to s2, so s1 1500 slots (herein referred to as “slots”) are required to transmit 1500 symbols transmitted in step S1 and 1500 symbols transmitted in step s2.
  • FIG. 71A shows a frame configuration on the time and frequency axes of the modulated signal z1 ′ or z1 (transmitted by the antenna 312A).
  • FIG. 71 (b) shows a frame configuration on the time and frequency axes of the modulated signal z2 (transmitted by the antenna 312B).
  • the frequency (band) used by the modulation signal z1 ′ or z1 and the frequency (band) used by the modulation signal z2 are the same, and the modulation signal z1 ′ or z1 and the modulation signal at the same time. z2 exists.
  • the transmitting apparatus transmits a preamble (control symbol) in the section A, and is a symbol for transmitting control information to the communication partner. It is assumed that modulation scheme information for transmitting two encoded blocks is included.
  • the transmission apparatus transmits the first encoded block in the section B.
  • the transmission apparatus transmits the second encoded block in section C.
  • the transmission apparatus transmits a preamble (control symbol) in section D, and is a symbol for transmitting control information to a communication partner.
  • a preamble control symbol
  • the transmission apparatus transmits the third encoded block in the section E.
  • the transmission apparatus transmits the fourth encoded block in section F.
  • the transmitting apparatus transmits a preamble (control symbol) in section A, and is a symbol for transmitting control information to the communication partner. It is assumed that modulation scheme information for transmitting two encoded blocks is included.
  • the transmission apparatus transmits the first encoded block in the section B.
  • the transmission apparatus transmits the second encoded block in section C.
  • the transmission apparatus transmits a preamble (control symbol) in section D, and is a symbol for transmitting control information to a communication partner.
  • a preamble control symbol
  • the transmission apparatus transmits the third encoded block in the section E.
  • the transmission apparatus transmits the fourth encoded block in section F.
  • FIG. 72 shows the number of slots used when 16QAM is used as the modulation scheme in the case of transmitting a coding block as shown in FIG. 34, particularly in the first coding block. 750 slots are required to transmit. Similarly, in the second encoded block, the number of slots used when QPSK is used as the modulation scheme is shown, and 1500 slots are required to transmit the second encoded block.
  • FIG. 73 shows the number of slots used when transmitting a coded block as shown in FIG. 34, particularly in the third coded block, when QPSK is used as the modulation scheme. 1,500 slots are required to transmit. Then, as described in this specification, the modulation signal z1, that is, the modulation signal transmitted by the antenna 312A, is not subjected to phase change, and the modulation signal z2, that is, the modulation signal transmitted by the antenna 312B is not changed. Let us consider the case where the phase is changed. At this time, FIGS. 72 and 73 show a method of changing the phase.
  • phase change values are prepared, and the seven phase change values are named # 0, # 1, # 2, # 3, # 4, # 5, and # 6.
  • the phase change is used regularly and periodically. That is, the phase change values are # 0, # 1, # 2, # 3, # 4, # 5, # 6, # 0, # 1, # 2, # 3, # 4, # 5, # 6, #
  • the change is made regularly and periodically, such as 0, # 1, # 2, # 3, # 4, # 5, # 6,.
  • phase change value used to transmit the first slot of each coding block is fixed. Accordingly, as shown in FIG. 72, the phase change value used to transmit the first slot of the second encoded block is the same as the phase change value used to transmit the first slot of the first encoded block. Similarly, it is # 0.
  • the phase change value used to transmit the first slot of the third coded block is not set to # 3, but the first of the first and second coded blocks. Similar to the phase change value used for transmitting the slot, it is assumed to be # 0.
  • the method of initializing the phase change value for each coding block that is, the method of fixing the phase change value used for the first slot of any coding block as # 0 has been described.
  • it can be performed in units of frames.
  • the phase change value used in the first slot may be fixed to # 0.
  • the precoding matrix used by the weighting synthesis unit for precoding is expressed as a complex number, but the precoding matrix can also be expressed as a real number.
  • two mapped baseband signals are s1 (i) and s2 (i) (where i is time or frequency), and two precodings obtained for precoding are used.
  • the baseband signals after coding are z1 (i) and z2 (i).
  • the baseband signal after mapping (of the modulation scheme used) is the in-phase component of s1 (i) as I s1 (i), the quadrature component as Q s1 (i), and the base after mapping (of the modulation scheme used)
  • the in-phase component of the band signal s2 (i) is I s2 (i)
  • the quadrature component is Q s2 (i)
  • the baseband signal after precoding is the in-phase component of z1 (i), I z1 (i)
  • I z2 (i) an in-phase component of a baseband signal after precoding z2 (i)
  • the quadrature component configured in real H r
  • the following relational expression is established.
  • the precoding matrix H r which is composed of a real number is represented as shown below.
  • a 11, a 12, a 13, a 14, a 21, a 22, a 23, a 24, a 31, a 32, a 33, a 34, a 41, a 42, a 43, a 44 Is a real number.
  • Non-Patent Document 12 to Non-Patent Document 15 QC (Quasi-Cyclic) LDPC (Low-Density-Parity-Check) code (not QC-LDPC code, LDPC code may be used), LDPC code And a BCH code (Bose-Chaudhuri-Hocquenghem code) concatenated code, a turbo code using tail biting, or a block code such as Duo-Binary Turbo Code is considered.
  • QC-Cyclic Low-Density-Parity-Check
  • BCH code Bose-Chaudhuri-Hocquenghem code
  • turbo code using tail biting or a block code such as Duo-Binary Turbo Code
  • the number of bits constituting the block after coding is the number of bits constituting the block code (however, Control information etc. as described may be included.)
  • control information or the like for example, CRC (Cyclic Redundancy Check), transmission parameter, etc.
  • the number of bits constituting the block after encoding is the block code. It may be the sum of the number of bits and the number of bits such as control information.
  • FIG. 34 is a diagram showing changes in the number of symbols and the number of slots necessary for one encoded block when a block code is used.
  • FIG. 34 shows, for example, a case where two streams s1 and s2 are transmitted to the above-described transmission apparatus, and the transmission apparatus has one encoder.
  • FIG. 7 is a diagram showing changes in the number of symbols and the number of slots necessary for one encoded block. (At this time, as a transmission method, either single carrier transmission or multicarrier transmission such as OFDM may be used.)
  • the number of bits constituting one encoded block in the block code is 6000 bits. In order to transmit 6000 bits, 3000 symbols are required when the modulation method is QPSK, 1500 symbols when 16 QAM, and 1000 symbols when 64 QAM.
  • the above-described transmitting apparatus transmits two streams simultaneously, when the modulation scheme is QPSK, the above-described 3000 symbols are allocated 1500 symbols to s1 and 1500 symbols to s2, so s1 1500 slots (herein referred to as “slots”) are required to transmit 1500 symbols transmitted in step S1 and 1500 symbols transmitted in step s2.
  • FIG. 71A shows a frame configuration on the time and frequency axes of the modulated signal z1 ′ or z1 (transmitted by the antenna 312A).
  • FIG. 71 (b) shows a frame configuration on the time and frequency axes of the modulated signal z2 (transmitted by the antenna 312B).
  • the frequency (band) used by the modulation signal z1 ′ or z1 and the frequency (band) used by the modulation signal z2 are the same, and the modulation signal z1 ′ or z1 and the modulation signal at the same time. z2 exists.
  • the transmitting apparatus transmits a preamble (control symbol) in the section A, and is a symbol for transmitting control information to the communication partner. It is assumed that modulation scheme information for transmitting two encoded blocks is included.
  • the transmission apparatus transmits the first encoded block in the section B.
  • the transmission apparatus transmits the second encoded block in section C.
  • the transmission apparatus transmits a preamble (control symbol) in section D, and is a symbol for transmitting control information to a communication partner.
  • a preamble control symbol
  • the transmission apparatus transmits the third encoded block in the section E.
  • the transmission apparatus transmits the fourth encoded block in section F.
  • the transmitting apparatus transmits a preamble (control symbol) in section A, and is a symbol for transmitting control information to the communication partner. It is assumed that modulation scheme information for transmitting two encoded blocks is included.
  • the transmission apparatus transmits the first encoded block in the section B.
  • the transmission apparatus transmits the second encoded block in section C.
  • the transmission apparatus transmits a preamble (control symbol) in section D, and is a symbol for transmitting control information to a communication partner.
  • a preamble control symbol
  • the transmission apparatus transmits the third encoded block in the section E.
  • the transmission apparatus transmits the fourth encoded block in section F.
  • FIG. 72 shows the number of slots used when 16QAM is used as the modulation scheme in the case of transmitting a coding block as shown in FIG. 34, particularly in the first coding block. 750 slots are required to transmit. Similarly, in the second encoded block, the number of slots used when QPSK is used as the modulation scheme is shown, and 1500 slots are required to transmit the second encoded block.
  • FIG. 73 shows the number of slots used when transmitting a coded block as shown in FIG. 34, particularly in the third coded block, when QPSK is used as the modulation scheme. 1,500 slots are required to transmit. Then, as described in this specification, the modulation signal z1, that is, the modulation signal transmitted by the antenna 312A, is not subjected to phase change, and the modulation signal z2, that is, the modulation signal transmitted by the antenna 312B is not changed. Let us consider the case where the phase is changed. At this time, FIGS. 72 and 73 show a method of changing the phase.
  • phase change values are prepared, and the seven phase change values are named # 0, # 1, # 2, # 3, # 4, # 5, and # 6.
  • the phase change is used regularly and periodically. That is, the phase change values are # 0, # 1, # 2, # 3, # 4, # 5, # 6, # 0, # 1, # 2, # 3, # 4, # 5, # 6, #
  • the change is made regularly and periodically, such as 0, # 1, # 2, # 3, # 4, # 5, # 6,.
  • the above-mentioned terminal monitors how the first encoded block is transmitted, that is, monitors the pattern of the phase change value in the transmission of the last slot of the first encoded block, Estimating a phase change value to use for the first slot of the second encoded block;
  • the transmission apparatus transmits information on the phase change value used in the first slot of the second encoded block. The method can be considered. In the case of (a), since the terminal needs to monitor the transmission of the first encoded block, the power consumption increases, and in the case of (b), the data transmission efficiency decreases.
  • phase change value used to transmit the first slot of each coding block is fixed. Accordingly, as shown in FIG. 72, the phase change value used to transmit the first slot of the second encoded block is the same as the phase change value used to transmit the first slot of the first encoded block. Similarly, it is # 0.
  • the phase change value used to transmit the first slot of the third coded block is not set to # 3, but the first of the first and second coded blocks. Similar to the phase change value used for transmitting the slot, it is assumed to be # 0.
  • the method of initializing the phase change value for each coding block that is, the method of fixing the phase change value used for the first slot of any coding block as # 0 has been described.
  • it can be performed in units of frames.
  • the phase change value used in the first slot may be fixed to # 0.
  • the first encoded block becomes the first encoded block
  • the first encoded block becomes the third encoded block.
  • the block is an encoding block and is described above with reference to FIGS. 72 and 73
  • the above-described example is “the phase change value used in the first slot is fixed (with # 0) in units of frames”. ing.
  • FIG. 74 shows an outline of a frame configuration of a signal transmitted by a broadcasting station in the DVB-T2 standard.
  • the OFDM method since the OFDM method is used, a frame is formed on the time-frequency axis.
  • FIG. 74 shows a frame structure on the time-frequency axis.
  • the frame includes P1 Signaling data (7401), L1 Pre-Signalling data (7402), L1 Post-Signalling data (7403), Common PLP (7404), PLP # 1 to #N (7405_1 to 7405_N) (PLP: Physical Layer Pipe).
  • L1 Pre-Signalling data (7402) and L1 Post-Signalling data (7403) are referred to as P2 symbols.
  • PLP # 1 to #N 7405_1 to 7405_N
  • P1 Signaling data (7401) is a symbol for the receiver to perform signal detection and frequency synchronization (including frequency offset estimation), and at the same time, FFT (Fast Fourier Transform) size information in the frame, SISO (Single-Input) Information on whether to transmit the modulation signal is transmitted in either a single-output (MISO) / multi-input single-output (MISO) system.
  • FFT Fast Fourier Transform
  • SISO Single-Input
  • L1 Pre-Signalling data (7402) is used to transmit guard interval information used in a transmission frame, information on a signal processing method performed to reduce PAPR (Peak to Average Power Ratio), and L1 Post-Signalling data.
  • Modulation method error correction method (FEC: Forward Error Correction), coding rate information of error correction method, L1 Post-Signalling data size and information size information, pilot pattern information, cell (frequency domain) unique number Information, information indicating which mode of normal mode and extended mode (the number of subcarriers used for data transmission differs between normal mode and extended mode) is used, and the like are transmitted.
  • FEC Forward Error Correction
  • coding rate information of error correction method L1 Post-Signalling data size and information size information, pilot pattern information, cell (frequency domain) unique number Information, information indicating which mode of normal mode and extended mode (the number of subcarriers used for data transmission differs between normal mode and extended mode) is used, and the like are transmitted.
  • FEC Forward Error Correction
  • L1 Post-Signalling data size and information size information pilot pattern information
  • cell (frequency domain) unique number Information information indicating which mode of normal mode and extended mode (the number of subcarriers used for data transmission differs between normal mode and extended mode) is used
  • L1 Post-Signalling data (7403)
  • the coding rate information, the number of blocks transmitted by each PLP, and the like are transmitted.
  • Common PLP (7404) and PLP # 1 to #N are areas for transmitting data.
  • P1 Signaling data (7401), L1 Pre-Signalling data (7402), L1 Post-Signalling data (7403), Common PLP (7404), and PLP # 1 to #N (7405_1 to 6105_N) are Although it is described as being transmitted in time division, in reality, there are two or more types of signals at the same time. An example is shown in FIG. As shown in FIG. 75, L1 Pre-Signalling data, L1 Post-Signalling data, and Common PLP may exist at the same time, or PLP # 1 and PLP # 2 may exist at the same time. . That is, each signal uses a time division and a frequency division together to form a frame.
  • FIG. 76 shows a transmission apparatus in which a transmission method for changing the phase of a signal after precoding (or after precoding and baseband signal replacement) is applied to a transmission apparatus of the DVB-T2 standard (for example, a broadcasting station).
  • a PLP signal generation unit 7602 receives PLP transmission data 7601 (data for a plurality of PLPs) and a control signal 7609 and receives information on error correction coding of each PLP included in the control signal 7609, information on modulation schemes, and the like. Based on the information, error correction coding and mapping based on the modulation method are performed, and a PLP (orthogonal) baseband signal 7603 is output.
  • P2 symbol signal generation section 7605 receives P2 symbol transmission data 7604 and control signal 7609 as input, and performs error correction coding based on information such as P2 symbol error correction information and modulation scheme information contained in control signal 7609. Then, mapping based on the modulation method is performed, and a (quadrature) baseband signal 7606 of P2 symbols is output.
  • the control signal generation unit 7608 receives the transmission data 7607 for P1 symbol and the transmission data 7604 for P2 symbol as input, and each symbol group in FIG. 74 (P1 Signaling data (7401), L1 Pre-Signalling data (7402), L1 Post).
  • -Signaling data (7403), Common PLP (7404), PLP # 1 to #N (7405_1 to 7405_N)) transmission method (error correction code, coding rate of error correction code, modulation method, block length, frame configuration, Information on the selected transmission method including a transmission method that regularly switches the precoding matrix, pilot symbol insertion method, information on PAPR reduction method such as IFFT (Inverse Fast Fourier Transform) / FFT information, information on guard interval insertion method) Is output as a control signal 7609.
  • IFFT Inverse Fast Fourier Transform
  • FFT Fast Fourier Transform
  • guard interval insertion method information on guard interval insertion method
  • a frame configuration unit 7610 receives a PLP baseband signal 7603, a P2 symbol baseband signal 7606, and a control signal 7609, and performs rearrangement in frequency and time axis based on the frame configuration information included in the control signal.
  • the stream 1 (orthogonal) baseband signal 7611_1 the signal after mapping, that is, the baseband signal based on the modulation scheme used
  • the stream 2 (orthogonal) baseband signal 7611_2 the signal after mapping
  • the signal processing unit 7612 receives the baseband signal 7611_1 of the stream 1, the baseband signal 7611_2 of the stream 2, and the control signal 7609, and the modulated signal 1 after signal processing based on the transmission method included in the control signal 7609 (7613_1) And modulated signal 2 (7613_2) after signal processing is output.
  • a characteristic point here is that when a transmission method for changing the phase of a signal after precoding (or after precoding and baseband signal replacement) is selected as a transmission method, the signal processing unit Similar to FIGS. 25, 26, 27, 28, 29, and 69, the signal after precoding (or after precoding and baseband signal replacement) is subjected to phase change processing, and this signal processing is performed.
  • the performed signals are modulated signal 1 (7613_1) after signal processing and modulated signal 2 (7613_2) after signal processing.
  • Pilot insertion section 7614_1 receives modulated signal 1 after signal processing (7613_1) and control signal 7609 as input, and modulates signal 1 after signal processing (7613_1) based on information regarding the pilot symbol insertion method included in control signal 7609. A pilot symbol is inserted into, and a modulated signal 7615_1 after the pilot symbol is inserted is output. Pilot insertion section 7614_2 receives modulated signal 2 (7613_2) after signal processing and control signal 7609 as input, and receives modulated signal 2 (7613_2) after signal processing based on information on the pilot symbol insertion method included in control signal 7609. A pilot symbol is inserted into, and a modulated signal 7615_2 after the pilot symbol is inserted is output.
  • IFFT (Inverse Fast Fourier Transform) section 7616_1 receives modulated signal 7615_1 after pilot symbol insertion and control signal 7609 as input, performs IFFT based on IFFT method information included in control signal 7609, and outputs signal 7617_1 after IFFT. Is output.
  • IFFT section 7616_2 receives modulated signal 7615_2 after pilot symbol insertion and control signal 7609 as input, performs IFFT based on IFFT method information included in control signal 7609, and outputs post-IFFT signal 7617_2.
  • the PAPR reduction unit 7618_1 receives the signal 7617_1 after IFFT and the control signal 7609 as input, performs a process for PAPR reduction on the signal 7617_1 after IFFT based on information on PAPR reduction included in the control signal 7609, and after PAPR reduction
  • the signal 7619_1 is output.
  • PAPR reduction section 7618_2 receives signal 7617_2 after IFFT and control signal 7609 as input, performs processing for PAPR reduction on signal 7617_2 after IFFT based on information related to PAPR reduction included in control signal 7609, and after PAPR reduction
  • the signal 7619_2 is output.
  • the guard interval insertion unit 7620_1 receives the signal 7619_1 after PAPR reduction and the control signal 7609 as inputs, and inserts a guard interval into the signal 7619_1 after PAPR reduction based on the information on the guard interval insertion method included in the control signal 7609.
  • a signal 7621_1 after insertion of the guard interval is output.
  • the guard interval insertion unit 7620_2 receives the signal 7619_2 after PAPR reduction and the control signal 7609 as input, and inserts a guard interval into the signal 7619_2 after PAPR reduction based on the information on the guard interval insertion method included in the control signal 7609.
  • the signal 7621_2 after insertion of the guard interval is output.
  • the P1 symbol insertion unit 7622 receives the signal 7621_1 after the guard interval insertion, the signal 7621_2 after the guard interval insertion, and the transmission data 7607 for the P1 symbol, and generates a P1 symbol signal from the transmission data 7607 for the P1 symbol, A P1 symbol is added to the signal 7621_1 after the insertion of the guard interval, a P1 symbol is added to the signal 7623_1 after the addition of the P1 symbol, and a signal 7621_2 after the insertion of the guard interval, and a P1 symbol is added.
  • the later signal 7623_2 is output.
  • the signal of the P1 symbol may be added to both the signal 7623_1 after the addition of the P1 symbol and the signal 7623_2 after the addition of the P1 symbol, or may be added to either of them.
  • a zero signal is present as the baseband signal in the signal that is not added in the section where the added signal is added.
  • the radio processing unit 7624_1 receives the signal 7623_1 after the addition of the P1 symbol and the control signal 7609 as input, performs processing such as frequency conversion and amplification, and outputs a transmission signal 7625_1. Then, the transmission signal 7625_1 is output as a radio wave from the antenna 7626_1. Radio processing section 7624_2 receives P7 symbol-processed signal 7623_2 and control signal 7609 as input, performs frequency conversion, amplification, and the like, and outputs transmission signal 7625_2. Then, the transmission signal 7625_2 is output as a radio wave from the antenna 7626_2.
  • each PLP transmission method for example, a transmission method for transmitting one modulation signal, after precoding (or after precoding and baseband signal replacement) is performed using P1 symbols, P2 symbols, and control symbol groups.
  • a modulation method used are transmitted to the terminal.
  • the terminal cuts out only PLP necessary as information, and performs demodulation (including signal separation and signal detection) and error correction decoding, the terminal consumes less power. Therefore, as in the case described with reference to FIGS. 71 to 73, as a transmission method, a transmission method for regularly changing the phase of a signal after precoding (or after precoding and baseband signal replacement) is used.
  • a method is proposed in which the phase change value (# 0) used in the first slot of the PLP transmitted is fixed.
  • the PLP transmission method is not limited to the above, and a space-time code as shown in Non-Patent Document 9, Non-Patent Document 16, and Non-Patent Document 17 and other transmission methods may be designated. Is possible.
  • FIG. 77 shows a frame configuration on the frequency-time axis when transmitting using phase change.
  • phase change values are prepared in a transmission method in which phase change is regularly performed on a signal after precoding (or after precoding and baseband signal replacement).
  • the seven phase change values are named # 0, # 1, # 2, # 3, # 4, # 5, and # 6.
  • the phase change value is used regularly and periodically. That is, the phase change values are # 0, # 1, # 2, # 3, # 4, # 5, # 6, # 0, # 1, # 2, # 3, # 4, # 5, # 6, #
  • the change is made regularly and periodically, such as 0, # 1, # 2, # 3, # 4, # 5, # 6,.
  • PLP $ 1 has a slot (symbol) at time T, carrier 3 (7701 in FIG. 77) as the head of the slot, and time T + 4, carrier 4 as the end of the slot (7702 in FIG. 77).
  • carrier 3 is the first slot
  • second slot is time T
  • carrier 4 is time T
  • carrier 5 The seventh slot is time T + 1, carrier 1
  • the eighth slot is time T + 1, carrier 2
  • the ninth slot is time T + 1, carrier 3, and so on.
  • the 14th slot is time T + 1, carrier 8, the 15th slot is time T + 2, carrier 1, and so on.
  • PLP $ K has a slot (symbol) with time S, carrier 4 (7703 in FIG. 77) as the head of the slot, and time S + 8, carrier 4 as the end of the slot (7704 in FIG. 77). (See FIG. 77). That is, for PLP $ K, time S, carrier 4 is the first slot, second slot is time S, carrier 5, and third slot is time S, carrier 6, The fifth slot is time S, carrier 8, the ninth slot is time S + 1, carrier 1, the tenth slot is time S + 1, carrier 2, and so on. The 16th slot is time S + 1, carrier 8, the 17th slot is time S + 2, carrier 1, and so on.
  • information on the slots used by each PLP including information on the first slot (symbol) and information on the last slot (symbol) of each PLP is determined by control symbols such as P1 symbols, P2 symbols, and control symbol groups. Will be transmitted.
  • the phase change value # 0 is used for the slot of time T, carrier 3 (7701 in FIG. 77), which is the first slot of PLP $ 1.
  • the last slot of PLP $ K-1 which uses time S, carrier 3 (7705 in FIG. 77) in the slot, regardless of the phase change value number, is the first slot in PLP $ K.
  • a certain slot of time S and carrier 4 (7703 in FIG.
  • precoding matrix # 0 is used for the first slot of another PLP transmitted using a transmission method that regularly changes the phase of the signal after pre-coding (or after pre-coding and baseband signal replacement). And precoding is used.
  • the receiving apparatus extracts the required PLP from the information of the slot used by each PLP included in the control symbols such as the P1 symbol, the P2 symbol, and the control symbol group, and demodulates (signal separation, signal detection). Error correction decoding is performed.
  • the receiving apparatus knows in advance the phase change rule of the transmission method in which the phase is regularly changed in the signal after precoding (or after precoding and baseband signal replacement), and In some cases, the transmitting device transmits information on the rules to be used, and the receiving device obtains the information and knows the rules being used.) Based on the number of the first slot in each PLP, By matching the timing of the phase change switching rule, it is possible to demodulate information symbols (including signal separation and signal detection).
  • a broadcast station base station transmits a modulated signal with a frame configuration as shown in FIG. 78 that operate in the same manner as in FIG. 74 are given the same reference numerals.
  • a characteristic point is that a subframe for transmitting one modulation signal and a subframe for transmitting a plurality of modulation signals in the main frame so that the gain control of the reception signal can be easily adjusted in the receiver (terminal). It is a point that is separated.
  • “transmit one modulated signal” means that a plurality of modulated signals that are the same as when one modulated signal is transmitted from one antenna are generated and the plurality of signals are transmitted from a plurality of different antennas. Shall be included.
  • PLP # 1 (7405_1) to PLP # N (7405_N) constitute a subframe 7800 for transmitting one modulated signal
  • the subframe 7800 is composed of only PLP and includes a plurality of subframes 7800.
  • PLP $ 1 (7802_1) to PLP $ M (7802_M) constitute a subframe 7801 for transmitting a plurality of modulation signals.
  • the subframe 7801 is composed of only PLP and one modulation. There is no PLP that transmits a signal.
  • PLP PLP $ 1 (7802_1) to PLP $ M (7802_M)
  • PLP $ 1 (7802_1) to PLP $ M (7802_M) at the head slot is precoded using the precoding matrix # 0 (referred to as precoding matrix initialization).
  • precoding matrix initialization referred to as precoding matrix initialization
  • another transmission method for example, a transmission method using a precoding method without phase change, a transmission method using a space-time block code, and spatial multiplexing MIMO transmission
  • the PLP using any of the methods is not related to the initialization of the precoding matrix described above.
  • PLP $ 1 is the first PLP of a subframe that transmits a plurality of modulated signals of the Xth main frame
  • PLP $ 1 ′ is the Yth (however, different from X). It is assumed that this is the first PLP of a subframe that transmits a plurality of modulated signals of the main frame. It is assumed that both PLP $ 1 and PLP $ 1 'use a transmission method that regularly changes the phase of the signal after precoding (or after precoding and baseband signal replacement).
  • the same components as those in FIG. 77 are denoted by the same reference numerals.
  • the first slot of PLP $ 1 which is the first PLP of the subframe for transmitting a plurality of modulation signals of the Xth main frame (7701 (time T, slot of carrier 3) in FIG. 79), changes the phase. It is assumed that the phase change is performed using the value # 0.
  • the first slot of PLP $ 1 ′ which is the first PLP of a subframe for transmitting a plurality of modulated signals of the Y-th mainframe (7901 (time T ′, slot of carrier 7) in FIG. 79), It is assumed that the phase change is performed using the phase change value # 0.
  • the phase change is performed using the phase change value # 0 in the first slot of the first PLP of the subframe in which a plurality of modulated signals are transmitted. This is also important in order to suppress the problems (a) and (b) described in the embodiment D2.
  • phase change value # 0 is used to change the phase of the first slot of PLP $ 1 (7701 (time T, slot of carrier 3) in FIG. 79)
  • the phase change value is updated on the frequency axis.
  • the slot of carrier 4 is changed in phase using phase change value # 1
  • the slot of time T and carrier 5 is changed in phase using phase change value # 2
  • time T carrier 6 is changed.
  • the phase change is performed using the phase change value # 3, and so on.
  • the first slot of PLP $ 1 ′ (7901 (time T ′, slot of carrier 7) in FIG. 79) is phase-shifted using phase change value # 0.
  • the slot of carrier 8 performs phase change using phase change value # 1
  • the slot of carrier T1 + 1 and carrier 1 performs phase change using phase change value # 2.
  • the slot of carrier 1 performs phase change using phase change value # 3
  • the slot of carrier 1 performs phase change using phase change value # 4,... , And.
  • the transmission apparatus of FIG. 4 when the transmission apparatus of FIG. 4 is compatible with a multicarrier system such as the OFDM system, the transmission apparatus of FIG.
  • the transmission apparatus of FIG. 4 when the transmission apparatus of FIG. 4 is compatible with a multicarrier system such as the OFDM system, the transmission apparatus of FIG.
  • the case where one encoder and a distribution unit are applied has been described as an example.
  • the transmission device in FIG. 3 the transmission device in FIG. 12, the transmission device in FIG. 67, and the transmission device in FIG. Even when the two streams of s2 are transmitted and the transmission apparatus has two encoders, the phase change value initialization described in the present embodiment can be applied.
  • the average transmission power of modulation signal # 1 and the average transmission power of modulation signal # 2 may be set in any manner.
  • the average transmission power of the modulation signal # 1 and the modulation signal are applied by applying a transmission power control technique used in a general wireless communication system.
  • the average transmission power of # 2 can be set differently.
  • signal power control may be performed in the state of the baseband signal (for example, transmission power control is performed at the time of mapping of the modulation scheme to be used), or a power amplifier (in front of the antenna) ( Transmission power control may be performed by a power amplifier.
  • Embodiment F1 Method for regularly changing phase with respect to modulated signals after precoding described in Embodiment 1-4, Embodiment A1, Embodiment C1-C7, Embodiment D1-D3 and Embodiment E1 Is applicable to any baseband signals s1 and s2 mapped in the IQ plane.
  • Embodiment 1-4 Embodiment A1, Embodiment C1-C7, Embodiment D1-D3, and Embodiment E1
  • the baseband signals s1 and s2 are not described in detail.
  • the method of regularly changing the phase of the pre-coded modulation signal is applied to the baseband signals s1 and s2 generated from the error correction encoded data, s1 and s2
  • s1 and s2 There is a possibility that better reception quality can be obtained by controlling the average power (average value).
  • the modulation scheme applied to the baseband signal s1 is QPSK and the modulation scheme applied to the baseband signal s2 is 16QAM. Since the modulation scheme of s1 is QPSK, s1 transmits 2 bits of data per symbol. The two bits to be transmitted are named b0 and b1. In contrast, since the modulation scheme of s2 is 16QAM, s2 transmits 4 bits of data per symbol. The 4 bits to be transmitted are named b2, b3, b4, and b5. Since the transmission apparatus transmits one slot composed of one symbol of s1 and one symbol of s2, 6-bit data of b0, b1, b2, b3, b4, and b5 is transmitted per slot. .
  • FIG. 80 which is an example of 16QAM signal point arrangement on the IQ plane
  • (b2, b3, b4, b5) (0, 0, 1, 1)
  • (I, Q) (1 ⁇ g, 1 ⁇ g)
  • FIG. 81 which is an example of the QPSK signal point arrangement on the IQ plane
  • b0 and b1 shown on the right shoulder in FIG. 81 indicate the arrangement of the numerical values shown on the IQ plane, respectively.
  • FIG. 82 shows the relationship of the log likelihood ratio obtained by the receiving apparatus in this case.
  • FIG. 82 is a diagram schematically showing the absolute values of the log likelihood ratios from b0 to b5 when the receiving apparatus obtains the log likelihood ratio.
  • 8200 is the absolute value of the log likelihood ratio of b0
  • 8201 is the absolute value of the log likelihood ratio of b1
  • 8202 is the absolute value of the log likelihood ratio of b2
  • 8203 is the absolute value of the log likelihood ratio of b3.
  • 8204 is the absolute value of the log likelihood ratio of b4
  • 8205 is the absolute value of the log likelihood ratio of b5.
  • the absolute value of the log likelihood ratio of b0 and b1 transmitted by QPSK and the absolute value of the log likelihood ratio of b2 to b5 transmitted by 16QAM are compared,
  • the absolute value of the log likelihood ratio of b0 and b1 is larger than the absolute value of the log likelihood ratio of b2 to b5. That is, the reliability in the receiving devices b0 and b1 is higher than the reliability in the receiving devices b2 to b5. This is because the minimum Euclidean distance of the signal point on the IQ plane of QPSK is
  • the receiver performs error correction decoding in this situation (for example, when the communication system uses an LDPC code, reliability propagation decoding such as sum-product decoding), the absolute value of the log likelihood ratio of b0 and b1 Due to the difference in reliability that the value is larger than the absolute value of the log likelihood ratio from b2 to b5, the reception quality of the data of the receiving apparatus deteriorates due to the influence of the absolute value of the log likelihood ratio from b2 to b5. The problem occurs.
  • the difference between the absolute value of the log likelihood ratio of b0 and b1 and the absolute value of the log likelihood ratio of b2 to b5 is compared with FIG. Should be made smaller. Therefore, it is considered that “the average power (average value) of s1 is different from the average power (average value) of s2”.
  • signal processing related to a power changing unit here, called a power changing unit, but may be called an amplitude changing unit or a weighting unit
  • a weighting synthesis (precoding) unit The example of the structure of a part is shown.
  • FIG. 84 components that operate in the same manner as in FIGS. 3 and 6 are given the same reference numerals.
  • FIG. 85 the same reference numerals are assigned to the components that operate in the same manner as in FIGS.
  • s1 (t) is a baseband signal (signal after mapping) of the modulation scheme QPSK
  • the mapping method is as shown in FIG. 81
  • h is as shown in equation (78)
  • s2 (t) is a modulation system 16QAM baseband signal (signal after mapping)
  • the mapping method is as shown in FIG. 80
  • g is as shown in Equation (79).
  • t is time, and in this embodiment, the time axis direction will be described as an example.
  • the power changing unit (8401B) receives the modulation system 16QAM baseband signal (signal after mapping) 307B and the control signal (8400) as input, and sets a value for changing the set power based on the control signal (8400) u. Then, a signal (8402B) obtained by multiplying the baseband signal (signal after mapping) 307B of the modulation scheme 16QAM by u is output.
  • u is a real number and u> 1.0.
  • F is a precoding matrix in a method of regularly changing the phase of a modulated signal after precoding
  • y (t) (y (t) is an absolute value for a phase change value for regularly changing the phase.
  • the imaginary number is 1 (including a real number)
  • ej ⁇ (t) the following equation is established.
  • the ratio between the average power of QPSK and the average power of 16QAM is set to 1: u 2 .
  • the reception state in which the absolute value of the log likelihood ratio shown in FIG. For example, for the ratio 1: u 2 of the average power of QPSK and the average power of 16QAM, u is
  • the minimum Euclidean distance of signal points on the IQ plane of QPSK can be made equal to the minimum Euclidean distance of signal points on the IQ plane of 16QAM, and good reception quality can be obtained.
  • the condition that the minimum Euclidean distances of signal points on the IQ planes of two different modulation schemes are equal is merely an example of a method of setting the ratio between the average power of QPSK and the average power of 16QAM.
  • the value u for changing the power may be changed between the signal points on the IQ plane of two different modulation schemes.
  • better reception quality can be obtained by setting a value (a larger value or a smaller value) different from the value at which the minimum Euclidean distance becomes equal.
  • transmission power control transmission power is generally controlled based on feedback information from a communication partner.
  • the feature of the present invention is that transmission power is controlled regardless of feedback information from a communication partner, and this point will be described in detail.
  • the value u for changing the power is set by the control signal (8400)” has been described.
  • the control signal (8400) for further improving the reception quality of data in the receiving apparatus.
  • the method of setting the value u for changing the power by means of will be described in detail.
  • Example 1-1 Data used for generation of s1 and s2 when the transmission apparatus supports an error correction code having a plurality of block lengths (the number of bits constituting one block after encoding, which is also referred to as a code length)
  • a method of setting the average power (average value) of s1 and s2 in accordance with the block length of the error correction code applied to 1 will be described.
  • error correction codes include block codes such as tail bited turbo codes or duobinary turbo codes, and LDPC codes.
  • block codes such as tail bited turbo codes or duobinary turbo codes, and LDPC codes.
  • Encoded data that has been subjected to error correction encoding of a block length selected from a plurality of supported block lengths is distributed into two systems.
  • the encoded data distributed to the two systems is modulated by the s1 modulation method and the s2 modulation method, respectively, to generate baseband signals (mapped signals) s1 (t) and s2 (t).
  • the control signal (8400) is a signal indicating the block length of the selected error correction code
  • the power changing unit (8401B) sets a value u for changing the power according to the control signal (8400).
  • the feature of the present invention is that the power changing unit (8401B) sets the value u for changing the power according to the selected block length indicated by the control signal (8400).
  • a value for changing the power according to the block length X is described in the form of u LX .
  • the power changing section (8401B) sets the value u L1000 for power changes
  • the power changing section (8401B) is a power change
  • the power change unit (8401B) sets the value u L3000 for the power change.
  • u L1000 u L1500 .
  • the settable power change value is 2
  • the transmitter can select one of the power change values from among a plurality of settable power change values and perform the power change. Is an important point.
  • Example 1-2 When the transmission apparatus supports error correction codes of a plurality of coding rates, the average power of s1 and s2 according to the coding rate of the error correction code applied to the data used to generate s1 and s2 A method of setting (average value) will be described.
  • error correction codes include block codes such as tail-biting turbo codes or duobinary turbo codes, and LDPC codes.
  • a plurality of encodings are available. Rate is supported.
  • Encoded data that has been subjected to error correction coding at a coding rate selected from a plurality of supported coding rates is distributed to two systems. The encoded data distributed to the two systems is modulated by the s1 modulation method and the s2 modulation method, respectively, to generate baseband signals (mapped signals) s1 (t) and s2 (t).
  • the control signal (8400) is a signal indicating the coding rate of the selected error correction code
  • the power changing unit (8401B) sets a value u for changing the power according to the control signal (8400).
  • a feature of the present invention is that the power changing unit (8401B) sets a value u for changing the power according to the selected coding rate indicated by the control signal (8400).
  • a value for changing the power according to the coding rate rx is described in the form of urX .
  • the power changing unit (8401B) sets a value u r1 for changing the power
  • the power changing unit (8401B) sets the value u r3 for changing the power.
  • the power changing unit (8401B) sets the value u r3 for changing the power.
  • the coding rates may be 1/2, 2/3, and 3/4, respectively.
  • the present invention is not limited to this, and a value for power change that can be set when two or more coding rates can be set in the transmission apparatus.
  • the transmission apparatus selects one of the power change values from among a plurality of settable power change values, and performs the power change. It is important to be able to. (Example 1-3) In order for the receiving apparatus to obtain better data reception quality, it is important to implement the following.
  • a method for setting the average power (average value) of s1 and s2 according to the modulation scheme used for generating s1 and s2 when the transmission apparatus supports a plurality of modulation schemes will be described.
  • the modulation scheme of s1 is fixed to QPSK, and the modulation scheme of s2 is changed from 16QAM to 64QAM by a control signal (or either 16QAM or 64QAM can be set).
  • the mapping method of s2 (t) is as shown in FIG. 86. In FIG. 86, k is
  • mapping of 64QAM determines the values of I and Q from the 6-bit input, and this point can be implemented in the same manner as the description of the mapping of QPSK and 16QAM.
  • FIG. 86 which is an example of 64QAM signal point arrangement on the IQ plane
  • the modulation scheme of s1 is fixed to QPSK
  • the modulation scheme of s2 is fixed to QPSK
  • the power is not changed for a fixed modulation scheme (here, QPSK)
  • the power is changed for a plurality of configurable modulation schemes (here, 16QAM and 64QAM).
  • the transmission apparatus is not configured as shown in FIG. 84, but has a configuration in which the power changing unit 8401B is excluded from the configuration shown in FIG. 84 and a power changing unit is provided on the s1 (t) side.
  • the fixed modulation method here, QPSK
  • the following relational expression (86) is established.
  • the modulation scheme of s1 is fixed, and the modulation scheme C has c signal points on the IQ plane. Further, as the modulation scheme of s2, any number of signal points in I-Q plane the number of signal points in a number of modulation scheme A and the I-Q plane b-number of the modulation scheme B of (a>b> c) It is assumed that these settings are possible.
  • the reception apparatus can obtain high data reception quality.
  • the power is not changed for a fixed modulation method (here, modulation method C), but the power is changed for a plurality of settable modulation methods (here, modulation method A and modulation method B).
  • modulation method C a fixed modulation method
  • modulation method A and modulation method B a plurality of settable modulation methods
  • s2 modulation scheme is fixed to modulation scheme C and s1 modulation scheme is changed from modulation scheme A to modulation scheme B (set to either modulation scheme A or modulation scheme B)”, u b ⁇ It may be u a .
  • a set of (s1 modulation method, s2 modulation method) is set to (modulation method C, modulation method A) or (modulation method A, modulation method C) or (modulation method C, modulation method B) or (modulation method).
  • Example 2 An example of an operation different from Example 1 will be described with reference to FIG. Note that s1 (t) is a modulation system 64QAM baseband signal (signal after mapping), the mapping method is as shown in FIG. 86, and k is as shown in equation (85). Further, s2 (t) is a modulation system 16QAM baseband signal (signal after mapping), the mapping method is as shown in FIG. 80, and g is as shown in Equation (79). Note that t is time, and in this embodiment, the time axis direction will be described as an example.
  • the power changing unit (8401B) receives the modulation system 16QAM baseband signal (signal after mapping) 307B and the control signal (8400) as input, and sets a value for changing the set power based on the control signal (8400) u. Then, a signal (8402B) obtained by multiplying the baseband signal (signal after mapping) 307B of the modulation scheme 16QAM by u is output. Note that u is a real number and u ⁇ 1.0.
  • F is a precoding matrix in a method of regularly changing the phase of a modulated signal after precoding
  • y (t) is a phase change value for regularly changing the phase (y (t) is an absolute value)
  • the imaginary number is 1 (including a real number), that is, it can be expressed as ej ⁇ (t)
  • Expression (82) is established.
  • the ratio of the average power of 64QAM and the average power of 16QAM is set to 1: u 2 .
  • the reception state as shown in FIG. 83 is obtained, so that the reception quality of data in the reception device can be improved.
  • transmission power control transmission power is generally controlled based on feedback information from a communication partner.
  • the feature of the present invention is that transmission power is controlled regardless of feedback information from a communication partner, and this point will be described in detail.
  • the value u for changing the power is set by the control signal (8400)” has been described.
  • the control signal (8400) for further improving the reception quality of data in the receiving apparatus.
  • the method of setting the value u for changing the power by means of will be described in detail.
  • Example 2-1 Data used for generation of s1 and s2 when the transmission apparatus supports an error correction code having a plurality of block lengths (the number of bits constituting one block after encoding, which is also referred to as a code length)
  • a method of setting the average power (average value) of s1 and s2 in accordance with the block length of the error correction code applied to 1 will be described.
  • error correction codes include block codes such as tail bited turbo codes or duobinary turbo codes, and LDPC codes.
  • block codes such as tail bited turbo codes or duobinary turbo codes, and LDPC codes.
  • Encoded data that has been subjected to error correction encoding of a block length selected from a plurality of supported block lengths is distributed into two systems.
  • the encoded data distributed to the two systems is modulated by the s1 modulation method and the s2 modulation method, respectively, to generate baseband signals (mapped signals) s1 (t) and s2 (t).
  • the control signal (8400) is a signal indicating the block length of the selected error correction code
  • the power changing unit (8401B) sets a value u for changing the power according to the control signal (8400).
  • the feature of the present invention is that the power changing unit (8401B) sets the value u for changing the power according to the selected block length indicated by the control signal (8400).
  • a value for changing the power according to the block length X is described in the form of u LX .
  • the power changing section (8401B) sets the value u L1000 for power changes
  • the power changing section (8401B) is a power change
  • the power change unit (8401B) sets the value u L3000 for the power change.
  • u L1000 u L1500 .
  • the settable power change value is 2
  • the transmitter can select one of the power change values from among a plurality of settable power change values and perform the power change. Is an important point.
  • Example 2-2 When the transmission apparatus supports error correction codes of a plurality of coding rates, the average power of s1 and s2 according to the coding rate of the error correction code applied to the data used to generate s1 and s2 A method of setting (average value) will be described.
  • error correction codes include block codes such as tail-biting turbo codes or duobinary turbo codes, and LDPC codes.
  • a plurality of encodings are available. Rate is supported.
  • Encoded data that has been subjected to error correction coding at a coding rate selected from a plurality of supported coding rates is distributed to two systems. The encoded data distributed to the two systems is modulated by the s1 modulation method and the s2 modulation method, respectively, to generate baseband signals (mapped signals) s1 (t) and s2 (t).
  • the control signal (8400) is a signal indicating the coding rate of the selected error correction code
  • the power changing unit (8401B) sets a value u for changing the power according to the control signal (8400).
  • a feature of the present invention is that the power changing unit (8401B) sets a value u for changing the power according to the selected coding rate indicated by the control signal (8400).
  • a value for changing the power according to the coding rate rx is described in the form of u rx .
  • the power changing unit (8401B) sets a value u r1 for changing the power
  • the power changing unit (8401B) sets the value u r3 for changing the power.
  • the power changing unit (8401B) sets the value u r3 for changing the power.
  • the coding rates may be 1/2, 2/3, and 3/4, respectively.
  • the present invention is not limited to this, and a value for power change that can be set when two or more coding rates can be set in the transmission apparatus.
  • the transmission apparatus selects one of the power change values from among a plurality of settable power change values, and performs the power change. It is important to be able to. (Example 2-3) In order for the receiving apparatus to obtain better data reception quality, it is important to implement the following.
  • a method for setting the average power (average value) of s1 and s2 according to the modulation scheme used for generating s1 and s2 when the transmission apparatus supports a plurality of modulation schemes will be described.
  • the modulation scheme of s1 is fixed to 64QAM, and the modulation scheme of s2 is changed from 16QAM to QPSK by a control signal (or either 16QAM or QPSK can be set).
  • the mapping method of s1 (t) is as shown in FIG. 86.
  • k is the equation (85).
  • the mapping method of s2 (t) is as shown in FIG. 80.
  • g is Equation (79)
  • the modulation scheme of s2 (t) is QPSK.
  • the mapping method of s2 (t) is as shown in FIG. 81.
  • h is assumed to be Expression (78).
  • the average power (average value) is equal between 16QAM and QPSK.
  • s1 modulation method is fixed to 64QAM
  • s2 modulation method is fixed to 64QAM
  • s1 modulation method is changed from 16QAM to QPSK (either 16QAM or QPSK). Setting)
  • it is preferable to satisfy u 4 ⁇ u 16 (similar to the description in Example 1-3).
  • the value multiplied for the power change at 16QAM is u 16
  • the value multiplied for the power change at QPSK is u 4
  • the power change is not performed for 64QAM.
  • a setting of (64QAM, 16QAM) or (16QAM, 64QAM) or (64QAM, QPSK) or (QPSK, 64QAM) is set for (s1 modulation method, s2 modulation method). If possible, the relationship u 4 ⁇ u 16 should be satisfied.
  • modulation scheme of s1 is fixed, and the modulation scheme C has c signal points on the IQ plane. Further, as the modulation scheme of s2, any one of modulation scheme A having a number of signal points in the IQ plane and modulation scheme B having two signal points in the IQ plane (c>b> a) It is assumed that these settings are possible.
  • the reception apparatus can obtain high data reception quality.
  • the power is not changed for a fixed modulation method (here, modulation method C), but the power is changed for a plurality of settable modulation methods (here, modulation method A and modulation method B).
  • modulation method C a fixed modulation method
  • modulation method A and modulation method B a plurality of settable modulation methods
  • s2 modulation method is fixed to modulation method C and s1 modulation method is changed from modulation method A to modulation method B (set to either modulation method A or modulation method B)”, u a ⁇ It may be u b .
  • a set of (s1 modulation method, s2 modulation method) is set to (modulation method C, modulation method A) or (modulation method A, modulation method C) or (modulation method C, modulation method B) or (modulation method).
  • Example 3 An example of an operation different from Example 1 will be described with reference to FIG.
  • s1 (t) is a modulation system 16QAM baseband signal (signal after mapping)
  • the mapping method is as shown in FIG. 80
  • g is as shown in Equation (79).
  • s2 (t) is a modulation system 64QAM baseband signal (signal after mapping)
  • the mapping method is as shown in FIG. 86
  • k is as shown in equation (85).
  • t is time, and in this embodiment, the time axis direction will be described as an example.
  • the power changing unit (8401B) receives the modulation system 64QAM baseband signal (signal after mapping) 307B and the control signal (8400) as input, and sets the value for changing the power based on the control signal (addition 400). Assuming u, a signal (8402B) obtained by multiplying the baseband signal (signal after mapping) 307B of the modulation scheme 64QAM by u is output. Note that u is a real number and u> 1.0.
  • F is a precoding matrix in a method of regularly changing the phase of a modulated signal after precoding
  • y (t) is a phase change value for regularly changing the phase (y (t) is an absolute value)
  • the imaginary number is 1 (including a real number), that is, it can be expressed as ej ⁇ (t)
  • Expression (82) is established.
  • the ratio of the average power of 16QAM and the average power of 64QAM is set to 1: u 2 .
  • the reception state as shown in FIG. 83 is obtained, so that the reception quality of data in the reception device can be improved.
  • transmission power control transmission power is generally controlled based on feedback information from a communication partner.
  • the feature of the present invention is that transmission power is controlled regardless of feedback information from a communication partner, and this point will be described in detail.
  • the value u for changing the power is set by the control signal (8400)” has been described.
  • the control signal (8400) for further improving the reception quality of data in the receiving apparatus.
  • the method of setting the value u for changing the power by means of will be described in detail.
  • Example 3-1 Data used for generation of s1 and s2 when the transmission apparatus supports an error correction code having a plurality of block lengths (the number of bits constituting one block after encoding, which is also referred to as a code length)
  • a method of setting the average power (average value) of s1 and s2 in accordance with the block length of the error correction code applied to 1 will be described.
  • error correction codes include block codes such as tail bited turbo codes or duobinary turbo codes, and LDPC codes.
  • block codes such as tail bited turbo codes or duobinary turbo codes, and LDPC codes.
  • Encoded data that has been subjected to error correction encoding of a block length selected from a plurality of supported block lengths is distributed into two systems.
  • the encoded data distributed to the two systems is modulated by the s1 modulation method and the s2 modulation method, respectively, to generate baseband signals (mapped signals) s1 (t) and s2 (t).
  • the control signal (8400) is a signal indicating the block length of the selected error correction code
  • the power changing unit (8401B) sets a value u for changing the power according to the control signal (8400).
  • the feature of the present invention is that the power changing unit (8401B) sets the value u for changing the power according to the selected block length indicated by the control signal (8400).
  • a value for changing the power according to the block length X is described in the form of u LX .
  • the power changing section (8401B) sets the value u L1000 for power changes
  • the power changing section (8401B) is a power change
  • the power change unit (8401B) sets the value u L3000 for the power change.
  • u L1000 u L1500 .
  • the settable power change value is 2
  • the transmitter can select one of the power change values from among a plurality of settable power change values and perform the power change. Is an important point.
  • Example 3-2 When the transmission apparatus supports error correction codes of a plurality of coding rates, the average power of s1 and s2 according to the coding rate of the error correction code applied to the data used to generate s1 and s2 A method of setting (average value) will be described.
  • error correction codes include block codes such as tail-biting turbo codes or duobinary turbo codes, and LDPC codes.
  • a plurality of encodings are available. Rate is supported.
  • Encoded data that has been subjected to error correction coding at a coding rate selected from a plurality of supported coding rates is distributed to two systems. The encoded data distributed to the two systems is modulated by the s1 modulation method and the s2 modulation method, respectively, to generate baseband signals (mapped signals) s1 (t) and s2 (t).
  • the control signal (8400) is a signal indicating the coding rate of the selected error correction code
  • the power changing unit (8401B) sets a value u for changing the power according to the control signal (8400).
  • a feature of the present invention is that the power changing unit (8401B) sets a value u for changing the power according to the selected coding rate indicated by the control signal (8400).
  • a value for changing the power according to the coding rate rx is described in the form of u rx .
  • the power changing unit (8401B) sets a value u r1 for changing the power
  • the power changing unit (8401B) sets the value u r3 for changing the power.
  • the power changing unit (8401B) sets the value u r3 for changing the power.
  • the coding rates may be 1/2, 2/3, and 3/4, respectively.
  • the present invention is not limited to this, and a value for power change that can be set when two or more coding rates can be set in the transmission apparatus.
  • the transmission apparatus selects one of the power change values from among a plurality of settable power change values, and performs the power change. It is important to be able to. (Example 3-3) In order for the receiving apparatus to obtain better data reception quality, it is important to implement the following.
  • a method for setting the average power (average value) of s1 and s2 according to the modulation scheme used for generating s1 and s2 when the transmission apparatus supports a plurality of modulation schemes will be described.
  • the modulation scheme of s1 is fixed to 16QAM, and the modulation scheme of s2 is changed from 64QAM to QPSK by the control signal (or 64QAM or QPSK can be set).
  • the mapping method of s2 (t) is as shown in FIG. 80.
  • g is Equation (79).
  • the mapping method of s1 (t) is as shown in FIG.
  • k is equation (85), and the modulation scheme of s2 (t) is QPSK.
  • the mapping method of s2 (t) is as shown in FIG. 81, and h in FIG. 81 is assumed to be expression (78).
  • the average power is equal between 16QAM and QPSK.
  • the receiving apparatus can obtain high data reception quality regardless of whether the modulation scheme of s2 is 16QAM or 64QAM.
  • (16QAM, 64QAM) or (64QAM, 16QAM) or (16QAM, QPSK) or (QPSK, 16QAM) is set as the set of (s1 modulation method, s2 modulation method). If possible, the relationship u 4 ⁇ u 64 should be satisfied.
  • modulation scheme of s1 is fixed, and the modulation scheme C has c signal points on the IQ plane. Further, as the modulation scheme of s2, any one of modulation scheme A having a number of signal points in the IQ plane and modulation scheme B having two signal points in the IQ plane (c>b> a) It is assumed that these settings are possible.
  • the reception apparatus can obtain high data reception quality.
  • the power is not changed for a fixed modulation method (here, modulation method C), but the power is changed for a plurality of settable modulation methods (here, modulation method A and modulation method B).
  • modulation method C a fixed modulation method
  • modulation method A and modulation method B a plurality of settable modulation methods
  • s2 modulation method is fixed to modulation method C and s1 modulation method is changed from modulation method A to modulation method B (set to either modulation method A or modulation method B)”, u a ⁇ It may be u b .
  • a set of (s1 modulation method, s2 modulation method) is set to (modulation method C, modulation method A) or (modulation method A, modulation method C) or (modulation method C, modulation method B) or (modulation method).
  • s1 (t) is a baseband signal (signal after mapping) of the modulation scheme QPSK
  • the mapping method is as shown in FIG. 81
  • h is as shown in equation (78)
  • s2 (t) is a modulation system 16QAM baseband signal (signal after mapping)
  • the mapping method is as shown in FIG. 80
  • g is as shown in Equation (79).
  • t is time, and in this embodiment, the time axis direction will be described as an example.
  • the power changing unit (8401A) receives the baseband signal (signal after mapping) 307A of the modulation scheme QPSK and the control signal (8400), and sets a value for changing the set power based on the control signal (8400) to v Then, a signal (8402A) obtained by multiplying the baseband signal (signal after mapping) 307A of the modulation scheme QPSK by v is output.
  • F is a precoding matrix in a method of regularly changing the phase of a modulated signal after precoding
  • y (t) (y (t) is an absolute value for a phase change value for regularly changing the phase.
  • the imaginary number is 1 (including a real number), that is, it can be expressed as ej ⁇ (t)
  • the following equation (87) is established.
  • the reception state as shown in FIG. 83 is obtained, so that the reception quality of data in the reception device can be improved.
  • transmission power is generally controlled based on feedback information from a communication partner.
  • the feature of the present invention is that transmission power is controlled regardless of feedback information from a communication partner, and this point will be described in detail.
  • “values v and u for changing the power are set by the control signal (8400)”.
  • a control signal in order to further improve the reception quality of data in the receiving device
  • the setting of the values v and u for changing the power according to 8400 will be described in detail.
  • Example 4-1 Data used for generation of s1 and s2 when the transmission apparatus supports an error correction code having a plurality of block lengths (the number of bits constituting one block after encoding, which is also referred to as a code length)
  • a method for setting the average power (average value) of s1 and s2 in accordance with the block length of the error correction code applied to 1 will be described.
  • error correction codes include block codes such as tail bited turbo codes or duobinary turbo codes, and LDPC codes.
  • block codes such as tail bited turbo codes or duobinary turbo codes, and LDPC codes.
  • Encoded data that has been subjected to error correction encoding of a block length selected from a plurality of supported block lengths is distributed into two systems.
  • the encoded data distributed to the two systems is modulated by the s1 modulation method and the s2 modulation method, respectively, to generate baseband signals (mapped signals) s1 (t) and s2 (t).
  • the control signal (8400) is a signal indicating the block length of the selected error correction code
  • the power changing unit (8401A) sets a value v for changing the power according to the control signal (8400).
  • the power changing unit (8401B) sets a value u for changing the power in accordance with the control signal (8400).
  • a feature of the present invention is that the power changing units (8401A, 8401B) set values v and u for changing the power according to the selected block length indicated by the control signal (8400).
  • values for power change according to the block length X are described in the form of v LX and u LX , respectively.
  • the power change unit (8401A) sets the value v L1000 for changing the power
  • the power change unit (8401A) changes the power.
  • the power changing section (8401B) sets the value u L1000 for power changes, if 1500 is selected as the block length, the power changing section (8401B) is a power change When the value u L1500 for is set and 3000 is selected as the block length, the power change unit (8401B) sets the value u L3000 for power change.
  • v L1000 , v L1500 , v L3000 there are two in the set of (v L1000 , v L1500 , v L3000 ).
  • v LX and u LX are , the ratio of the average power values, 1: being set so as to satisfy w 2 are as described above.
  • the present invention is not limited to this, and in the transmission apparatus, when two or more code lengths can be set, a value u LX that can be set when power is set.
  • the transmitter selects one of the power change values u LX from among a plurality of settable power change values u LX , and changes the power. It is one important point that when the code length can be set in two or more in the transmission apparatus, there are two or more values v LX for power change that can be set.
  • the transmission apparatus can select one of the power change values v LX from a plurality of settable power change values v LX and perform the power change. It is a point. (Example 4-2) When the transmission apparatus supports error correction codes of a plurality of coding rates, the average power of s1 and s2 according to the coding rate of the error correction code applied to the data used for generating s1 and s2 A method of setting (average value) will be described.
  • error correction codes include block codes such as tail-biting turbo codes or duobinary turbo codes, and LDPC codes.
  • a plurality of encodings are available. Rate is supported.
  • Encoded data that has been subjected to error correction coding at a coding rate selected from a plurality of supported coding rates is distributed to two systems. The encoded data distributed to the two systems is modulated by the s1 modulation method and the s2 modulation method, respectively, to generate baseband signals (mapped signals) s1 (t) and s2 (t).
  • the control signal (8400) is a signal indicating the coding rate of the selected error correction code
  • the power changing unit (8401A) sets a value v for changing the power according to the control signal (8400).
  • the power changing unit (8401B) sets a value u for changing the power according to the control signal (8400).
  • a feature of the present invention is that the power changing units (8401A, 8401B) set the values v and u for changing the power according to the selected coding rate indicated by the control signal (8400).
  • values for changing the power according to the coding rate rx are described in the form of v rx and u rx , respectively.
  • the power changing unit (8401A) sets a value v r1 for changing the power
  • the power changing unit (8401A) sets the value v r3 for changing the power.
  • the power changing unit (8401B) sets a value u r1 for changing the power
  • the power changing unit (8401B) sets the value u r3 for changing the power.
  • the coding rates are 1/2, 2/3, and 3/4, respectively.
  • the case of three coding rates has been described as an example.
  • the present invention is not limited to this, and a value for power change that can be set when two or more coding rates can be set in the transmission apparatus.
  • the transmitting apparatus selects one of the power change values u rx that can be set from among a plurality of settable power change values u rx.
  • the power changeable value v rX is two or more.
  • the transmission apparatus can select one of the power change values v rX from among a plurality of settable power change values v rX and change the power. What you can do is also important. (Example 4-3) In order for the receiving apparatus to obtain better data reception quality, it is important to implement the following.
  • a method for setting the average power (average value) of s1 and s2 in accordance with the modulation scheme used for generating s1 and s2 when the transmission apparatus supports a plurality of modulation schemes will be described.
  • the modulation scheme of s1 is fixed to QPSK and the modulation scheme of s2 is changed from 16QAM to 64QAM by a control signal (or either 16QAM or 64QAM can be set).
  • the mapping method of s1 (t) is as shown in FIG. 81.
  • h is Equation (78).
  • mapping method of s2 (t) is as shown in FIG. 80.
  • g is Equation (79)
  • the modulation scheme of s2 (t) is 64QAM.
  • the mapping method of s2 (t) is as shown in FIG. 86.
  • k is assumed to be Expression (85).
  • the reception apparatus can obtain high data reception quality regardless of whether the modulation scheme of s2 is 16QAM or 64QAM.
  • the modulation scheme of s1 is fixed, and the modulation scheme C has c signal points on the IQ plane.
  • the modulation scheme of s2 is any one of modulation scheme A having a number of signal points on the IQ plane and modulation scheme B having a number of signal points on the IQ plane of b (a>b> c).
  • a modulation method of the average power and s2 modulation scheme of s1 is the modulation scheme C
  • the ratio of the average power 1: and w a 2 is the ratio of the average power 1: and w a 2.
  • the modulation scheme of s1 is modulation scheme C and the average power is set to modulation scheme B as the modulation scheme of s2, the ratio of the average power is set to 1: w b 2 .
  • the receiving apparatus can obtain the reception quality of high data.
  • the modulation scheme of s1 is fixed to the modulation scheme C
  • the modulation scheme of s2 is fixed to the modulation scheme C
  • the modulation scheme of s1 is changed from the modulation scheme A to the modulation scheme B”.
  • Example 5 An example of operation different from Example 4 will be described with reference to FIG. Note that s1 (t) is a baseband signal (signal after mapping) of the modulation scheme 64QAM, the mapping method is as shown in FIG. 86, and k is as shown in equation (85). Further, s2 (t) is a modulation system 16QAM baseband signal (signal after mapping), the mapping method is as shown in FIG. 80, and g is as shown in Equation (79). Note that t is time, and in this embodiment, the time axis direction will be described as an example.
  • the power changing unit (8401A) receives the baseband signal (signal after mapping) 307A of the modulation scheme 64QAM and the control signal (8400), and sets a value for changing the set power based on the control signal (8400) to v Then, a signal (8402A) obtained by multiplying the baseband signal (signal after mapping) 307A of the modulation scheme 64QAM by v is output.
  • F is a precoding matrix in a method of regularly changing the phase of a modulated signal after precoding
  • y (t) is a phase change value for regularly changing the phase (y (t) is an absolute value)
  • the imaginary number is 1 (including a real number)
  • the reception state as shown in FIG. 83 is obtained, so that the reception quality of data in the reception device can be improved.
  • transmission power is generally controlled based on feedback information from a communication partner.
  • the feature of the present invention is that transmission power is controlled regardless of feedback information from a communication partner, and this point will be described in detail.
  • “values v and u for changing the power are set by the control signal (8400)”.
  • a control signal in order to further improve the reception quality of data in the receiving device
  • the setting of the values v and u for changing the power according to 8400 will be described in detail.
  • Example 5-1 Data used for generation of s1 and s2 when the transmission apparatus supports an error correction code having a plurality of block lengths (the number of bits constituting one block after encoding, which is also referred to as a code length)
  • a method for setting the average power (average value) of s1 and s2 in accordance with the block length of the error correction code applied to 1 will be described.
  • error correction codes include block codes such as tail bited turbo codes or duobinary turbo codes, and LDPC codes.
  • block codes such as tail bited turbo codes or duobinary turbo codes, and LDPC codes.
  • Encoded data that has been subjected to error correction encoding of a block length selected from a plurality of supported block lengths is distributed into two systems.
  • the encoded data distributed to the two systems is modulated by the s1 modulation method and the s2 modulation method, respectively, to generate baseband signals (mapped signals) s1 (t) and s2 (t).
  • the control signal (8400) is a signal indicating the block length of the selected error correction code
  • the power changing unit (8401A) sets a value v for changing the power according to the control signal (8400).
  • the power changing unit (8401B) sets a value u for changing the power in accordance with the control signal (8400).
  • a feature of the present invention is that the power changing units (8401A, 8401B) set values v and u for changing the power according to the selected block length indicated by the control signal (8400).
  • values for power change according to the block length X are described in the form of v LX and u LX , respectively.
  • the power change unit (8401A) sets the value v L1000 for changing the power
  • the power change unit (8401A) changes the power.
  • the power changing section (8401B) sets the value u L1000 for power changes, if 1500 is selected as the block length, the power changing section (8401B) is a power change When the value u L1500 for, and 3000 is selected as the block length, the power changing unit (8401B) sets the value u L3000 for changing the power.
  • v L1000 , v L1500 , v L3000 there are two in the set of (v L1000 , v L1500 , v L3000 ).
  • v LX and u LX are , the ratio of the average power values, 1: being set so as to satisfy w 2 are as described above.
  • the present invention is not limited to this, and in the transmission apparatus, when two or more code lengths can be set, a value u LX that can be set when power is set.
  • the transmitter selects one of the power change values u LX from among a plurality of settable power change values u LX , and changes the power. It is one important point that when the code length can be set in two or more in the transmission apparatus, there are two or more values v LX for power change that can be set.
  • the transmission apparatus can select one of the power change values v LX from a plurality of settable power change values v LX and perform the power change. It is a point.
  • Example 5-2 When the transmission apparatus supports error correction codes of a plurality of coding rates, the average power of s1 and s2 according to the coding rate of the error correction code applied to the data used for generating s1 and s2 A method of setting (average value) will be described.
  • error correction codes include block codes such as tail-biting turbo codes or duobinary turbo codes, and LDPC codes.
  • a plurality of encodings are available. Rate is supported.
  • Encoded data that has been subjected to error correction coding at a coding rate selected from a plurality of supported coding rates is distributed to two systems. The encoded data distributed to the two systems is modulated by the s1 modulation method and the s2 modulation method, respectively, to generate baseband signals (mapped signals) s1 (t) and s2 (t).
  • the control signal (8400) is a signal indicating the coding rate of the selected error correction code
  • the power changing unit (8401A) sets a value v for changing the power according to the control signal (8400).
  • the power changing unit (8401B) sets a value u for changing the power according to the control signal (8400).
  • a feature of the present invention is that the power changing units (8401A, 8401B) set the values v and u for changing the power according to the selected coding rate indicated by the control signal (8400).
  • values for changing the power according to the coding rate rx are described in the form of v rx and u rx , respectively.
  • the power changing unit (8401A) sets a value v r1 for changing the power
  • the power changing unit (8401A) sets the value v r3 for changing the power.
  • the power changing unit (8401B) sets a value u r1 for changing the power
  • the power changing unit (8401B) sets the value u r3 for changing the power.
  • the coding rates are 1/2, 2/3, and 3/4, respectively.
  • the case of three coding rates has been described as an example.
  • the present invention is not limited to this, and a value for power change that can be set when two or more coding rates can be set in the transmission apparatus.
  • the transmitting apparatus selects one of the power change values u rx that can be set from among a plurality of settable power change values u rx.
  • the power changeable value v rX is two or more.
  • the transmission apparatus can select one of the power change values v rX from among a plurality of settable power change values v rX and change the power. What you can do is also important. (Example 5-3) In order for the receiving apparatus to obtain better data reception quality, it is important to implement the following.
  • a method for setting the average power (average value) of s1 and s2 in accordance with the modulation scheme used for generating s1 and s2 when the transmission apparatus supports a plurality of modulation schemes will be described.
  • the modulation scheme of s1 is fixed to 64QAM, and the modulation scheme of s2 is changed from 16QAM to QPSK by a control signal (or either 16QAM or QPSK can be set).
  • the mapping method of s1 (t) is as shown in FIG. 86.
  • k is the equation (85).
  • the mapping method of s2 (t) is as shown in FIG. 80.
  • g is Equation (79)
  • the modulation scheme of s2 (t) is QPSK.
  • the mapping method of s2 (t) is as shown in FIG. 81.
  • h is assumed to be Expression (78).

Abstract

 第1の変調信号と第2の変調信号を同一周波数に同時に送信する送信方法であって、両信号に固定のプリコーディング行列を用いてプリコーディングするとともに、第1の変調信号または第2の変調信号の少なくとも一方の位相を規則的に切り替えて送信することで、受信装置において、データの受信品質が向上する。

Description

信号生成方法及び信号生成装置
(関連出願に関する言及)2011年2月18日に出願された日本国特許出願2011-033771号、2011年3月9日に出願された日本国特許出願2011-051842号、2011年4月19日に出願された日本国特許出願2011-093544号及び2011年4月28日に出願された日本国特許出願2011-102101号に含まれる、特許請求の範囲、明細書、図面及び要約書の開示内容はすべて本願に援用される。
 本発明は、特にマルチアンテナを用いた通信を行う送信装置および受信装置に関する。
 従来、マルチアンテナを用いた通信方法として例えばMIMO(Multiple-Input Multiple-Output)と呼ばれる通信方法がある。MIMOに代表されるマルチアンテナ通信では、複数系列の送信データをそれぞれ変調し、各変調信号を異なるアンテナから同時に送信することで、データの通信速度を高めるようになっている。
 図23は、送信アンテナ数2、受信アンテナ数2、送信変調信号(送信ストリーム)数2のときの送受信装置の構成の一例を示している。送信装置では、符号化されたデータをインタリーブし、インタリーブ後のデータを変調し、周波数変換等を行い送信信号が生成され、送信信号はアンテナから送信される。このとき、送信アンテナからそれぞれ異なる変調信号が同一時刻に同一周波数に送信する方式が空間多重MIMO方式である。
 このとき、特許文献1では送信アンテナごとに異なるインタリーブパターンを具備する送信装置が提案されている。つまり、図23の送信装置において2つのインタリーブ(πa、πb)が互いに異なるインタリーブパターンを有していることになる。そして、受信装置において、非特許文献1、非特許文献2に示されているように、ソフト値を用いた検波方法(図23におけるMIMO detector)を、反復して行うことによって、受信品質が向上することになる。
 ところで、無線通信における実伝搬環境のモデルとして、レイリーフェージング環境で代表されるNLOS(non-line of sight)環境、ライスフェージング環境で代表されるLOS(line of sight)環境が存在する。送信装置においてシングルの変調信号を送信し、受信装置において複数のアンテナで受信した信号に対して最大比合成を行い、最大比合成後の信号に対して復調、及び復号を行う場合、LOS環境、特に、散乱波の受信電力に対する直接波の受信電力の大きさを示すライスファクタが大きい環境では、良好な受信品質を得ることができる。しかし、伝送方式(例えば、空間多重MIMO伝送方式)によっては、ライスファクタが大きくなると受信品質が劣化するという問題が発生する。(非特許文献3参照)
 図24の(A)(B)は、レイリ-フェージング環境、及びライスファクタK=3、10、16dBのライスフェージング環境において、LDPC(low-density parity-check)符号化されたデータを2×2(2アンテナ送信、2アンテナ受信)空間多重MIMO伝送した場合のBER(Bit Error Rate)特性(縦軸:BER、横軸:SNR(signal-to-noise power ratio))のシミュレーション結果の一例を示している。図24の(A)は、反復検波を行わないMax-log-APP(非特許文献1、非特許文献2参照)(APP:a posterior probability)のBER特性、図24の(B)は、反復検波を行ったMax-log-APP(非特許文献1、非特許文献2参照)(反復回数5回)のBER特性を示している。図24(A)(B)からわかるように、反復検波を行う、または行わないに関係なく、空間多重MIMOシステムでは、ライスファクタが大きくなると受信品質が劣化することが確認できる。このことから、「空間多重MIMOシステムでは、伝搬環境が安定的になると受信品質が劣化する」という従来のシングルの変調信号を送信するシステムにはない、空間多重MIMOシステム固有の課題をもつことがわかる。
 放送やマルチキャスト通信は、いろいろな伝播環境に対応しなければならないサービスであり、ユーザが所持する受信機と放送局との間の電波伝搬環境はLOS環境であることは当然ありうる。前述の課題をもつ空間多重MIMOシステムを、放送やマルチキャスト通信に用いた場合、受信機において、電波の受信電界強度は高いが、受信品質の劣化によりサービスを受けることができない、という現象が発生する可能性がある。つまり、空間多重MIMOシステムを放送やマルチキャスト通信で用いるには、NLOS環境、及びLOS環境のいずれの場合においても、ある程度の受信品質が得られるMIMO伝送方式の開発が望まれる。
 非特許文献8では、通信相手からのフィードバック情報からプリコーディングに用いるコードブック(プリコーディング行列(プリコーディングウェイト行列ともいう))を選択する方法について述べられているが、上記のように、放送やマルチキャスト通信のように、通信相手からのフィードバック情報が得られない状況において、プリコーディングを行う方法については全く記載されていない。
 一方、非特許文献4では、フィードバック情報が無い場合にも適用することができる、時間とともに、プリコーディング行列を切り替える方法について述べられている。この文献では、プリコーディングに用いる行列として、ユニタリ行列を用いること、また、ユニタリ行列をランダムに切り替えることについて述べられているが、上記で示したLOS環境での受信品質の劣化に対する適用方法については全く記載されていなく、単にランダムに切り替えることのみが記載されている。当然であるが、LOS環境の受信品質の劣化を改善するためのプリコーディング方法、および、プリコーディング行列の構成方法に関する記述は一切されていない。
国際公開第2005/050885号
"Achieving near-capacity on a multiple-antenna channel" IEEE Transaction on communications, vol.51, no.3, pp.389-399, March 2003. "Performance analysis and design optimization of LDPC-coded MIMO OFDM systems" IEEE Trans. Signal Processing., vol.52, no.2, pp.348-361, Feb. 2004. "BER performance evaluation in 2x2 MIMO spatial multiplexing systems under Rician fading channels," IEICE Trans. Fundamentals, vol.E91-A, no.10, pp.2798-2807, Oct. 2008. "Turbo space-time codes with time varying linear transformations, "IEEE Trans. Wireless communications, vol.6, no.2, pp.486-493, Feb. 2007. "Likelihood function for QR-MLD suitable for soft-decision turbo decoding and its performance," IEICE Trans. Commun., vol.E88-B, no.1, pp.47-57, Jan. 2004. 「Shannon限界への道標:"Parallel concatenated (Turbo) coding", "Turbo (iterative) decoding"とその周辺」電子情報通信学会、信学技法IT98-51 "Advanced signal processing for PLCs: Wavelet-OFDM," Proc. of IEEE International symposium on ISPLC 2008, pp.187-192, 2008. D. J. Love, and R. W. heath, Jr., "Limited feedback unitary precoding for spatial multiplexing systems," IEEE Trans. Inf. Theory, vol.51, no.8, pp.2967-1976, Aug. 2005. DVB Document A122, Framing structure, channel coding and modulation for a second generation digital terrestrial television broadcasting syste,m (DVB-T2), June 2008. L. Vangelista, N. Benvenuto, and S. Tomasin, "Key technologies for next-generation terrestrial digital television standard DVB-T2," IEEE Commun. Magazine, vo.47, no.10, pp.146-153, Oct. 2009. T. Ohgane, T. Nishimura, and Y. Ogawa, "Application of space division multiplexing and those performance in a MIMO channel," IEICE Trans. Commun., vo.88-B, no.5, pp.1843-1851, May 2005. R. G. Gallager, "Low-density parity-check codes," IRE Trans. Inform. Theory, IT-8, pp-21-28, 1962. D. J. C. Mackay, "Good error-correcting codes based on very sparse matrices," IEEE Trans. Inform. Theory, vol.45, no.2, pp399-431, March 1999. ETSI EN 302 307, "Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications, " v.1.1.2, June 2006. Y.-L. Ueng, and C.-C. Cheng, "a fast-convergence decoding method and memory-efficient VLSI decoder architecture for irregular LDPC codes in the IEEE 802.16e standards," IEEE VTC-2007 Fall, pp.1255-1259. S.M.Alamouti、 "A simple transmit diversity technique for wireless communications,"IEEE J. Select. Areas Commun., vol.16, no.8, pp.1451-1458, Oct 1998. V. Tarokh, H. Jafrkhani, and A.R.Calderbank、 "Space-time block coding for wireless communications: Performance results、"IEEE J. Select. Areas Commun., vol.17, no.3, no.3, pp.451―460, March 1999.
 本発明は、LOS環境における受信品質を改善することが可能なMIMOシステムを提供することを目的とする。
 本発明に係る信号生成方法は、複数のベースバンド信号から同一の周波数帯域かつ同一の時刻に送信される複複数のベースバンド信号から同一の周波数帯域かつ同一の時刻に送信される複数の信号を生成する信号生成方法であって、第1の複数ビットから生成された第1のベースバンド信号s1と第2の複数ビットから生成された第2のベースバンド信号s2との両方に対して位相変更を行い、位相変更後の第1のベースバンド信号s1’と位相変更後の第2のベースバンド信号s2’とを生成し、前記位相変更後の第1のベースバンド信号s1’をu倍し、前記位相変更後の第2のベースバンド信号s2’をv倍し、uとvとは互いに異なる実数であり、前記位相変更後の第1のベースバンド信号s1’をu倍した信号と、前記位相変更後の第2のベースバンド信号s2’をv倍した信号とに対して、所定の行列Fに応じた重み付け合成を行い、第1の重み付け合成信号z1と第2の重み付け合成信号z2を、前記同一の周波数帯域かつ同一の時刻に送信される複数の信号として生成し、前記第1の重み付け合成信号z1及び前記第2の重み付け合成信号z2は、(z1、z2)=F(u×s1’、v×s2’)を満たし、前記u倍された第1のベースバンド信号s1及び前記v倍された第2のベースバンド信号s2に対して施される位相変更量は、それぞれN個の位相変更量の候補を切り替えながら選択された一つの位相変更量であり、前記N個の位相変更量のそれぞれは、所定の期間内で少なくとも一回選択されることを特徴とする。
 また、本発明に係る信号生成装置は、複数のベースバンド信号から同一の周波数帯域かつ同一の時刻に送信される複数の信号を生成する信号生成装置であって、第1の複数ビットから生成された第1のベースバンド信号s1と第2の複数ビットから生成された第2のベースバンド信号s2との両方に対して位相変更を行い、位相変更後の第1のベースバンド信号s1’と位相変更後の第2のベースバンド信号s2’とを生成する位相変更部と、前記位相変更後の第1のベースバンド信号s1’をu倍し、前記位相変更後の第2のベースバンド信号s2’をv倍し、uとvとは互いに異なる実数であるパワー変更部と、前記位相変更後の第1のベースバンド信号s1’をu倍した信号と、前記位相変更後の第2のベースバンド信号s2’をv倍した信号とに対して、所定の行列Fに応じた重み付け合成を行い、第1の重み付け合成信号z1と第2の重み付け合成信号z2を、前記同一の周波数帯域かつ同一の時刻に送信される複数の信号として生成する重み付け合成部とを備え、前記第1の重み付け合成信号z1及び前記第2の重み付け合成信号z2は、(z1、z2)=F(u×s1’、v×s2’)を満たし、前記u倍された第1のベースバンド信号s1及び前記v倍された第2のベースバンド信号s2に対して施される位相変更量は、それぞれN個の位相変更量の候補を切り替えながら選択された一つの位相変更量であり、前記N個の位相変更量の候補のそれぞれは、所定の期間内で少なくとも一回選択されることを特徴とする。
 このように本発明によれば、LOS環境における受信品質の劣化を改善する信号生成方法、信号生成装置を提供することができるため、放送やマルチキャスト通信において見通し内のユーザに対して、品質の高いサービスを提供することができる。
空間多重MIMO伝送システムにおける送受信装置の構成の例 フレーム構成の一例 位相変更方法適用時の送信装置の構成の例 位相変更方法適用時の送信装置の構成の例 フレーム構成の例 位相変更方法の例 受信装置の構成例 受信装置の信号処理部の構成例 受信装置の信号処理部の構成例 復号処理方法 受信状態の例 位相変更方法適用時の送信装置の構成の例 位相変更方法適用時の送信装置の構成の例 フレーム構成の例 フレーム構成の例 フレーム構成の例 フレーム構成の例 フレーム構成の例 マッピング方法の一例 マッピング方法の一例 重み付け合成部の構成の例 シンボルの並び換え方法の一例 空間多重MIMO伝送システムにおける送受信装置の構成の例 BER特性例 位相変更方法の例 位相変更方法の例 位相変更方法の例 位相変更方法の例 位相変更方法の例 高い受信品質が得られる変調信号のシンボル配置例 高い受信品質が得られる変調信号のフレーム構成例 高い受信品質が得られる変調信号のシンボル配置例 高い受信品質が得られる変調信号のシンボル配置例 ブロック符号を用いた場合の1つの符号化後のブロックに必要なシンボル数、スロット数の変化例 ブロック符号を用いた場合の2つの符号化後のブロックに必要なシンボル数、スロット数の変化例 デジタル放送用システムの全体構成図 受信機の構成例を示すブロック図 多重化データの構成を示す図 各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図 PESパケット列に、ビデオストリームがどのように格納されているかを示す詳細図 多重化データにおけるTSパケットとソースパケットの構造を示す図 PMTのデータ構成を示す図 多重化データ情報の内部構成を示す図 ストリーム属性情報の内部構成を示す図 映像表示、音声出力装置の構成図 通信システムの構成の一例 高い受信品質が得られる変調信号のシンボル配置例 高い受信品質が得られる変調信号のシンボル配置例 高い受信品質が得られる変調信号のシンボル配置例 高い受信品質が得られる変調信号のシンボル配置例 送信装置の構成の例 送信装置の構成の例 送信装置の構成の例 送信装置の構成の例 ベースバンド信号入れ替え部を示す図 送信装置の構成の例 分配部の動作の一例 分配部の動作の別例 基地局及び端末の関係を示す通信システムの一例 送信信号の周波数割り当ての一例 送信信号の周波数割り当ての一例 基地局と、中継器と、端末の関係を示す通信システムの一例 基地局からの送信信号の周波数割り当ての一例 中継器からの送信信号の周波数割り当ての一例 中継器の受信部と送信部の構成の一例 基地局が送信する信号のデータフォーマットの一例 送信装置の構成の例 ベースバンド信号入れ替え部を示す図 重み付け、ベースバンド信号の入れ替え、位相変更方法の一例 OFDM方式を用いた送信装置の構成の例 フレーム構成の例 変調方式に応じたスロット数と位相変更値の例 変調方式に応じたスロット数と位相変更値の例 DVB-T2規格における、放送局が送信する信号のフレーム構成の概要 同一時刻に2種類以上の信号が存在する例 送信装置の構成の例 フレーム構成の例 フレーム構成の例 フレーム構成の例 I-Q平面における16QAMの場合の信号点配置の例 I-Q平面におけるQPSKの場合の信号点配置の例 受信装置が得た対数尤度比の絶対値を模式的に示す例 受信装置が得る対数尤度比の絶対値の好適な例 重み付け合成部に関連する信号処理部の構成の例 重み付け合成部に関連する信号処理部の構成の例 I-Q平面における64QAMの場合の信号点配置の例 時間毎の変調方式、パワー変更値、位相変更値の設定例 時間毎の変調方式、パワー変更値、位相変更値の設定例 重み付け合成部に関連する信号処理部の構成の例 重み付け合成部に関連する信号処理部の構成の例 時間毎の変調方式、パワー変更値、位相変更値の設定例 時間毎の変調方式、パワー変更値、位相変更値の設定例 重み付け合成部に関連する信号処理部の構成の例 I-Q平面における16QAM及びQPSKの信号点配置の例 I-Q平面における16QAM及びQPSKの信号点配置の例
 以下、本発明の実施の形態について図面を参照して詳細に説明する。
(実施の形態1)
 本実施の形態の送信方法、送信装置、受信方法、受信装置について詳しく説明する。
 本説明を行う前に、従来システムである空間多重MIMO伝送システムにおける、送信方法、復号方法の概要について説明する。
 NxN空間多重MIMOシステムの構成を図1に示す。情報ベクトルzは、符号化およびインタリーブが施される。そして、インタリーブの出力として、符号化後ビットのベクトルu=(u,…,uNt)が得られる。ただし、u=(ui1,…,uiM)とする(M:シンボル当たりの送信ビット数)。送信ベクトルs=(s,…,sNtとすると送信アンテナ#iから送信信号s=map(u)とあらわし、送信エネルギーを正規化するとE{|s}=Es/Ntとあらわされる(E:チャネル当たりの総エネルギー)。そして、受信ベクトルをy=(y,…,yNrとすると、式(1)のようにあらわされる。
Figure JPOXMLDOC01-appb-M000001
 このとき、HNtNrはチャネル行列、n=(n,…,nNrはノイズベクトルであり、nは平均値0、分散σのi.i.d.複素ガウス雑音である。受信機で導入する送信シンボルと受信シンボルの関係から、受信ベクトルに関する確率は、式(2)のように多次元ガウス分布で与えることができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、outer soft-in/soft-outデコーダとMIMO検波からなる図1のような反復復号を行う受信機を考える。図1における対数尤度比のベクトル(L-value)は式(3)-(5)のようにあらわされる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
<反復検波方法>
 ここでは、NxN空間多重MIMOシステムにおけるMIMO信号の反復検波について述べる。
mnの対数尤度比を式(6)のように定義する。
Figure JPOXMLDOC01-appb-M000006
ベイズの定理より、式(6)は、式(7)のようにあらわすことができる。
Figure JPOXMLDOC01-appb-M000007
 ただし、Umn,±1={u|umn=±1}とする。そして、lnΣa~max ln aで近似すると式(7)は式(8)のように近似することができる。なお、上の「~」の記号は近似を意味する。
Figure JPOXMLDOC01-appb-M000008
 式(8)におけるP(u|umn)とln P(u|umn)は以下のようにあらわされる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 ところで、式(2)で定義した式の対数確率は式(12)のようにあらわされる。
Figure JPOXMLDOC01-appb-M000012
 したがって、式(7),(13)から、MAP、または、APP(a posteriori probability)では、事後のL-valueは、以下のようにあらわされる。
Figure JPOXMLDOC01-appb-M000013
 以降では、反復APP復号と呼ぶ。また、式(8),(12)から、Max-Log近似に基づく対数尤度比(Max-Log APP)では、事後のL-valueは、以下のようにあらわされる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 以降では、反復Max-log APP復号と呼ぶ。そして、反復復号のシステムで必要とする外部情報は、式(13)または(14)から事前入力を減算することで、求めることができる。
<システムモデル>
 図23に、以降の説明につながるシステムの基本構成を示す。ここでは、2×2空間多重MIMOシステムとし、ストリームA,Bではそれぞれにouterエンコーダがあり、2つのouterエンコーダは同一のLDPC符号のエンコーダとする(ここではouterエンコーダとしてLDPC符号のエンコーダを用いる構成を例に挙げて説明するが、outerエンコーダが用いる誤り訂正符号はLDPC符号に限ったものではなく、ターボ符号、畳み込み符号、LDPC畳み込み符号等の他の誤り訂正符号を用いても同様に実施することができる。また、outerエンコーダは、送信アンテナごとに有する構成としているがこれに限ったものではなく、送信アンテナが複数であっても、outerエンコーダは一つであってもよく、また、送信アンテナ数より多くのouterエンコーダを有していてもよい。)。そして、ストリームA,Bではそれぞれにインタリーバ(π,π)がある。ここでは、変調方式を2-QAMとする(1シンボルでhビットを送信することになる。)。
 受信機では、上述のMIMO信号の反復検波(反復APP(またはMax-log APP)復号)を行うものとする。そして、LDPC符号の復号としては、例えば、sum-product復号を行うものとする。
 図2はフレーム構成を示しており、インタリーブ後のシンボルの順番を記載している。このとき、以下の式のように(i,j),(i,j)をあらわすものとする。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 このとき、i,i:インタリーブ後のシンボルの順番、j,j:変調方式におけるビット位置(j,j=1,・・・,h)、π,π:ストリームA,Bのインタリーバ、Ω ia,ja,Ω ib,jb:ストリームA,Bのインタリーブ前のデータの順番、を示している。ただし、図2では、i=iのときのフレーム構成を示している。
<反復復号>
 ここでは、受信機におけるLDPC符号の復号で用いるsum-product復号およびMIMO信号の反復検波のアルゴリズムについて詳しく述べる。
 sum-product復号
 2元MxN行列H={Hmn}を復号対象とするLDPC符号の検査行列とする。集合[1,N]={1,2,・・・,N}の部分集合A(m),B(n)を次式のように定義する。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 このとき、A(m)は検査行列Hのm行目において、1である列インデックスの集合を意味し、B(n)は検査行列Hのn行目において1である行インデックスの集合である。sum-product復号のアルゴリズムは以下のとおりである。
Step A・1(初期化):Hmn=1を満たす全ての組(m,n)に対して事前値対数比βmn=0とする。ループ変数(反復回数)lsum=1とし、ループ最大回数をlsum,maxと設定する。
Step A・2(行処理):m=1,2,・・・,Mの順にHmn=1を満たす全ての組(m,n)に対して、以下の更新式を用いて外部値対数比αmnを更新する。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 このとき、fはGallagerの関数である。そして、λの求め方については以降で詳しく説明する。
Step A・3(列処理):n=1,2,・・・,Nの順にHmn=1を満たす全ての組(m,n)に対して、以下の更新式を用いて外部値対数比βmnを更新する。
Figure JPOXMLDOC01-appb-M000023
Step A・4(対数尤度比の計算):n∈[1,N]について対数尤度比Lを以下のように求める。
Figure JPOXMLDOC01-appb-M000024
Step A・5(反復回数のカウント):もしlsum<lsum,maxならばlsumをインクリメントして、step A・2に戻る。lsum=lsum,maxの場合、この回のsum-product復号は終了する。
 以上が、1回のsum-product復号の動作である。その後、MIMO信号の反復検波が行われる。上述のsum-product復号の動作の説明で用いた変数m,n,αmn,βmn,λ,Lにおいて、ストリームAにおける変数をm,n,α mana,β mana,λna,Lna、ストリームBにおける変数をm,n,α mbnb,β mbnb,λnb,Lnbであらわすものとする。
<MIMO信号の反復検波>
 ここでは、MIMO信号の反復検波におけるλの求め方について詳しく説明する。
  式(1)から、次式が成立する。
Figure JPOXMLDOC01-appb-M000025
図2のフレーム構成から、式(16)(17)から、以下の関係式が成立する。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
このとき、n,n∈[1,N]となる。以降では、MIMO信号の反復検波の反復回数kのときのλna,Lna,λnb,Lnbをそれぞれλk,na,Lk,na,λk,nb,Lk,nbとあらわすものとする。
 Step B・1(初期検波;k=0):初期検波のとき、λ0,na,λ0,nbを以下のように求める。
反復APP復号のとき:
Figure JPOXMLDOC01-appb-M000028
反復Max-log APP復号のとき:
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
ただし、X=a,bとする。そして、MIMO信号の反復検波の反復回数をlmimo=0とし、反復回数の最大回数をlmimo,maxと設定する。
 Step B・2(反復検波;反復回数k):反復回数kのときのλk,na,λk,nbは、式(11)(13)-(15)(16)(17)から式(31)-(34)のようにあらわされる。ただし、(X,Y)=(a,b)(b,a)となる。
反復APP復号のとき:
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
反復Max-log APP復号のとき:
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Step B・3(反復回数のカウント、符号語推定):もしlmimo<lmimo,maxならばlmimoをインクリメントして、step B・2に戻る。lmimo=lmimo,maxの場合、推定符号語を以下のようにもとめる。
Figure JPOXMLDOC01-appb-M000035
 ただし、X=a,bとする。
 図3は、本実施の形態における送信装置300の構成の一例である。符号化部302Aは、情報(データ)301A、フレーム構成信号313を入力とし、フレーム構成信号313(符号化部302Aがデータの誤り訂正符号化に使用する誤り訂正方式、符号化率、ブロック長等の情報が含まれており、フレーム構成信号313が指定した方式を用いることになる。また、誤り訂正方式は、切り替えても良い。)にしたがい、例えば、畳み込み符号、LDPC符号、ターボ符号等の誤り訂正符号化を行い、符号化後のデータ303Aを出力する。
 インタリーバ304Aは、符号化後のデータ303A、フレーム構成信号313を入力とし、インタリーブ、つまり、順番の並び替えを行い、インタリーブ後のデータ305Aを出力する。(フレーム構成信号313に基づき、インタリーブの方法は、切り替えても良い。)
 マッピング部306Aは、インタリーブ後のデータ305A、フレーム構成信号313を入力とし、QPSK(Quadrature Phase Shift Keying)、16QAM(16 Quadrature Amplitude Modulation)、64QAM(64 Quadrature Amplitude Modulation)等の変調を施し、ベースバンド信号307Aを出力する。(フレーム構成信号313に基づき、変調方式は、切り替えても良い。)
 図19は、QPSK変調におけるベースバンド信号を構成する同相成分Iと直交成分QのIQ平面におけるマッピング方法の一例としている。例えば、図19(A)のように、入力データが「00」の場合、I=1.0、Q=1.0が出力され、以下同様に、入力データが「01」の場合、I=―1.0、Q=1.0が出力され、・・・、が出力される。図19(B)は、図19(A)とは異なるQPSK変調のIQ平面におけるマッピング方法の例であり、図19(B)が図19(A)と異なる点は、図19(A)における信号点が、原点を中心に回転させることで図19(B)の信号点を得ることができる。このようなコンスタレーションの回転方法については、非特許文献9、非特許文献10に示されており、また、非特許文献9、非特許文献10に示されているCyclic Q Delayを適用してもよい。図19とは別の例として、図20に16QAMのときのIQ平面における信号点配置を示しており、図19(A)に相当する例が図20(A)であり、図19(B)に相当する例が図20(B)となる。
 符号化部302Bは、情報(データ)301B、フレーム構成信号313を入力とし、フレーム構成信号313(使用する誤り訂正方式、符号化率、ブロック長等の情報が含まれており、フレーム構成信号313が指定した方式を用いることになる。また、誤り訂正方式は、切り替えても良い。)にしたがい、例えば、畳み込み符号、LDPC符号、ターボ符号等の誤り訂正符号化を行い、符号化後のデータ303Bを出力する。
 インタリーバ304Bは、符号化後のデータ303B、フレーム構成信号313を入力とし、インタリーブ、つまり、順番の並び替えを行い、インタリーブ後のデータ305Bを出力する。(フレーム構成信号313に基づき、インタリーブの方法は、切り替えても良い。)
 マッピング部306Bは、インタリーブ後のデータ305B、フレーム構成信号313を入力とし、QPSK(Quadrature Phase Shift Keying)、16QAM(16 Quadrature Amplitude Modulation)、64QAM(64 Quadrature Amplitude Modulation)等の変調を施し、ベースバンド信号307Bを出力する。(フレーム構成信号313に基づき、変調方式は、切り替えても良い。)
 信号処理方法情報生成部314は、フレーム構成信号313を入力とし、フレーム構成信号313に基づいた信号処理方法に関する情報315を出力する。なお、信号処理方法に関する情報315は、どのプリコーディング行列を固定的に用いるのかを指定する情報と、位相を変更する位相変更パターンの情報を含む。
 重み付け合成部308Aは、ベースバンド信号307A、ベースバンド信号307B、信号処理方法に関する情報315を入力とし、信号処理方法に関する情報315に基づいて、ベースバンド信号307Aおよびベースバンド信号307Bを重み付け合成し、重み付け合成後の信号309Aを出力する。なお、重み付け合成の方法の詳細については、後で詳しく説明する。
 無線部310Aは、重み付け合成後の信号309Aを入力とし、直交変調、帯域制限、周波数変換、増幅等の処理を施し、送信信号311Aを出力し、送信信号311Aは、アンテナ312Aから電波として出力される。
 重み付け合成部308Bは、ベースバンド信号307A、ベースバンド信号307B、信号処理方法に関する情報315を入力とし、信号処理方法に関する情報315に基づいて、ベースバンド信号307Aおよびベースバンド信号307Bを重み付け合成し、重み付け合成後の信号316Bを出力する。
 図21に重み付け合成部(308A、308B)の構成を示す。図21において点線で囲まれる領域が重み付け合成部となる。ベースバンド信号307Aは、w11と乗算し、w11・s1(t)を生成し、w21と乗算し、w21・s1(t)を生成する。同様に、ベースバンド信号307Bは、w12と乗算し、w12・s2(t)を生成し、w22と乗算し、w22・s2(t)を生成する。次に、z1(t)=w11・s1(t)+w12・s2(t)、z2(t)=w21・s1(t)+w22・s2(t)を得る。このとき、s1(t)およびs2(t)は、上記の説明からわかるように、BPSK(Binary Phase Shift Keying)、QPSK、8PSK(8 Phase Shift Keying)、16QAM、32QAM(32 Quadrature Amplitude Modulation)、64QAM、256QAM、16APSK(16 Amplitude Phase Shift Keying)等の変調方式のベースバンド信号となる。
 ここで、両重み付け合成部は、固定のプリコーディング行列を用いて重み付けを実行するものとし、プリコーディング行列としては、一例として、下記式(37)又は式(38)の条件のもと、式(36)を用いる方法がある。但し、これは一例であり、αの値は、式(37)、式(38)に限ったものではなく、別の値、例えば、αを1、としてもよい。
 なお、プリコーディング行列は、
Figure JPOXMLDOC01-appb-M000036
 但し、上記式(36)において、αは、
Figure JPOXMLDOC01-appb-M000037
 である。
 あるいは、上記式(36)において、αは、
Figure JPOXMLDOC01-appb-M000038
 である。
 なお、プリコーディング行列は、式(36)に限ったものではなく、式(39)に示すものを用いてもよい。
Figure JPOXMLDOC01-appb-M000039
 この式(39)において、a=Aejδ11、b=Bejδ12、c=Cejδ21、d=Dejδ22であらわされればよい。また、a、b、c、dのいずれか一つが「ゼロ」であってもよい。例えば、(1)aがゼロであり、b、c、dはゼロでない、(2)bがゼロであり、a、c、dはゼロでない、(3)cがゼロであり、a、b、dはゼロでない、(4)dがゼロであり、a、b、cはゼロでない、という構成であってもよい。
 なお、変調方式、誤り訂正符号、その符号化率のいずれかを変更した時は、使用するプリコーディング行列を設定、変更し、そのプリコーディング行列を固定的に使用してもよい。
 位相変更部317Bは、重み付け合成後の信号316B及び信号処理方法に関する情報315を入力とし、当該信号316Bの位相を規則的に変更して出力する。規則的に変更するとは、予め定められた周期(例えば、n個のシンボル毎(nは1以上の整数)あるいは予め定められた時間毎)で、予め定められた位相変更パターンに従って位相を変更する。位相変更パターンの詳細については、下記実施の形態4において説明する。
 無線部310Bは、位相変更後の信号309Bを入力とし、直交変調、帯域制限、周波数変換、増幅等の処理を施し、送信信号311Bを出力し、送信信号311Bは、アンテナ312Bから電波として出力される。
 図4は、図3とは異なる送信装置400の構成例を示している。図4において、図3と異なる部分について説明する。
 符号化部402は、情報(データ)401、フレーム構成信号313を入力とし、フレーム構成信号313に基づき、誤り訂正符号化を行い、符号化後のデータ402を出力する。
 分配部404は符号化後のデータ403を入力とし、分配し、データ405Aおよびデータ405Bを出力する。なお、図4では、符号化部が一つの場合を記載したが、これに限ったものではなく、符号化部をm(mは1以上の整数)とし、各符号化部で作成された符号化データを分配部が、2系統のデータにわけて出力する場合についても、本発明は同様に実施することができる。
 図5は、本実施の形態における送信装置の時間軸におけるフレーム構成の一例を示している。シンボル500_1は、受信装置に、送信方法を通知するためのシンボルであり、例えば、データシンボルを伝送するために用いる誤り訂正方式、その符号化率の情報、データシンボルを伝送するために用いる変調方式の情報等を伝送する。
 シンボル501_1は、送信装置が送信する変調信号z1(t){ただし、tは時間}のチャネル変動を推定するためのシンボルである。シンボル502_1は変調信号z1(t)が(時間軸における)シンボル番号uに送信するデータシンボル、シンボル503_1は変調信号z1(t)がシンボル番号u+1に送信するデータシンボルである。
 シンボル501_2は、送信装置が送信する変調信号z2(t){ただし、tは時間}のチャネル変動を推定するためのシンボルである。シンボル502_2は変調信号z2(t)がシンボル番号uに送信するデータシンボル、シンボル503_2は変調信号z2(t)がシンボル番号u+1に送信するデータシンボルである。
 このとき、z1(t)におけるシンボルとz2(t)におけるシンボルにおいて、同一時刻(同一時間)のシンボルは、同一(共通)の周波数を用いて、送信アンテナから送信されることになる。
 送信装置が送信する変調信号z1(t)と変調信号z2(t)、及び、受信装置における受信信号r1(t)、r2(t)の関係について説明する。
 図5において、504#1、504#2は送信装置における送信アンテナ、505#1、505#2は受信装置における受信アンテナを示しており、送信装置は、変調信号z1(t)を送信アンテナ504#1、変調信号z2(t)を送信アンテナ504#2から送信する。このとき、変調信号z1(t)および変調信号z2(t)は、同一(共通の)周波数(帯域)を占有しているものとする。送信装置の各送信アンテナと受信装置の各アンテナのチャネル変動をそれぞれh11(t)、h12(t)、h21(t)、h22(t)とし、受信装置の受信アンテナ505#1が受信した受信信号をr1(t)、受信装置の受信アンテナ505#2が受信した受信信号をr2(t)とすると、以下の関係式が成立する。
Figure JPOXMLDOC01-appb-M000040
 図6は、本実施の形態における重み付け方法(プリコーディング(Precoding)方法)及び位相変更方法に関連する図であり、重み付け合成部600は、図3の重み付け合成部308Aと308Bの両者を統合した重み付け合成部である。図6に示すように、ストリームs1(t)およびストリームs2(t)は、図3のベースバンド信号307Aおよび307Bに相当する、つまり、QPSK、16QAM、64QAMなどの変調方式のマッピングにしたがったベースバンド信号の同相I成分、直交Q成分となる。そして、図6のフレーム構成のようにストリームs1(t)は、シンボル番号uの信号をs1(u)、シンボル番号u+1の信号をs1(u+1)、・・・とあらわす。同様に、ストリームs2(t)は、シンボル番号uの信号をs2(u)、シンボル番号u+1の信号をs2(u+1)、・・・とあらわす。そして、重み付け合成部600は、図3におけるベースバンド信号307A(s1(t))および307B(s2(t))、信号処理方法に関する情報315を入力とし、信号処理方法に関する情報315にしたがった重み付けを施し、図3の重み付け合成後の信号309A(z1(t))、316B(z2’(t))を出力する。位相変更部317Bは、重み付けされた信号316B(z2’(t))の位相を変更し、位相変更後の信号309B(z2(t))を出力する。
 このとき、z1(t)は、固定のプリコーディング行列Fにおける第1行のベクトルをW1=(w11,w12)とすると、以下の式(41)であらわすことができる。
Figure JPOXMLDOC01-appb-M000041
 一方、z2(t)は、固定のプリコーディング行列Fにおける第2行のベクトルをW2=(w21,w22)とし、位相変更部による位相変更式をy(t)とすると、以下の式(42)であらわすことができる。
Figure JPOXMLDOC01-appb-M000042
 ここで、y(t)は、予め定められた方式に従って、位相を変更するための式であり、例えば、周期を4とすると、時刻uの位相変更式は、例えば、式(43)であらわすことができる。
Figure JPOXMLDOC01-appb-M000043
 同様に時刻u+1の位相変更式は、例えば、式(44)であらわすことができる。
Figure JPOXMLDOC01-appb-M000044
 即ち、時刻u+kの位相変更式は、式(45)であらわすことができる。
Figure JPOXMLDOC01-appb-M000045
 なお、式(43)~(45)に示した規則的な位相変更例は一例に過ぎない。
 規則的な位相変更の周期は4に限ったものではない。この周期の数が多くなればその分だけ、受信装置の受信性能(より正確には誤り訂正性能)の向上を促すことができる可能性がある(周期が大きければよいというわけではないが、2のような小さい値は避ける方がよい可能性が高い。)。
 また、上記式(43)~(45)で示した位相変更例では逐次所定の位相(上記式では、π/2ずつ)だけ回転させていく構成を示したが、同じ位相量だけ回転させるのではなくランダムに位相を変更することとしてもよい。例えば、y(t)は予め定められた周期に従って、式(46)や式(47)に示すような順に乗じる位相が変更されてもよい。位相の規則的な変更において重要となるのは、変調信号の位相が規則的に変更されることであり、変更される位相の度合いについては、なるべく均等になる、例えば、-πラジアンからπラジアンに対し、一様分布となるのが望ましいもののランダムであってもよい。
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000047
 このように、図6の重み付け合成部600は、予め定められた固定のプリコーディングウェイトを用いてプリコーディングを実行し、位相変更部317Bは、入力された信号の位相を、その変更度合いを規則的に変えながら、変更する。
 LOS環境では、特殊なプリコーディング行列を用いると、受信品質が大きく改善する可能性があるが、直接波の状況により、その特殊なプリコーディング行列は受信した際の直接波の位相、振幅成分により異なる。しかし、LOS環境には、ある規則があり、この規則に従い送信信号の位相を規則的に変更すれば、データの受信品質が大きく改善する。本発明は、LOS環境を改善する信号処理方法を提案している。
 図7は、本実施の形態における受信装置700の構成の一例を示している。無線部703_Xは、アンテナ701_Xで受信された受信信号702_Xを入力とし、周波数変換、直交復調等の処理を施し、ベースバンド信号704_Xを出力する。
 送信装置で送信された変調信号z1におけるチャネル変動推定部705_1は、ベースバンド信号704_Xを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(40)のh11に相当する値を推定し、チャネル推定信号706_1を出力する。
 送信装置で送信された変調信号z2におけるチャネル変動推定部705_2は、ベースバンド信号704_Xを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_2を抽出し、式(40)のh12に相当する値を推定し、チャネル推定信号706_2を出力する。
 無線部703_Yは、アンテナ701_Yで受信された受信信号702_Yを入力とし、周波数変換、直交復調等の処理を施し、ベースバンド信号704_Yを出力する。
 送信装置で送信された変調信号z1におけるチャネル変動推定部707_1は、ベースバンド信号704_Yを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(40)のh21に相当する値を推定し、チャネル推定信号708_1を出力する。
 送信装置で送信された変調信号z2におけるチャネル変動推定部707_2は、ベースバンド信号704_Yを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_2を抽出し、式(40)のh22に相当する値を推定し、チャネル推定信号708_2を出力する。
 制御情報復号部709は、ベースバンド信号704_Xおよび704_Yを入力とし、図5の送信方法を通知するためのシンボル500_1を検出し、送信装置が通知した送信方法の情報に関する信号710を出力する。
 信号処理部711は、ベースバンド信号704_X、704_Y、チャネル推定信号706_1、706_2、708_1、708_2、及び、送信装置が通知した送信方法の情報に関する信号710を入力とし、検波、復号を行い、受信データ712_1および712_2を出力する。
 次に、図7の信号処理部711の動作について詳しく説明する。図8は、本実施の形態における信号処理部711の構成の一例を示している。図8は、主にINNER MIMO検波部とsoft-in/soft-outデコーダ、係数生成部から構成されている。この構成における反復復号の方法については、非特許文献2、非特許文献3で詳細が述べられているが、非特許文献2、非特許文献3に記載されているMIMO伝送方式は空間多重MIMO伝送方式であるが、本実施の形態における伝送方式は、時間とともに信号の位相を規則的に変更し、かつ、プリコーディング行列が使用されているMIMO伝送方式である点が、非特許文献2、非特許文献3と異なる点である。式(36)における(チャネル)行列をH(t)、図6におけるプリコーディングウェイト行列をF(ここでプリコーディング行列は1の受信信号中においては変更されない固定のものである)、図6の位相変更部による位相変更式の行列をY(t)(ここでY(t)はtによって変化する)、受信ベクトルをR(t)=(r1(t),r2(t))、ストリームベクトルS(t)=(s1(t),s2(t))とすると以下の関係式が成立する。
Figure JPOXMLDOC01-appb-M000048
 このとき、受信装置は、H(t)×Y(t)×Fを得ることで、受信ベクトルR(t)に対して非特許文献2、非特許文献3の復号方法を適用することができる。
 したがって、図8の係数生成部819は、送信装置が通知した送信方法の情報(用いた固定のプリコーディング行列及び位相を変更していた場合の位相変更パターンを特定するための情報)に関する信号818(図7の710に相当)を入力とし、信号処理方法の情報に関する信号820を出力する。
 INNER MIMO検波部803は、信号処理方法の情報に関する信号820を入力とし、この信号を利用して、式(48)の関係を利用することで、反復検波・復号を行うことになるがその動作について説明する。
 図8に示す構成の信号処理部では、反復復号(反復検波)を行うため図10に示すような処理方法を行う必要がある。初めに、変調信号(ストリーム)s1の1符号語(または、1フレーム)、および、変調信号(ストリーム)s2の1符号語(または、1フレーム)の復号を行う。その結果、soft-in/soft-outデコーダから、変調信号(ストリーム)s1の1符号語(または、1フレーム)、および、変調信号(ストリーム)s2の1符号語(または、1フレーム)の各ビットの対数尤度比(LLR:Log-Likelihood Ratio)が得られる。そして、そのLLRを用いて再度、検波・復号が行われる。この操作が複数回行われる(この操作を反復復号(反復検波)と呼ぶ。)。以降では、1フレームにおける特定の時間のシンボルの対数尤度比(LLR)の作成方法を中心に説明する。
 図8において、記憶部815は、ベースバンド信号801X(図7のベースバンド信号704_Xに相当する。)、チャネル推定信号群802X(図7のチャネル推定信号706_1、706_2に相当する。)、ベースバンド信号801Y(図7のベースバンド信号704_Yに相当する。)、チャネル推定信号群802Y(図7のチャネル推定信号708_1、708_2に相当する。)を入力とし、反復復号(反復検波)を実現するために、式(48)におけるH(t)×Y(t)×Fを実行(算出)し、算出した行列を変形チャネル信号群として記憶する。そして、記憶部815は、必要なときに上記信号を、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Yとして出力する。
 その後の動作については、初期検波の場合と反復復号(反復検波)の場合を分けて説明する。
 <初期検波の場合>
 INNER MIMO検波部803は、ベースバンド信号801X、チャネル推定信号群802X、ベースバンド信号801Y、チャネル推定信号群802Yを入力とする。ここでは、変調信号(ストリーム)s1、変調信号(ストリーム)s2の変調方式が16QAMとして説明する。
 INNER MIMO検波部803は、まず、チャネル推定信号群802X、チャネル推定信号群802YからH(t)×Y(t)×Fを実行し、ベースバンド信号801Xに対応する候補信号点を求める。そのときの様子を図11に示す。図11において、●(黒丸)は、IQ平面における候補信号点であり、変調方式が16QAMのため、候補信号点は256個存在する。(ただし、図11では、イメージ図を示しているため、256個の候補信号点全ては示していない。)ここで、変調信号s1で伝送する4ビットをb0、b1、b2、b3、変調信号s2で伝送する4ビットをb4、b5、b6、b7とすると、図11において(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点が存在することになる。そして、受信信号点1101(ベースバンド信号801Xに相当する。)と候補信号点それぞれとの2乗ユークリッド距離を求める。そして、それぞれの2乗ユークリッド距離をノイズの分散σで除算する。したがって、(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点と受信信号点2乗ユークリッド距離をノイズの分散で除算した値をE(b0,b1,b2,b3,b4,b5,b6,b7)が求まることになる。なお、各ベースバンド信号、変調信号s1、s2は、複素信号である。
 同様に、チャネル推定信号群802X、チャネル推定信号群802YからH(t)×Y(t)×Fを実行し、ベースバンド信号801Yに対応する候補信号点をもとめ、受信信号点(ベースバンド信号801Yに相当する。)との2乗ユークリッド距離を求め、この2乗ユークリッド距離をノイズの分散σで除算する。したがって、(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点と受信信号点2乗ユークリッド距離をノイズの分散で除算した値をE(b0,b1,b2,b3,b4,b5,b6,b7)が求まることになる。
 そして、E(b0,b1,b2,b3,b4,b5,b6,b7)+E(b0,b1,b2,b3,b4,b5,b6,b7)=E(b0,b1,b2,b3,b4,b5,b6,b7)を求める。
 INNER MIMO検波部803は、E(b0,b1,b2,b3,b4,b5,b6,b7)を信号804として出力する。
 対数尤度算出部805Aは、信号804を入力とし、ビットb0およびb1およびb2およびb3の対数尤度(log likelihood)を算出し、対数尤度信号806Aを出力する。ただし、対数尤度の算出では、“1”のときの対数尤度および“0”のときの対数尤度が算出される。その算出方法は、式(28)、式(29)、式(30)に示した通りであり、詳細については、非特許文献2、非特許文献3に示されている。
 同様に、対数尤度算出部805Bは、信号804を入力とし、ビットb4およびb5およびb6およびb7の対数尤度を算出し、対数尤度信号806Bを出力する。
 デインタリーバ(807A)は、対数尤度信号806Aを入力とし、インタリーバ(図3のインタリーバ(304A))に対応するデインタリーブを行い、デインタリーブ後の対数尤度信号808Aを出力する。
 同様に、デインタリーバ(807B)は、対数尤度信号806Bを入力とし、インタリーバ(図3のインタリーバ(304B))に対応するデインタリーブを行い、デインタリーブ後の対数尤度信号808Bを出力する。
 対数尤度比算出部809Aは、デインタリーブ後の対数尤度信号808Aを入力とし、図3の符号化器302Aで符号化されたビットの対数尤度比(LLR:Log-Likelihood Ratio)を算出し、対数尤度比信号810Aを出力する。
 同様に、対数尤度比算出部809Bは、デインタリーブ後の対数尤度信号808Bを入力とし、図3の符号化器302Bで符号化されたビットの対数尤度比(LLR:Log-Likelihood Ratio)を算出し、対数尤度比信号810Bを出力する。
 Soft-in/soft-outデコーダ811Aは、対数尤度比信号810Aを入力とし、復号を行い、復号後の対数尤度比812Aを出力する。
 同様に、Soft-in/soft-outデコーダ811Bは、対数尤度比信号810Bを入力とし、復号を行い、復号後の対数尤度比812Bを出力する。
 <反復復号(反復検波)の場合、反復回数k>
 インタリーバ(813A)は、k-1回目のsoft-in/soft-outデコードで得られた復号後の対数尤度比812Aを入力とし、インタリーブを行い、インタリーブ後の対数尤度比814Aを出力する。このとき、インタリーブ(813A)のインタリーブのパターンは、図3のインタリーバ(304A)のインタリーブパターンと同様である。
 インタリーバ(813B)は、k-1回目のsoft-in/soft-outデコードで得られた復号後の対数尤度比812Bを入力とし、インタリーブを行い、インタリーブ後の対数尤度比814Bを出力する。このとき、インタリーブ(813B)のインタリーブのパターンは、図3のインタリーバ(304B)のインタリーブパターンと同様である。
 INNER MIMO検波部803は、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Y、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bを入力とする。ここで、ベースバンド信号801X、チャネル推定信号群802X、ベースバンド信号801Y、チャネル推定信号群802Yではなく、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Yを用いているのは、反復復号のため、遅延時間が発生しているためである。
 INNER MIMO検波部803の反復復号時の動作と、初期検波時の動作の異なる点は、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bを信号処理の際に用いていることである。INNER MIMO検波部803は、まず、初期検波のときと同様に、E(b0,b1,b2,b3,b4,b5,b6,b7)を求める。加えて、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bから、式(11)、式(32)に相当する係数を求める。そして、E(b0,b1,b2,b3,b4,b5,b6,b7)の値をこの求めた係数を用いて補正し、その値をE’(b0,b1,b2,b3,b4,b5,b6,b7)とし、信号804として出力する。
 対数尤度算出部805Aは、信号804を入力とし、ビットb0およびb1およびb2およびb3の対数尤度(log likelihood)を算出し、対数尤度信号806Aを出力する。ただし、対数尤度の算出では、“1”のときの対数尤度および“0”のときの対数尤度が算出される。その算出方法は、式(31)、式(32)、式(33)、式(34)、式(35)に示した通りであり、非特許文献2、非特許文献3に示されている。
 同様に、対数尤度算出部805Bは、信号804を入力とし、ビットb4およびb5およびb6およびb7の対数尤度を算出し、対数尤度信号806Bを出力する。デインタリーバ以降の動作は、初期検波と同様である。
 なお、図8では、反復検波を行う場合の、信号処理部の構成について示したが、反復検波は必ずしも良好な受信品質を得る上で必須の構成ではなく、反復検波のみに必要とする構成部分、インタリーバ813A、813Bを有していない構成でもよい。このとき、INNER MIMO検波部803は、反復的な検波を行わないことになる。
 そして、本実施の形態で重要な部分は、H(t)×Y(t)×Fの演算を行うことである。なお、非特許文献5等に示されているように、QR分解を用いて初期検波、反復検波を行ってもよい。
 また、非特許文献11に示されているように、H(t)×Y(t)×Fに基づき、MMSE(Minimum Mean Square Error)、ZF(Zero Forcing)の線形演算を行い、初期検波を行ってもよい。
 図9は、図8と異なる信号処理部の構成であり、図4の送信装置が送信した変調信号のための信号処理部である。図8と異なる点は、soft-in/soft-outデコーダの数であり、soft-in/soft-outデコーダ901は、対数尤度比信号810A、810Bを入力とし、復号を行い、復号後の対数尤度比902を出力する。分配部903は、復号後の対数尤度比902を入力とし、分配を行う。それ以外の部分については、図8と同様の動作となる。
 以上のように、本実施の形態のように、MIMO伝送システムの送信装置が複数アンテナから複数の変調信号を送信する際、プリコーディング行列を乗算するとともに、時間とともに位相を変更し、この位相の変更を規則的に行うことで、直接波が支配的なLOS環境において、従来の空間多重MIMO伝送を用いるときと比べ、受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 本実施の形態において、特に、受信装置の構成については、アンテナ数を限定して、動作を説明したが、アンテナ数が増えても、同様に実施することができる。つまり、受信装置におけるアンテナ数は、本実施の形態の動作、効果に影響を与えるものではない。
 また、本実施の形態では、特にLDPC符号を例に説明したがこれに限ったものではなく、また、復号方法についても、soft-in/soft-outデコーダとして、sum-product復号を例に限ったものではなく、他のsoft-in/soft-outの復号方法、例えば、BCJRアルゴリズム、SOVAアルゴリズム、Max-log-MAPアルゴリズムなどがある。詳細については、非特許文献6に示されている。
 また、本実施の形態では、シングルキャリア方式を例に説明したが、これに限ったものではなく、マルチキャリア伝送を行った場合でも同様に実施することができる。したがって、例えば、スペクトル拡散通信方式、OFDM(Orthogonal Frequency-Division Multiplexing)方式、SC-FDMA(Single Carrier Frequency Division Multiple Access)、SC-OFDM(Single Carrier Orthogonal Frequency-Division Multiplexing)方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても同様に実施することができる。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報の伝送用のシンボルなどが、フレームにどのように配置されていてもよい。
 以下では、マルチキャリア方式の一例として、OFDM方式を用いたときの例を説明する。
 図12は、OFDM方式を用いたときの送信装置の構成を示している。図12において、図3と同様に動作するものについては、同一符号を付した。
 OFDM方式関連処理部1201Aは、重み付け後の信号309Aを入力とし、OFDM方式関連の処理を施し、送信信号1202Aを出力する。同様に、OFDM方式関連処理部1201Bは、位相変更後の信号309Bを入力とし、送信信号1202Bを出力する。
 図13は、図12のOFDM方式関連処理部1201A、1201B以降の構成の一例を示しており、図12の1201Aから312Aに関連する部分が、1301Aから1310Aであり、1201Bから312Bに関連する部分が1301Bから1310Bである。
 シリアルパラレル変換部1302Aは、重み付け後の信号1301A(図12の重み付け後の信号309Aに相当する)シリアルパラレル変換を行い、パラレル信号1303Aを出力する。
 並び換え部1304Aは、パラレル信号1303Aを入力とし、並び換えを行い、並び換え後の信号1305Aを出力する。なお、並び換えについては、後で詳しく述べる。
 逆高速フーリエ変換部1306Aは、並び換え後の信号1305Aを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1307Aを出力する。
 無線部1308Aは、逆フーリエ変換後の信号1307Aを入力とし、周波数変換、増幅等の処理を行い、変調信号1309Aを出力し、変調信号1309Aはアンテナ1310Aから電波として出力される。
 シリアルパラレル変換部1302Bは、重み付けされ位相が変更された後の信号1301B(図12の位相変更後の信号309Bに相当する)に対し、シリアルパラレル変換を行い、パラレル信号1303Bを出力する。
 並び換え部1304Bは、パラレル信号1303Bを入力とし、並び換えを行い、並び換え後の信号1305Bを出力する。なお、並び換えについては、後で詳しく述べる。
 逆高速フーリエ変換部1306Bは、並び換え後の信号1305Bを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1307Bを出力する。
 無線部1308Bは、逆フーリエ変換後の信号1307Bを入力とし、周波数変換、増幅等の処理を行い、変調信号1309Bを出力し、変調信号1309Bはアンテナ1310Bから電波として出力される。
 図3の送信装置では、マルチキャリアを用いた伝送方式でないため、図6のように、4周期となるように位相を変更し、位相変更後のシンボルを時間軸方向に配置している。図12に示すようなOFDM方式のようなマルチキャリア伝送方式を用いている場合、当然、図3のようにプリコーディングし、位相を変更した後のシンボルを時間軸方向に配置し、それを各(サブ)キャリアごとに行う方式が考えられるが、マルチキャリア伝送方式の場合、周波数軸方向、または、周波数軸・時間軸両者を用いて配置する方法が考えられる。以降では、この点について説明する。
 図14は、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、周波数軸は、(サブ)キャリア0から(サブ)キャリア9で構成されており、変調信号z1とz2は、同一時刻(時間)に同一の周波数帯域を使用しており、図14(A)は変調信号z1のシンボルの並び替え方法、図14(B)は変調信号z2のシンボルの並び替え方法を示している。シリアルパラレル変換部1302Aが入力とする重み付けされた後の信号1301Aのシンボルに対し、順番に、#0、#1、#2、#3、・・・と番号をふる。ここでは、周期4の場合を考えているので、#0、#1、#2、#3が一周期分となる。同様に考えると、#4n、#4n+1、#4n+2、#4n+3(nは0以上の整数)が一周期分となる。
 このとき、図14(a)のように、シンボル#0、#1、#2、#3、・・・をキャリア0から順番に配置し、シンボル#0から#9を時刻$1に配置し、その後、シンボル#10から#19を時刻$2に配置するというように規則的に配置するものとする。なお、変調信号z1とz2は、複素信号である。
 同様に、シリアルパラレル変換部1302Bが入力とする重み付けされ位相が変更された後の信号1301Bのシンボルに対し、順番に、#0、#1、#2、#3、・・・と番号をふる。ここでは、周期4の場合を考えているので、#0、#1、#2、#3はそれぞれ異なる位相変更を行っていることになり、#0、#1、#2、#3が一周期分となる。同様に考えると、#4n、#4n+1、#4n+2、#4n+3(nは0以上の整数)はそれぞれ異なる位相変更を行っていることになり、#4n、#4n+1、#4n+2、#4n+3が一周期分となる。
 このとき、図14(b)のように、シンボル#0、#1、#2、#3、・・・をキャリア0から順番に配置し、シンボル#0から#9を時刻$1に配置し、その後、シンボル#10から#19を時刻$2に配置するというように規則的に配置するものとする。
 そして、図14(B)に示すシンボル群1402は、図6に示す位相変更方法を用いたときの1周期分のシンボルであり、シンボル#0は図6の時刻uの位相を用いたときのシンボルであり、シンボル#1は図6の時刻u+1の位相を用いたときのシンボルであり、シンボル#2は図6の時刻u+2の位相を用いたときのシンボルであり、シンボル#3は図6の時刻u+3の位相を用いたときのシンボルである。したがって、シンボル#xにおいて、x mod 4が0(xを4で割ったときの余り、したがって、mod:modulo)のとき、シンボル#xは図6の時刻uの位相を用いたときのシンボルであり、x mod 4が1のとき、シンボル#xは図6の時刻u+1の位相を用いたときのシンボルであり、x mod 4が2のとき、シンボル#xは図6の時刻u+2の位相を用いたときのシンボルであり、x mod 4が3のとき、シンボル#xは図6の時刻u+3の位相を用いたときのシンボルである。
 なお、本実施の形態においては、図14(A)に示す変調信号z1は位相を変更されていない。
 このように、OFDM方式などのマルチキャリア伝送方式を用いた場合、シングルキャリア伝送のときとは異なり、シンボルを周波数軸方向に並べることができるという特徴を持つことになる。そして、シンボルの並べ方については、図14のような並べ方に限ったものではない。他の例について、図15、図16を用いて説明する。
 図15は、図14とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図15(A)は変調信号z1のシンボルの並び替え方法、図15(B)は変調信号z2のシンボルの並び替え方法を示している。図15(A)(B)が図14と異なる点は、変調信号z1のシンボルの並び替え方法と変調信号z2のシンボルの並び替え方法が異なる点であり、図15(B)では、シンボル#0から#5をキャリア4からキャリア9に配置し、シンボル#6から#9をキャリア0から3に配置し、その後、同様の規則で、シンボル#10から#19を各キャリアに配置する。このとき、図14(B)と同様に、図15(B)に示すシンボル群1502は、図6に示す位相変更方法を用いたときの1周期分のシンボルである。
 図16は、図14と異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図16(A)は変調信号z1のシンボルの並び替え方法、図16(B)は変調信号z2のシンボルの並び替え方法を示している。図16(A)(B)が図14と異なる点は、図14では、シンボルをキャリアに順々に配置しているのに対し、図16では、シンボルをキャリアに順々に配置していない点である。当然であるが、図16において、図15と同様に、変調信号z1のシンボルの並び替え方法と変調信号z2の並び替え方法を異なるようにしてもよい。
 図17は、図14~16とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図17(A)は変調信号z1のシンボルの並び替え方法、図17(B)は変調信号z2のシンボルの並び替え方法を示している。図14~16では、シンボルを周波数軸方向に並べているが、図17ではシンボルを周波数、時間軸の両者を利用して配置している。
 図6では、位相の変更を4スロットで切り替える場合の例を説明したが、ここでは、8スロットで切り替える場合を例に説明する。図17に示すシンボル群1702は、位相変更方法を用いたときの1周期分のシンボル(したがって、8シンボル)であり、シンボル#0は時刻uの位相を用いたときのシンボルであり、シンボル#1は時刻u+1の位相を用いたときのシンボルであり、シンボル#2は時刻u+2の位相を用いたときのシンボルであり、シンボル#3は時刻u+3の位相を用いたときのシンボルであり、シンボル#4は時刻u+4の位相を用いたときのシンボルであり、シンボル#5は時刻u+5の位相を用いたときのシンボルであり、シンボル#6は時刻u+6の位相を用いたときのシンボルであり、シンボル#7は時刻u+7の位相を用いたときのシンボルである。したがって、シンボル#xにおいて、x mod 8が0のとき、シンボル#xは時刻uの位相を用いたときのシンボルであり、x mod 8が1のとき、シンボル#xは時刻u+1の位相を用いたときのシンボルであり、x mod 8が2のとき、シンボル#xは時刻u+2の位相を用いたときのシンボルであり、x mod 8が3のとき、シンボル#xは時刻u+3の位相を用いたときのシンボルであり、x mod 8が4のとき、シンボル#xは時刻u+4の位相を用いたときのシンボルであり、x mod 8が5のとき、シンボル#xは時刻u+5の位相を用いたときのシンボルであり、x mod 8が6のとき、シンボル#xは時刻u+6の位相を用いたときのシンボルであり、x mod 8が7のとき、シンボル#xは時刻u+7の位相を用いたときのシンボルである。図17のシンボルの並べ方では、時間軸方向に4スロット、周波数軸方向で2スロットの計4×2=8スロットを用いて、1周期分のシンボルを配置しているが、このとき、1周期分のシンボルの数をm×nシンボル(つまり、乗じる位相はm×n種類存在する。)1周期分のシンボルを配置するのに使用する周波数軸方向のスロット(キャリア数)をn、時間軸方向に使用するスロットをmとすると、m>nとするとよい。これは、直接波の位相は、時間軸方向の変動は、周波数軸方向の変動と比較し、緩やかである。したがって、定常的な直接波の影響を小さくするために本実施の形態の規則的な位相の変更を行うので、位相の変更を行う周期では直接波の変動を小さくしたい。したがって、m>nとするとよい。また、以上の点を考慮すると、周波数軸方向のみ、または、時間軸方向のみにシンボルを並び替えるより、図17のように周波数軸と時間軸の両者を用いて並び換えを行うほうが、直接波は定常的になる可能性が高く、本発明の効果を得やすいという効果が得られる。ただし、周波数軸方向に並べると、周波数軸の変動が急峻であるため、ダイバーシチゲインを得ることが出来る可能性があるので、必ずしも周波数軸と時間軸の両者を用いて並び換えを行う方法が最適な方法であるとは限らない。
 図18は、図17とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図18(A)は変調信号z1のシンボルの並び替え方法、図18(B)は変調信号z2のシンボルの並び替え方法を示している。図18は、図17と同様、シンボルを周波数、時間軸の両者を利用して配置しているが、図17と異なる点は、図17では、周波数方向を優先し、その後、時間軸方向にシンボルを配置しているのに対し、図18では、時間軸方向を優先し、その後、時間軸方向にシンボルを配置している点である。図18において、シンボル群1802は、位相変更方法を用いたときの1周期分のシンボルである。
 なお、図17、図18では、図15と同様に、変調信号z1のシンボルの配置方法と変調信号z2のシンボル配置方法が異なるように配置しても同様に実施することができ、また、高い受信品質を得ることができるという効果を得ることができる。また、図17、図18において、図16のようにシンボルを順々に配置していなくても、同様に実施することができ、また、高い受信品質を得ることができるという効果を得ることができる。
 図22は、上記とは異なる、横軸周波数、縦軸時間における図13の並び替え部1301A、130Bにおけるシンボルの並び換え方法の一例を示している。図6の時刻u~u+3のような4スロットを用いて規則的に位相を変更する場合を考える。図22において特徴的な点は、周波数軸方向にシンボルを順に並べているが、時間軸方向に進めた場合、サイクリックにn(図22の例ではn=1)シンボルサイクリックシフトさせている点である。図22における周波数軸方向のシンボル群2210に示した4シンボルにおいて、図6の時刻u~u+3の位相の変更を行うものとする。
 このとき、#0のシンボルでは時刻uの位相を用いた位相変更、#1では時刻u+1の位相を用いた位相変更、#2では時刻u+2の位相を用いた位相変更、時刻u+3の位相を用いた位相変更を行うものとする。
 周波数軸方向のシンボル群2220についても同様に、#4のシンボルでは時刻uの位相を用いた位相変更、#5では時刻u+1の位相を用いた位相変更、#6では時刻u+2の位相を用いた位相変更、#7では時刻u+3の位相を用いた位相変更を行うものとする。
 時間$1のシンボルにおいて、上記のような位相の変更を行ったが、時間軸方向において、サイクリックシフトしているため、シンボル群2201、2202、2203、2204については以下のように位相の変更を行うことになる。
 時間軸方向のシンボル群2201では、#0のシンボルでは時刻uの位相を用いた位相変更、#9では時刻u+1の位相を用いた位相変更、#18では時刻u+2の位相を用いた位相変更、#27では時刻u+3の位相を用いた位相変更を行うものとする。
 時間軸方向のシンボル群2202では、#28のシンボルでは時刻uの位相を用いた位相変更、#1では時刻u+1の位相を用いた位相変更、#10では時刻u+2の位相を用いた位相変更、#19では時刻u+3の位相を用いた位相変更を行うものとする。
 時間軸方向のシンボル群2203では、#20のシンボルでは時刻uの位相を用いた位相変更、#29では時刻u+1の位相を用いた位相変更、#2では時刻u+2の位相を用いた位相変更、#11では時刻u+3の位相を用いた位相変更を行うものとする。
 時間軸方向のシンボル群2204では、#12のシンボルでは時刻uの位相を用いた位相変更、#21では時刻u+1の位相を用いた位相変更、#30では時刻u+2の位相を用いた位相変更、#3では時刻u+3の位相を用いた位相変更を行うものとする。
 図22においての特徴は、例えば#11のシンボルに着目した場合、同一時刻の周波数軸方向の両隣のシンボル(#10と#12)は、ともに#11とは異なる位相を用いて位相の変更を行っているとともに、#11のシンボルの同一キャリアの時間軸方向の両隣のシンボル(#2と#20)は、ともに#11とは異なる位相を用いて位相の変更を行っていることである。そして、これは#11のシンボルに限ったものではなく、周波数軸方向および時間軸方向ともに両隣にシンボルが存在するシンボルすべてにおいて#11のシンボルと同様の特徴をもつことになる。これにより、効果的に位相を変更していることになり、直接波の定常的な状況に対する影響を受けづらくなるため、データの受信品質が改善される可能性が高くなる。
 図22では、n=1として説明したが、これに限ったものではなく、n=3としても同様に実施することができる。また、図22では、周波数軸にシンボルを並べ、時間が軸方向にすすむ場合、シンボルの配置の順番をサイクリックシフトするという特徴を持たせることで、上記の特徴を実現したが、シンボルをランダム(規則的であってもよい)に配置することで上記特徴を実現するような方法もある。
 
(実施の形態2)
 上記実施の形態1においては、重み付け合成された(固定のプリコーディング行列でプリコーディングされた)信号z(t)の位相を変更することとした。ここでは、上記実施の形態1と同等の効果を得られる位相変更方法の各種の実施形態について開示する。
 上記実施の形態において、図3及び図6に示すように、位相変更部317Bは、重み付け合成部600からの一方の出力に対してのみ位相の変更を実行する構成となっている。
 しかしながら、位相の変更を実行するタイミングとしては、重み付け合成部600によるプリコーディングの前に実行することとしてもよく、送信装置は、図6に示した構成に代えて、図25に示すように、位相変更部317Bを重み付け合成部600の前段に設ける構成としてもよい。
 この場合、位相変更部317Bは、選択した変調方式のマッピングにしたがったベースバンド信号s2(t)に対して規則的な位相の変更を実行して、s2’(t)=s2(t)y(t)(但し、y(t)はtにより変更される)を出力し、重み付け合成部600は、s2’(t)に対してプリコーディングを実行して、z2(t)(=W2s2’(t))(式(42)参照)を出力し、これを送信する構成としてもよい。
 また、位相の変更は、両変調信号s1(t)、s2(t)の双方に対して実行してもよく、送信装置は、図6に示した構成に代えて、図26に示すように、重み付け合成部600の両方の出力に対して位相変更部を設ける構成をとってもよい。
 位相変更部317Aは、位相変更部317Bと同様に入力された信号の位相を規則的に変更するものであり、重み付け合成部からのプリコーディングされた信号z1’(t)の位相を変更し、位相を変更した信号z1(t)を送信部に出力する。
 ただし、位相変更部317A及び位相変更部317Bは互いに位相を変更する位相の度合いは、同じタイミングにおいては、図26に示すような位相の変更を行う。(ただし、以下は一つの例であり、位相の変更方法はこれに限ったものではない。)時刻uにおいて、図26の位相変更部317Aは、z1(t)=y(t)z1’(t)となるように、また、位相変更部317Bは、z2(t)=y(t)z2’(t)となるように、位相の変更を行う。例えば、図26に示すように、時刻uにおいて、y(u)=ej0、y(u)=e-jπ/2、時刻u+1において、y(u+1)=ejπ/4、y(u+1)=e-j3π/4、・・・、時刻u+kにおいて、y(u+k)=ejkπ/4、y(u+k)=ej(-kπ/4-π/2)、として位相の変更を行う。なお、位相を規則的に変更する周期は、位相変更部317Aと位相変更部317Bとで同じであってもよいし、異なるものであってもよい。
 また、上述したとおり、位相を変更するタイミングは、重み付け合成部によるプリコーディングの実行前であってもよく、送信装置は、図26に示す構成に代えて、図27に示す構成としてもよい。
 両変調信号の位相を規則的に変更する場合には、それぞれの送信信号には、例えば制御情報として、それぞれの位相変更パターンの情報が含まれることとし、受信装置は、この制御情報を得ることで、送信装置が規則的に切り替えた位相変更方法、つまり、位相変更パターンを知ることができ、これにより、正しい復調(検波)を実行することが可能となる。
 次に、図6、図25の構成の変形例について図28、図29を用いて説明する。図28が図6と異なる点は、位相変更ON/OFFに関する情報2800が存在する点、および、位相変更をz1’(t)、z2’(t)のいずれかに位相変更を行う(同一時刻、または、同一周波数で、位相変更をz1’(t)、z2’(t)のいずれかに対し施す。)点である。したがって、位相変更をz1’(t)、z2’(t)のいずれかに位相変更を行うことになるため、図28の位相変更部317A、位相変更部317Bは、位相変更を行う(ON)場合と位相変更を行わない(OFF)場合がある。このON/OFFに関する制御情報が、位相変更ON/OFFに関する情報2800となる。この位相変更ON/OFFに関する情報2800は、図3に示す信号処理方法情報生成部314から出力される。
 図28の位相変更部317Aは、z1(t)=y(t)z1’(t)となるように、また、位相変更部317Bは、z2(t)=y(t)z2’(t)となるように、位相の変更を行うことになる。
 このとき、例えば、z1’(t)は、周期4で位相変更を行うものとする。(このとき、z2’(t)は位相変更を行わない。)したがって、時刻uにおいて、y(u)=ej0、y(u)=1、時刻u+1において、y(u+1)=ejπ/2、y(u+1)=1、時刻u+2において、y(u+2)=ejπ、y(u+2)=1、時刻u+3において、y(u+3)=ej3π/2、y(u+3)=1とするものとする。
 次に、例えば、z2’(t)は、周期4で位相変更を行うものとする。(このとき、z1’(t)は位相変更を行わない。)したがって、時刻u+4において、y(u+4)=1、y(u+4)=ej0、時刻u+5において、y(u+5)=1、y(u+5)=ejπ/2、時刻u+6において、y(u+6)=1、y(u+6)=ejπ、時刻u+7において、y(u+7)=1、y(u+7)=ej3π/2とするものとする。
 したがって、上記の例では、
 時刻8kのとき、y(8k)=ej0、y(8k)=1、
 時刻8k+1のとき、y(8k+1)=ejπ/2、y(8k+1)=1、
 時刻8k+2のとき、y(8k+2)=ejπ、y(8k+2)=1、
 時刻8k+3のとき、y(8k+3)=ej3π/2、y(8k+3)=1、
 時刻8k+4のとき、y(8k+4)=1、y(8k+4)=ej0
 時刻8k+5のとき、y(8k+5)=1、y(8k+5)=ejπ/2
 時刻8k+6のとき、y(8k+6)=1、y(8k+6)=ejπ
 時刻8k+7のとき、y(8k+7)=1、y(8k+7)=ej3π/2
となる。
 上述のように、z1’(t)のみ位相変更する時間とz2’(t)のみ位相を変更する時間とが存在するようにする。また、z1’(t)のみ位相変更する時間とz2’(t)のみ位相を変更する時間とで、位相変更の周期を構成する。なお、上述では、z1’(t)のみ位相変更を行う場合の周期とz2’(t)のみ位相変更を行う場合の周期を同一にしているが、これに限ったものではなく、z1’(t)のみ位相変更を行う場合の周期とz2’(t)のみ位相変更を行う場合の周期が異なっていてもよい。また、上述の例では、z1’(t)を4周期で位相変更を行った後にz2’(t)を4周期で位相変更を行うように説明しているが、これに限ったものではなく、z1’(t)の位相変更とz2’(t)の位相変更の順番をどのようにしてもよい(例えば、z1’(t)の位相変更とz2’(t)の位相変更を交互に行っても良いし、ある規則にしたがった順番でもよいし、順番はランダムであってもよい。)
 図29の位相変更部317Aは、s1’(t)=y(t)s1(t)となるように、また、位相変更部317Bは、s2’(t)=y(t)s2(t)となるように、位相の変更を行うことになる。
 このとき、例えば、s1(t)は、周期4で位相変更を行うものとする。(このとき、s2(t)は位相変更を行わない。)したがって、時刻uにおいて、y(u)=ej0、y(u)=1、時刻u+1において、y(u+1)=ejπ/2、y(u+1)=1、時刻u+2において、y(u+2)=ejπ、y(u+2)=1、時刻u+3において、y(u+3)=ej3π/2、y(u+3)=1とするものとする。
 次に、例えば、s2(t)は、周期4で位相変更を行うものとする。(このとき、s1(t)は位相変更を行わない。)したがって、時刻u+4において、y(u+4)=1、y(u+4)=ej0、時刻u+5において、y(u+5)=1、y(u+5)=ejπ/2、時刻u+6において、y(u+6)=1、y(u+6)=ejπ、時刻u+7において、y(u+7)=1、y(u+7)=ej3π/2とするものとする。
 したがって、上記の例では、
 時刻8kのとき、y(8k)=ej0、y(8k)=1、
 時刻8k+1のとき、y(8k+1)=ejπ/2、y(8k+1)=1、
 時刻8k+2のとき、y(8k+2)=ejπ、y(8k+2)=1、
 時刻8k+3のとき、y(8k+3)=ej3π/2、y(8k+3)=1、
 時刻8k+4のとき、y(8k+4)=1、y(8k+4)=ej0
 時刻8k+5のとき、y(8k+5)=1、y(8k+5)=ejπ/2
 時刻8k+6のとき、y(8k+6)=1、y(8k+6)=ejπ
 時刻8k+7のとき、y(8k+7)=1、y(8k+7)=ej3π/2
となる。
 上述のように、s1(t)のみ位相変更する時間とs2(t)のみ位相を変更する時間とが存在するようにする。また、s1(t)のみ位相変更する時間とs2(t)のみ位相を変更する時間とで、位相変更の周期を構成する。なお、上述では、s1(t)のみ位相変更を行う場合の周期とs2(t)のみ位相変更を行う場合の周期を同一にしているが、これに限ったものではなく、s1(t)のみ位相変更を行う場合の周期とs2(t)のみ位相変更を行う場合の周期が異なっていてもよい。また、上述の例では、s1(t)を4周期で位相変更を行った後にs2(t)を4周期で位相変更を行うように説明しているが、これに限ったものではなく、s1(t)の位相変更とs2(t)の位相変更の順番をどのようにしてもよい(例えば、s1(t)の位相変更とs2(t)の位相変更を交互に行っても良いし、ある規則にしたがった順番でもよいし、順番はランダムであってもよい。)
 これによって、受信装置側における送信信号z1(t)及びz2(t)を受信したときのそれぞれの受信状態を均等にすることができるとともに、受信した信号z1(t)及びz2(t)それぞれのシンボルにおいて位相が周期的に切り替えられることにより、誤り訂正復号後の誤り訂正能力を向上させることができるので、LOS環境における受信品質を向上させることができる。
 以上、実施の形態2に示した構成でも、上記実施の形態1と同様の効果を得ることができる。
 本実施の形態では、シングルキャリア方式を例、つまり、位相変更を時間軸に対して行う場合について説明したが、これに限ったものではなく、マルチキャリア伝送を行った場合でも同様に実施することができる。したがって、例えば、スペクトル拡散通信方式、OFDM(Orthogonal Frequency-Division Multiplexing)方式、SC-FDMA(Single Carrier Frequency Division Multiple Access)、SC-OFDM(Single Carrier Orthogonal Frequency-Division Multiplexing)方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても同様に実施することができる。前述したように、本実施の形態では、位相変更を行う説明として、時間t軸方向で位相変更を行う場合で説明したが、実施の形態1と同様に、周波数軸方向に位相変更を行う、つまり、本実施の形態において、t方向での位相変更の説明において、tをf(f:周波数((サブ)キャリア))に置き換えて、考えることで、本実施の形態で説明した位相変更方法を、周波数方向に位相変更ことに適用することができることになる。また、本実施の形態の位相変更方法は、実施の形態1の説明と同様に、時間-周波数方向に対する位相変更に対して、適用することも可能である。
 したがって、図6、図25、図26、図27では時間軸方向で位相変更を行う場合を示しているが、図6、図25、図26、図27において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。
 そして、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報の伝送用のシンボルなどが、フレームにどのように配置されていてもよい。
 
(実施の形態3)
 上記実施の形態1及び2においては、位相を規則的に変更することとした。本実施の形態3においては、送信装置から見て、各所に点在することになる受信装置において、受信装置がどこに配置されていても、各受信装置が良好なデータの受信品質を得るための手法について開示する。
 本実施の形態3においては、位相を変更して得られる信号のシンボル配置を説明する。
 図31は、規則的に位相を変更する送信方式において、OFDM方式のようなマルチキャリア方式を用いたときの、時間-周波数軸における信号の一部のシンボルのフレーム構成の一例を示している。
 はじめに、実施の形態1で説明した、2つのプリコーディング後のベースバンド信号のうち、一方のベースバンド信号(図6参照)に位相変更を行った場合の例で説明する。
 (なお、図6では時間軸方向で位相変更を行う場合を示しているが、図6において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)
 図31は、図12に示した位相変更部317Bの入力である変調信号z2’のフレーム構成を示しており、1つの四角がシンボル(ただし、プリコーディングを行っているため、s1とs2の両者の信号を含んでいるのが通常であるが、プリコーディング行列の構成次第では、s1とs2の一方の信号のみであることもある。)を示している。
 ここで、図31のキャリア2、時刻$2のシンボル3100について着目する。なお、ここではキャリアと記載しているが、サブキャリアと呼称することもある。
 キャリア2において、時刻$2に時間的に最も隣接するシンボル、つまりキャリア2の時刻$1のシンボル3103と時刻$3のシンボル3101のそれぞれのチャネル状態は、キャリア2、時刻$2のシンボル3100のチャネル状態と、非常に相関が高い。
 同様に時刻$2において、周波数軸方向でキャリア2に最も隣接している周波数のシンボル、即ち、キャリア1、時刻$2のシンボル3104と時刻$2、キャリア3のシンボル3104とのチャネル状態は、ともに、キャリア2、時刻$2のシンボル3100のチャネル状態と、非常に相関が高い。
 上述したように、シンボル3101、3102、3103、3104のそれぞれのチャネル状態は、シンボル3100のチャネル状態との相関が非常に高い。
 本明細書において、規則的に位相を変更する送信方法において、乗じる位相として、N種類の位相(但し、Nは2以上の整数)を用意しているものとする。図31に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける図6における信号z2’に対し、「ej0」が乗じられて位相が変更されたことを意味する。つまり、図31の各シンボルに記載している値は、式(42)におけるy(t)、および、実施の形態2で説明したz2(t)=y(t)z2’(t)におけるy(t)の値となる。
 本実施の形態においては、この周波数軸方向で隣接しあうシンボル及び/又は時間軸方向で隣接しあうシンボルのチャネル状態の相関性が高いことを利用して受信装置側において、高いデータの受信品質が得られる位相が変更されたシンボルのシンボル配置を開示する。
 この受信側で高いデータの受信品質が得られる条件として、<条件#1>、<条件#2>が考えられる。
 
<条件#1>
 図6のように、プリコーディング後のベースバンド信号z2’に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、時間軸方向で隣接するシンボル、即ち、時間X-1・キャリアYおよび時間X+1・キャリアYがいずれもデータシンボルであり、これら3つのデータシンボルに対応するプリコーディング後のベースバンド信号z2’、つまり、時間X・キャリアY、時間X-1・キャリアYおよび時間X+1・キャリアYにおけるそれぞれのプリコーディング後のベースバンド信号z2’では、いずれも異なる位相変更が行われる。
 
<条件#2>
図6のように、プリコーディング後のベースバンド信号z2’に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、周波数軸方向で隣接するシンボル、即ち、時間X・キャリアY-1および時間X・キャリアY+1がいずれもデータシンボルである場合、これら3つのデータシンボルに対応するプリコーディング後のベースバンド信号z2’、つまり、時間X・キャリアY、時間X・キャリアY-1および時間X・キャリアY+1におけるそれぞれのプリコーディング後のベースバンド信号z2’では、いずれも異なる位相変更が行われる。
 
 そして、<条件#1>を満たすデータシンボルが存在するとよい。同様に、<条件2>を満たすデータシンボルが存在するとよい。
 この<条件#1><条件#2>が導出される理由は以下の通りである。
 送信信号においてあるシンボル(以降、シンボルAと呼称する)があり、当該シンボルAに時間的に隣接したシンボルそれぞれのチャネル状態は、上述したとおり、シンボルAのチャネル状態との相関が高い。
 したがって、時間的に隣接した3シンボルで、異なる位相を用いていると、LOS環境において、シンボルAが劣悪な受信品質(SNRとしては高い受信品質を得ているものの、直接波の位相関係が劣悪な状況であるため受信品質が悪い状態)であっても、残りのシンボルAに隣接する2シンボルでは、良好な受信品質を得ることができる可能性が非常に高く、その結果、誤り訂正復号後は良好な受信品質を得ることができる。
 同様に、送信信号においてあるシンボル(以降、シンボルAと呼称する)があり、このシンボルAに周波数的に隣接したシンボルそれぞれのチャネル状態は、上述したとおり、シンボルAのチャネル状態との相関が高い。
 したがって、周波数的に隣接した3シンボルで、異なる位相を用いていると、LOS環境において、シンボルAが劣悪な受信品質(SNRとしては高い受信品質を得ているものの、直接波の位相関係が劣悪な状況であるため受信品質が悪い状態)であっても、残りのシンボルAに隣接する2シンボルでは、良好な受信品質を得ることができる可能性が非常に高く、その結果、誤り訂正復号後は良好な受信品質を得ることができる。
 また、<条件#1>と<条件#2>を組み合わせると、受信装置において、より、データの受信品質を向上させることができる可能性がある。したがって、以下の<条件#3>を導くことができる。
 
<条件#3>
 図6のように、プリコーディング後のベースバンド信号z2’に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、時間軸方向で隣接するシンボル、即ち、時間X-1・キャリアYおよび時間X+1・キャリアYがいずれもデータシンボルであり、かつ、周波数軸方向で隣接するシンボル、即ち、時間X・キャリアY-1および時間X・キャリアY+1がいずれもデータシンボルである場合、これら5つのデータシンボルに対応するプリコーディング後のベースバンド信号z2’、つまり、時間X・キャリアYおよび時間X-1・キャリアYおよび時間X+1・キャリアYおよび時間X・キャリアY-1および時間X・キャリアY+1におけるそれぞれのプリコーディング後のベースバンド信号z2’では、いずれも異なる位相変更が行われる。
 
 ここで、「異なる位相変更」について、補足を行う。位相変更は、0ラジアンから2πラジアンで定義されることになる。例えば、時間X・キャリアYにおいて、図6のプリコーディング後のベースバンド信号z2’に対して施す位相変更をejθX,Y、時間X-1・キャリアYにおいて、図6のプリコーディング後のベースバンド信号z2’に対して施す位相変更をejθX-1,Y、時間X+1・キャリアYにおいて、図6のプリコーディング後のベースバンド信号z2’に対して施す位相変更をejθX+1,Yとすると、0ラジアン≦θX,Y<2π、0ラジアン≦θX-1,Y<2π、0ラジアン≦θX+1,Y<2πとなる。したがって、<条件#1>では、θX,Y≠θX-1,YかつθX,Y≠θX+1,YかつθX+1,Y≠θX-1,Yが成立することになる。同様に考えると、<条件#2>では、θX,Y≠θX,Y-1かつθX,Y≠θX,Y+1かつθX,Y-1≠θX-1,Y+1が成立することになり、<条件#3>では、θX,Y≠θX-1,YかつθX,Y≠θX+1,YかつθX,Y≠θX,Y-1かつθX,Y≠θX,Y+1かつθX-1,Y≠θX+1,YかつθX-1,Y≠θX,Y-1かつθX-1,Y≠θX,Y+1かつθX+1,Y≠θX,Y-1かつθX+1,Y≠θX,Y+1かつθX,Y-1≠θX,Y+1が成立することになる。
 そして、<条件#3>を満たすデータシンボルが存在するとよい。
 図31は<条件#3>の例であり、シンボルAに該当するシンボル3100に相当する図6のプリコーディング後のベースバンド信号z2’に乗じられている位相と、そのシンボル3100に時間的に隣接するシンボル3101に相当する図6のプリコーディング後のベースバンド信号z2’、3103に相当する図6のプリコーディング後のベースバンド信号z2’に乗じられている位相と、周波数的に隣接するシンボル3102に相当する図6のプリコーディング後のベースバンド信号z2’、3104に相当する図6のプリコーディング後のベースバンド信号z2’に乗じられている位相が互いに異なるように配されており、これによって、受信側においてシンボル3100の受信品質が劣悪であろうとも、その隣接するシンボルの受信品質は非常に高くなるため、誤り訂正復号後の高い受信品質を確保できる。
 この条件のもとで、位相を変更して得られるシンボルの配置例を図32に示す。
 図32を見ればわかるように、いずれのデータシンボルにおいても、その位相が周波数軸方向及び時間軸方向の双方において隣接しあうシンボルに対して変更された位相の度合いは互いに異なる位相変更量となっている。このようにすることで、受信装置における誤り訂正能力を更に向上させることができる。
 つまり、図32では、時間軸方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#1>がすべてのX、すべてのYで成立している。
 同様に、図32では、周波数方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#2>がすべてのX、すべてのYで成立している。
 同様に、図32では、周波数方向で隣接するシンボルにデータシンボルが存在し、かつ、時間軸方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#3>がすべてのX、すべてのYで成立している。
 次に、実施の形態2で説明した、2つのプリコーディング後のベースバンド信号に位相変更を行った場合(図26参照)の例で説明する。
 図26のように、プリコーディング後のベースバンド信号z1’、および、プリコーディング後のベースバンド信号z2’の両者に位相変更を与える場合、位相変更方法について、いくつかの方法がある。その点について、詳しく説明する。
 方法1として、プリコーディング後のベースバンド信号z2’の位相変更は、前述のように、図32のように位相変更を行うものとする。図32において、プリコーディング後のベースバンド信号z2’の位相変更は周期10としている。しかし、前述で述べたように、<条件#1><条件#2><条件#3>を満たすようにするために、(サブ)キャリア1で、プリコーディング後のベースバンド信号z2’に施す位相変更を時間とともに変更している。(図32では、このような変更をほどこしているが、周期10をとし、別の位相変更方法であってもよい)そして、プリコーディング後のベースバンド信号z1’の位相変更は、図33のように、プリコーディング後のベースバンド信号z2’の位相変更は周期10の1周期分の位相変更する値は一定とする。図33では、(プリコーディング後のベースバンド信号z2’の位相変更の)1周期分を含む時刻$1において、プリコーディング後のベースバンド信号z1’の位相変更の値は、ej0としており、次の(プリコーディング後のベースバンド信号z2’の位相変更の)1周期分を含む時刻$2において、プリコーディング後のベースバンド信号z1’の位相変更の値は、ejπ/9としており、・・・、としている。
 なお、図33に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける図26における信号z1’に対し、「ej0」が乗じられて位相が変更されたことを意味する。つまり、図33の各シンボルに記載している値は、実施の形態2で説明したz1(t)=y(t)z1’(t)におけるy(t)の値となる。
 プリコーディング後のベースバンド信号z1’の位相変更は、図33ように、プリコーディング後のベースバンド信号z2’の位相変更は周期10の1周期分の位相変更する値は一定とし、位相変更する値は、1周期分の番号とともに変更するようにする。(上述のように、図33では、第1の1周期分では、ej0とし、第2の1周期分ではejπ/9、・・・としている。)
 以上のようにすることで、プリコーディング後のベースバンド信号z2’の位相変更は周期10であるが、プリコーディング後のベースバンド信号z1’の位相変更とプリコーディング後のベースバンド信号z2’の位相変更の両者を考慮したときの周期は10より大きくすることができるという効果を得ることができる。これにより、受信装置のデータの受信品質が向上する可能性がある。
 方法2として、プリコーディング後のベースバンド信号z2’の位相変更は、前述のように、図32のように位相変更を行うものとする。図32において、プリコーディング後のベースバンド信号z2’の位相変更は周期10としている。しかし、前述で述べたように、<条件#1><条件#2><条件#3>を満たすようにするために、(サブ)キャリア1で、プリコーディング後のベースバンド信号z2’に施す位相変更を時間とともに変更している。(図32では、このような変更をほどこしているが、周期10をとし、別の位相変更方法であってもよい)そして、プリコーディング後のベースバンド信号z1’の位相変更は、図30に示すように、プリコーディング後のベースバンド信号z2’の位相変更は周期10とは異なる周期3での位相変更を行う。
 なお、図30に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける図26における信号z1’に対し、「ej0」が乗じられて位相が変更されたことを意味する。つまり、図30の各シンボルに記載している値は、実施の形態2で説明したz1(t)=y(t)z1’(t)におけるy(t)の値となる。
 以上のようにすることで、プリコーディング後のベースバンド信号z2’の位相変更は周期10であるが、プリコーディング後のベースバンド信号z1’の位相変更とプリコーディング後のベースバンド信号z2’の位相変更の両者を考慮したときの周期は30となりプリコーディング後のベースバンド信号z1’の位相変更とプリコーディング後のベースバンド信号z2’の位相変更の両者を考慮したときの周期を10より大きくすることができるという効果を得ることができる。これにより、受信装置のデータの受信品質が向上する可能性がある。方法2の一つの有効な方法としては、プリコーディング後のベースバンド信号z1’の位相変更の周期をNとし、プリコーディング後のベースバンド信号z2’の位相変更の周期をMとしたとき、特に、NとMが互いに素の関係であると、プリコーディング後のベースバンド信号z1’の位相変更とプリコーディング後のベースバンド信号z2’の位相変更の両者を考慮したときの周期はN×Mと容易に大きな周期に設定することができるという利点があるが、NとMが互いに素の関係でも、周期を大きくすることは可能である。
 なお、本実施の形態3の位相変更方法は一例であり、これに限ったものではなく、実施の形態1、実施の形態2で説明したように、周波数軸方向で位相変更を行ったり、時間軸方向で位相変更を行ったり、時間-周波数のブロックで位相変更を行っても同様に、受信装置におけるデータの受信品質を向上させることができるという効果を持つことになる。
 上記で説明したフレーム構成以外にも、データシンボル間にパイロットシンボル(SP(Scattered Pilot))や制御情報を伝送するシンボルなどが挿入されることも考えられる。この場合の位相変更について詳しく説明する。
 図47は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’および変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成を示しており、図47(a)は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’の時間―周波数軸におけるフレーム構成、図47(b)は、変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成である。図47において、4701はパイロットシンボル、4702はデータシンボルを示しており、データシンボル4702は、プリコーディングまたはプリコーディングと位相変更を施したシンボルとなる。
 図47は、図6のように、プリコーディング後のベースバンド信号z2’に対し、位相変更を行う場合のシンボル配置を示している(プリコーディング後のベースバンド信号z1には位相変更を行わない)。(なお、図6では時間軸方向で位相変更を行う場合を示しているが、図6において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図47のプリコーディング後のベースバンド信号z2’のシンボルに記載されている数値は、位相の変更値を示している。なお、図47のプリコーディング後のベースバンド信号z1’(z1)のシンボルは、位相変更を行わないので、数値を記載していない。
 図47において重要な点は、プリコーディング後のベースバンド信号z2’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
 図48は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’および変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成を示しており、図48(a)は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’の時間―周波数軸におけるフレーム構成、図48(b)は、変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成である。図48において、4701はパイロットシンボル、4702はデータシンボルを示しており、データシンボル4702は、プリコーディングと位相変更を施したシンボルとなる。
 図48は、図26のように、プリコーディング後のベースバンド信号z1’およびプリコーディング後のベースバンド信号z2’に対し、位相変更を行う場合のシンボル配置を示している。(なお、図26では時間軸方向で位相変更を行う場合を示しているが、図26において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図48のプリコーディング後のベースバンド信号z1’およびプリコーディング後のベースバンド信号z2’のシンボルに記載されている数値は、位相の変更値を示している。
 図48において重要な点は、プリコーディング後のベースバンド信号z1’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している、また、プリコーディング後のベースバンド信号z2’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z1’に挿入されたパイロットシンボルに対しては、位相変更を施さず、また、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
 図49は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’および変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成を示しており、図49(a)は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’の時間―周波数軸におけるフレーム構成、図49(b)は、変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成である。図49において、4701はパイロットシンボル、4702はデータシンボル、4901はヌルシンボルであり、ベースバンド信号の同相成分I=0であり、直交成分Q=0となる。このとき、データシンボル4702は、プリコーディングまたはプリコーディングと位相変更を施したシンボルとなる。図49と図47の違いは、データシンボル以外のシンボルの構成方法であり、変調信号z1’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z2’はヌルシンボルとなっており、逆に、変調信号z2’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z1’はヌルシンボルとなっている点である。
 図49は、図6のように、プリコーディング後のベースバンド信号z2’に対し、位相変更を行う場合のシンボル配置を示している(プリコーディング後のベースバンド信号z1には位相変更を行わない)。(なお、図6では時間軸方向で位相変更を行う場合を示しているが、図6において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図49のプリコーディング後のベースバンド信号z2’のシンボルに記載されている数値は、位相の変更値を示している。なお、図49のプリコーディング後のベースバンド信号z1’(z1)のシンボルは、位相変更を行わないので、数値を記載していない。
 図49において重要な点は、プリコーディング後のベースバンド信号z2’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
 図50は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’および変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成を示しており、図50(a)は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’の時間―周波数軸におけるフレーム構成、図50(b)は、変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成である。図50において、4701はパイロットシンボル、4702はデータシンボル、4901はヌルシンボルであり、ベースバンド信号の同相成分I=0であり、直交成分Q=0となる。このとき、データシンボル4702は、プリコーディングまたはプリコーディングと位相変更を施したシンボルとなる。図50と図48の違いは、データシンボル以外のシンボルの構成方法であり、変調信号z1’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z2’はヌルシンボルとなっており、逆に、変調信号z2’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z1’はヌルシンボルとなっている点である。
 図50は、図26のように、プリコーディング後のベースバンド信号z1’およびプリコーディング後のベースバンド信号z2’に対し、位相変更を行う場合のシンボル配置を示している。(なお、図26では時間軸方向で位相変更を行う場合を示しているが、図26において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図50のプリコーディング後のベースバンド信号z1’およびプリコーディング後のベースバンド信号z2’のシンボルに記載されている数値は、位相の変更値を示している。
 図50において重要な点は、プリコーディング後のベースバンド信号z1’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している、また、プリコーディング後のベースバンド信号z2’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z1’に挿入されたパイロットシンボルに対しては、位相変更を施さず、また、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
 図51は、図47、図49のフレーム構成の変調信号を生成し、送信する送信装置の構成の一例を示しており、図4と同様に動作するものについては、同一符号を付している。
 図51において、重み付け合成部308A、308B、および、位相変更部317Bは、フレーム構成信号313がデータシンボルであるタイミングを示しているときのみ動作することになる。
 図51のパイロットシンボル(ヌルシンボル生成を兼ねるものとする)生成部5101は、フレーム構成信号313がパイロットシンボル(かつヌルシンボル)であることをしめしていた場合、パイロットシンボルのベースバンド信号5102A、および5102Bを出力する。
 図47から図50のフレーム構成では示していなかったが、プリコーディング(および、位相回転を施さない)を施さない、例えば、1アンテナから変調信号を送信する方式、(この場合、もう一方のアンテナからは信号を伝送しないことになる)、または、時空間符号(特に時空間ブロック符号)を用いた伝送方式を用いて制御情報シンボルを送信する場合、制御情報シンボル5104は、制御情報5103、フレーム構成信号313を入力とし、フレーム構成信号313が制御情報シンボルであることを示している場合、制御情報シンボルのベースバンド信号5102A、5102Bを出力する。
 図51の無線部310A、310Bは、入力となる複数のベースバンド信号のうち、フレーム構成信号313に基づき、複数のベースバンド信号から、所望のベースバンド信号を選択する。そして、OFDM関連の信号処理を施し、フレーム構成にしたがった変調信号311A、311Bをそれぞれ出力する。
 図52は、図48、図50のフレーム構成の変調信号を生成し、送信する送信装置の構成の一例を示しており、図4、図51と同様に動作するものについては、同一符号を付している。図51に対して追加した位相変更部317Aは、フレーム構成信号313がデータシンボルであるタイミングを示しているときのみ動作することになる。その他については、図51と同様の動作となる。
 図53は、図51とは異なる送信装置の構成方法である。以降では異なる点について説明する。位相変更部317Bは、図53のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部317Bは、プリコーディング後のベースバンド信号316Bに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部317Bは、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
 選択部5301は、複数のベースバンド信号を入力とし、フレーム構成信号313が示したシンボルのベースバンド信号を選択し、出力する。
 図54は、図52とは異なる送信装置の構成方法である。以降では異なる点について説明する。位相変更部317Bは、図54のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部317Bは、プリコーディング後のベースバンド信号316Bに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部317Bは、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
 同様に、位相変更部5201は、図54のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部5201は、プリコーディング後のベースバンド信号309Aに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部5201は、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
 上述の説明では、パイロットシンボルと制御シンボルとデータシンボルを例に説明したが、これに限ったものではなく、プリコーディングとは異なる伝送方法、例えば、1アンテナ送信、時空間ブロック符号を用いた伝送方式、等を用いて伝送するシンボルであれば、同様に、位相変更を与えない、ということが重要となり、これとは逆に、プリコーディングを行ったシンボルに対しては、位相変更を行うことが本発明では重要なこととなる。
 したがって、時間-周波数軸におけるフレーム構成におけるすべてのシンボルで位相変更が行われるわけではなく、プリコーディングを行った信号のみに位相変更を与える点が、本発明の特徴となる。
 
(実施の形態4)
 上記実施の形態1及び2においては、位相を規則的に変更すること、実施の形態3においては、隣り合うシンボルの位相の変更の度合いを異ならせることを開示した。
 本実施の形態4では、位相変更方法が、送信装置が使用する変調方式、誤り訂正符号の符号化率により、異なっていてもよいことを示す。
 以下の表1には、送信装置が設定した各種設定パラメータに応じて設定する位相変更方法の一例を示している。
Figure JPOXMLDOC01-appb-T000001
 表1における#1は上記実施の形態1の変調信号s1(送信装置が設定した変調方式のベースバンド信号s1)、#2は変調信号s2(送信装置が設定した変調方式のベースバンド信号s2)を意味する。表1における符号化率の列は、#1, #2の変調方式に対し、誤り訂正符号の設定した符号化率を示している。表1における位相変更パターンの列は、実施の形態1から実施の形態3で説明したように、プリコーディング後のベースバンド信号z1(z1’)、z2(z2’)に対して施す位相変更方法を示しており、位相変更パターンをA、B、C、D、E、・・・というように定めているが、これは、実際には、位相を変更する度合いの変化を示す情報であり、例えば、上記式(46)や式(47)に示すような変更パターンを示すものとする。なお、表1における位相変更パターンの例において「‐」と記載しているが、これは、位相変更を行わないことを意味している。
 なお、表1に示した変調方式や符号化率の組み合わせは、一例であり、表1に示す変調方式以外の変調方式(例えば、128QAMや256QAM等)や、符号化率(例えば、7/8等)が含まれてもよい。また、実施の形態1で示したように、誤り訂正符号は、s1、s2別々に設定してもよい(なお、表1の場合は、図4のように、一つの誤り訂正符号の符号化を施している場合としている。)。また、同じ変調方式及び符号化率に、互いに異なる複数の位相変更パターンを対応付けることとしてもよい。送信装置は、各位相変更パターンを示す情報を受信装置に対して送信し、受信装置は当該情報と表1を参照することによって位相変更パターンを特定し、復調、および、復号を実行することとなる。なお、変調方式、および、誤り訂正方式に対し、位相変更パターンが一意に決定する場合、送信装置は、変調方式と誤り訂正方式の情報を受信装置に送信すれば、受信装置は、その情報を得ることで、位相変更パターンを知ることができるので、この場合は、位相変更パターンの情報は必ずしも必要としない。
 実施の形態1から実施の形態3では、プリコーディング後のベースバンド信号に対し、位相変更を行う場合について説明したが、位相のみでなく、振幅を位相変更と同様に周期をもって規則的に変更することも可能である。したがって、当該表1に、規則的に変調信号の振幅を変更する振幅変更パターンも対応させてもよい。この場合、送信装置には、図3や図4の重み付け合成部308Aの後に振幅を変更する振幅変更部、また、重み付け合成部308Bの後に、振幅を変更する振幅変更部を備えればよい。なお、プリコーディング後のベースバンド信号z1(t)、z2(t)の一方に対し、振幅変更を施しても良いし(この場合、重み付け合成部308A、308Bのいずれかの後に振幅変更部を備えればよい。)、両方に対し、振幅変更を施してもよい。
 更に、上記表1においては示していないが、位相を規則的に変更するのではなく、マッピング部により規則的にマッピング方法を変更する構成としてもよい。
 即ち、変調信号s1(t)のマッピング方式を16QAM、変調信号s2(t)のマッピング方式を16QAMであったものを、例えば、変調信号s2(t)に適用するマッピング方式を規則的に、16QAM→16APSK(16 Amplitude Phase Shift Keying)→I-Q平面において16QAM、16APSKとは異なる信号点配置となる第1のマッピング方法→I-Q平面において16QAM、16APSKとは異なる信号点配置となる第2のマッピング方法→・・・というように変更することで、上述してきたように位相を規則的に変更する場合と同様に、受信装置において、データの受信品質を向上する効果を得ることができる。
 また、本発明は、位相を規則的に変更する方法、マッピング方法を規則的に変更する方法、振幅を変更する方法のいずれかの組み合わせであってもよく、また、その全てを考慮にいれて送信信号を送信する構成としてもよい。
 本実施の形態では、シングルキャリア方式、マルチキャリア伝送いずれの場合でも実施することができる。したがって、例えば、スペクトル拡散通信方式、OFDM(Orthogonal Frequency-Division Multiplexing)方式、SC-FDMA(Single Carrier Frequency Division Multiple Access)、SC-OFDM(Single Carrier Orthogonal Frequency-Division Multiplexing)方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても実施することができる。前述したように、本実施の形態では、位相変更、振幅変更、マッピング変更を行う説明として、時間t軸方向で位相変更、振幅変更、マッピング変更を行う場合で説明したが、実施の形態1と同様に、周波数軸方向に位相変更を行うときと同様に、つまり、本実施の形態において、t方向での位相変更、振幅変更、マッピング変更の説明において、tをf(f:周波数((サブ)キャリア))に置き換えて、考えることで、本実施の形態で説明した位相変更、振幅変更、マッピング変更を、周波数方向に位相変更、振幅変更、マッピング変更ことに適用することができることになる。また、本実施の形態の位相変更、振幅変更、マッピング変更方法は、実施の形態1の説明と同様に、時間-周波数方向に対する位相変更、振幅変更、マッピング変更に対して、適用することも可能である。
 そして、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報の伝送用のシンボルなどが、フレームにどのように配置されていてもよい。
 
(実施の形態A1)
 本実施の形態では、非特許文献12~非特許文献15に示されているように、QC(Quasi Cyclic) LDPC(Low-Density Prity-Check)符号(QC-LDPC符号でない、LDPC符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号、テイルバイティングを用いたターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの規則的に位相を変更する方法について詳しく説明する。ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(cyclic redundancy check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
 図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、図4の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
 図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
 そして、図4の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
 同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
 次に、規則的に位相を変更する方法において、上述で定義したスロットと乗じる位相との関係について説明する。
 ここでは、規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図4の送信装置の位相変更部のために、5つの位相変更値(または、位相変更セット)を用意するものとする(実施の形態1から実施の形態4における「周期」となる)(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。この5つの位相変更値(または、位相変更セット)をPHASE[0], PHASE[1], PHASE[2],PHASE[3], PHASE[4]とあらわすものとする。
 変調方式がQPSKのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた1500スロットにおいて、位相PHASE[0]を使用するスロットが300スロット、位相PHASE[1]を使用するスロットが300スロット、位相PHASE[2]を使用するスロットが300スロット、位相PHASE[3]を使用するスロットが300スロット、位相PHASE[4]を使用するスロットが300スロットである必要がある。これは、使用する位相にかたよりがあると、多くの数を使用した位相の影響が大きく、受信装置において、この影響に依存したデータの受信品質となるからである。
 同様に、変調方式が16QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた750スロットにおいて、位相PHASE[0]を使用するスロットが150スロット、位相PHASE[1]を使用するスロットが150スロット、位相PHASE[2]を使用するスロットが150スロット、位相PHASE[3]を使用するスロットが150スロット、位相PHASE[4]を使用するスロットが150スロットである必要がある。
 同様に、変調方式が64QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた500スロットにおいて、位相PHASE[0]を使用するスロットが100スロット、位相PHASE[1]を使用するスロットが100スロット、位相PHASE[2]を使用するスロットが100スロット、位相PHASE[3]を使用するスロットが100スロット、位相PHASE[4]を使用するスロットが100スロットである必要がある。
 以上のように、規則的に位相を変更する方法において、用意する位相変更値(または、位相変更セット)をN個(N個の異なる位相をPHASE[0], PHASE[1], PHASE[2],・・・, PHASE[N-2] , PHASE[N-1]とあらわすものとする)としたとき、1つの符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用するスロット数をK, 位相PHASE[1]を使用するスロット数をK1、位相PHASE[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用するスロット数をKN-1としたとき、
 
<条件#A01>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であるとよい。
 そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#A01>が成立するとよいことになる。
 しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#A01>を満たすことができない変調方式が存在することもある。この場合、<条件#A01>にかわり、以下の条件を満たすとよい。
 
<条件#A02>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
 図35は、ブロック符号を用いたとき、2つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図35は、図3の送信装置および図12の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、2つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
 図35に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
 そして、図3の送信装置および図12の送信装置では、2つのストリームを同時に送信することになり、また、2つの符号化器が存在するため、2つのストリームでは、異なる符号ブロックを伝送することになる。したがって、変調方式がQPSKのとき、s1、s2により、2つの符号化ブロックが同一区間内で送信されることから、例えば、s1により第1の符号化後のブロックが送信され、s2により、第2の符号化ブロックが送信されることになるので、第1、第2の符号化後のブロックを送信するために3000スロットが必要となる。
 同様に考えると、変調方式が16QAMのとき、2つの符号化後のブロックを構成するすべてのビットを送信するために1500スロットが必要となり、変調方式が64QAMのとき、2つの符号化後のブロックを構成するすべてのビットを送信するために1000スロットが必要となる。
 次に、規則的に位相を変更する方法において、上述で定義したスロットと乗じる位相との関係について説明する。
 ここでは、規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図3および図12の送信装置の位相変更部のために、5つの位相変更値(または、位相変更セット)を用意するものとする(実施の形態1から実施の形態4における「周期」となる)(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。この5つの位相変更値(または、位相変更セット)をPHASE[0], PHASE[1], PHASE[2],PHASE[3], PHASE[4]とあらわすものとする。
 変調方式がQPSKのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた3000スロットにおいて、位相PHASE[0]を使用するスロットが600スロット、位相PHASE[1]を使用するスロットが600スロット、位相PHASE[2]を使用するスロットが600スロット、位相PHASE[3]を使用するスロットが600スロット、位相PHASE[4]を使用するスロットが600スロットである必要がある。これは、使用する位相にかたよりがあると、多くの数を使用した位相の影響が大きく、受信装置において、この影響に依存したデータの受信品質となるからである。
 また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが600回、位相PHASE[1]を使用するスロットが600回、位相PHASE[2]を使用するスロットが600回、位相PHASE[3]を使用するスロットが600回、位相PHASE[4]を使用するスロットが600回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが600回、位相PHASE[1]を使用するスロットが600回、位相PHASE[2]を使用するスロットが600回、位相PHASE[3]を使用するスロットが600回、位相PHASE[4]を使用するスロットが600回であるとよい。
 同様に、変調方式が16QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1500スロットにおいて、位相PHASE[0]を使用するスロットが300スロット、位相PHASE[1]を使用するスロットが300スロット、位相PHASE[2]を使用するスロットが300スロット、位相PHASE[3]を使用するスロットが300スロット、位相PHASE[4]を使用するスロットが300スロットである必要がある。
 また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが300回、位相PHASE[1]を使用するスロットが300回、位相PHASE[2]を使用するスロットが300回、位相PHASE[3]を使用するスロットが300回、位相PHASE[4]を使用するスロットが300回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが300回、位相PHASE[1]を使用するスロットが300回、位相PHASE[2]を使用するスロットが300回、位相PHASE[3]を使用するスロットが300回、位相PHASE[4]を使用するスロットが300回であるとよい。
 同様に、変調方式が64QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1000スロットにおいて、位相PHASE[0]を使用するスロットが200スロット、位相PHASE[1]を使用するスロットが200スロット、位相PHASE[2]を使用するスロットが200スロット、位相PHASE[3]を使用するスロットが200スロット、位相PHASE[4]を使用するスロットが200スロットである必要がある。
 また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが200回、位相PHASE[1]を使用するスロットが200回、位相PHASE[2]を使用するスロットが200回、位相PHASE[3]を使用するスロットが200回、位相PHASE[4]を使用するスロットが200回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが200回、位相PHASE[1]を使用するスロットが200回、位相PHASE[2]を使用するスロットが200回、位相PHASE[3]を使用するスロットが200回、位相PHASE[4]を使用するスロットが200回であるとよい。
 以上のように、規則的に位相を変更する方法において、用意する位相変更値(または、位相変更セット)をPHASE[0], PHASE[1], PHASE[2],・・・, PHASE[N-2] , PHASE[N-1]とあらわすものとする)としたとき、2つの符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用するスロット数をK, 位相PHASE[1]を使用するスロット数をK1、位相PHASE[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用するスロット数をKN-1としたとき、
 
<条件#A03>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であり、第1の符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用する回数をK0,1, 位相PHASE[1]を使用する回数をK1,1、位相PHASE[i]を使用する回数をKi,1(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用する回数をKN-1,1としたとき、
 
<条件#A04>
0,1=K1,1=・・・=Ki,1=・・・=KN-1,1、つまり、Ka,1=Kb,1、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であり、第2の符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用する回数をK0,2, 位相PHASE[1]を使用する回数をK1,2、位相PHASE[i]を使用する回数をKi,2(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用する回数をKN-1,2としたとき、
 
<条件#A05>
0,2=K1,2=・・・=Ki,2=・・・=KN-1,2、つまり、Ka,2=Kb,2、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であるとよい。
 そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#A03><条件#A04><条件#A05>が成立するとよいことになる。
 しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#A03><条件#A04><条件#A05>を満たすことができない変調方式が存在することもある。この場合、<条件#A03><条件#A04><条件#A05>にかわり、以下の条件を満たすとよい。
 
<条件#A06>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
<条件#A07>
a,1とKb,1の差は0または1、つまり、|Ka,1―Kb,1|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
<条件#A08>
a,2とKb,2の差は0または1、つまり、|Ka,2―Kb,2|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
 以上のように、符号化後のブロックと乗じる位相の関係付けを行うことで、符号化ブロックを伝送するために使用する位相にかたよりがなくなるため、受信装置において、データの受信品質が向上するという効果を得ることができる。
 本実施の形態では、規則的に位相を変更する方法において、周期Nの位相変更方法のためには、N個の位相変更値(または、位相変更セット)が必要となる。このとき、N個の位相変更値(または、位相変更セット)として、PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]を用意することになるが、周波数軸方向にPHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]の順に並べる方法もあるが、必ずしもこれに限ったものではなく、N個の位相変更値(または、位相変更セット)PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]を実施の形態1と同様に、時間軸、周波数―時間軸のブロックに対し、シンボルを配置することで、位相を変更することもできる。なお、周期Nの位相変更方法として説明しているが、N個の位相変更値(または、位相変更セット)をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の位相変更値(または、位相変更セット)を用いる必要はないが、上記で説明した条件を満たすことは、受信装置において、高いデータの受信品質を得る上では、重要となる。
 また、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法(実施の形態1から実施の形態4で説明した送信方法)のモードが存在し、送信装置(放送局、基地局)は、これらのモードから、いずれかの送信方法を選択することができるようにしてもよい。
 なお、空間多重MIMO伝送方式とは、非特許文献3に示されているように、選択した変調方式でマッピングした信号s1、s2をそれぞれ異なるアンテナから送信する方法であり、プリコーディング行列が固定のMIMO伝送方式とは、実施の形態1から実施の形態4において、プリコーディングのみを行う(位相変更を行わない)方式である。また、時空間ブロック符号化方式とは、非特許文献9、16、17に示されている伝送方式である。1ストリームのみ送信とは、選択した変調方式でマッピングした信号s1の信号を所定の処理を行いアンテナから送信する方法である。
 また、OFDMのようなマルチキャリアの伝送方式を用いており、複数のキャリアで構成された第1キャリア群、複数のキャリアで構成された第1キャリア群とは異なる第2キャリア群、・・・というように複数のキャリア群でマルチキャリア伝送を実現しており、キャリア群ごとに、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のいずれかに設定してもよく、
特に、規則的に位相を変更する方法を選択した(サブ)キャリア群では、本実施の形態を実施するとよい。
 なお、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、PHASE[i]の位相変更値を「Xラジアン」とした場合、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになる。そして、両者のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、PHASE[i]の位相変更セットを「Xラジアン」および「Yラジアン」とした場合、図26、図27、図28、図52、図54における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになり、ejYをプリコーディング後のベースバンド信号z1’に乗算することになる。
 
(実施の形態B1)
 以下では、上記各実施の形態で示した送信方法及び受信方法の応用例とそれを用いたシステムの構成例を説明する。
 図36は、上記実施の形態で示した送信方法及び受信方法を実行する装置を含むシステムの構成例を示す図である。上記各実施の形態で示した送信方法及び受信方法は、図36に示すような放送局と、テレビ(テレビジョン)3611、DVDレコーダ3612、STB(Set Top Box)3613、コンピュータ3620、車載のテレビ3641及び携帯電話3630等の様々な種類の受信機を含むデジタル放送用システム3600において実施される。具体的には、放送局3601が、映像データや音声データ等が多重化された多重化データを上記各実施の形態で示した送信方法を用いて所定の伝送帯域に送信する。
 放送局3601から送信された信号は、各受信機に内蔵された、または外部に設置され当該受信機と接続されたアンテナ(例えば、アンテナ3660、3640)で受信される。各受信機は、アンテナにおいて受信された信号を上記各実施の形態で示した受信方法を用いて復調し、多重化データを取得する。これにより、デジタル放送用システム3600は、上記各実施の形態で説明した本願発明の効果を得ることができる。
 ここで、多重化データに含まれる映像データは、例えばMPEG(Moving Picture Experts Group)2、MPEG4-AVC(Advanced Video Coding)、VC-1などの規格に準拠した動画符号化方法を用いて符号化されている。また、多重化データに含まれる音声データは例えばドルビーAC(Audio Coding)-3、Dolby Digital Plus、MLP(Meridian Lossless Packing)、DTS(Digital Theater Systems)、DTS-HD、リニアPCM(Pulse Coding Modulation)等の音声符号化方法で符号化されている。
 図37は、上記各実施の形態で説明した受信方法を実施する受信機7900の構成の一例を示す図である。図37に示す受信機3700は、図36に示したテレビ(テレビジョン)3611、DVDレコーダ3612、STB(Set Top Box)3613、コンピュータ3620、車載のテレビ3641及び携帯電話3630等が備える構成に相当する。受信機3700は、アンテナ3760で受信された高周波信号をベースバンド信号に変換するチューナ3701と、周波数変換されたベースバンド信号を復調して多重化データを取得する復調部3702とを備える。上記各実施の形態で示した受信方法は復調部3702において実施され、これにより上記各実施の形態で説明した本願発明の効果を得ることができる。
 また、受信機3700は、復調部3702で得られた多重化データから映像データと音声データとを分離するストリーム入出力部3720と、分離された映像データに対応する動画像復号方法を用いて映像データを映像信号に復号し、分離された音声データに対応する音声復号方法を用いて音声データを音声信号に復号する信号処理部3704と、復号された音声信号を出力するスピーカ等の音声出力部3706と、復号された映像信号を表示するディスプレイ等の映像表示部3707とを有する。
 例えば、ユーザは、リモコン(リモートコントローラ)3750を用いて、選局したチャネル(選局した(テレビ)番組、選局した音声放送)の情報を操作入力部3710に送信する。すると、受信機3700は、アンテナ3760で受信した受信信号において、選局したチャネルに相当する信号を復調、誤り訂正復号等の処理を行い、受信データを得ることになる。このとき、受信機3700は、選局したチャネルに相当する信号に含まれる伝送方法(上記の実施の形態で述べた伝送方式、変調方式、誤り訂正方式等)(これについては、図5、図41に記載のとおりである。)の情報を含む制御シンボルの情報を得ることで、受信動作、復調方法、誤り訂正復号等の方法を正しく設定することで、放送局(基地局)で送信したデータシンボルに含まれるデータを得ることが可能となる。上述では、ユーザは、リモコン3750によって、チャネルを選局する例を説明したが、受信機3700が搭載している選局キーを用いて、チャネルを選局しても、上記と同様の動作となる。
 上記の構成により、ユーザは、受信機3700が上記各実施の形態で示した受信方法により受信した番組を視聴することができる。
 また、本実施の形態の受信機3700は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データ(場合によっては、復調部3702で復調されて得られる信号に対して誤り訂正復号を行わないこともある。また、受信機3700は、誤り訂正復号後に他の信号処理が施されることもある。以降について、同様の表現を行っている部分についても、この点は同様である。)に含まれるデータ、または、そのデータに相当するデータ(例えば、データを圧縮することによって得られたデータ)や、動画、音声を加工して得られたデータを、磁気ディスク、光ディスク、不揮発性の半導体メモリ等の記録メディアに記録する記録部(ドライブ)3708を備える。ここで光ディスクとは、例えばDVD(Digital Versatile Disc)やBD(Blu-ray Disc)等の、レーザ光を用いて情報の記憶と読み出しがなされる記録メディアである。磁気ディスクとは、例えばFD(Floppy Disk)(登録商標)やハードディスク(Hard Disk)等の、磁束を用いて磁性体を磁化することにより情報を記憶する記録メディアである。不揮発性の半導体メモリとは、例えばフラッシュメモリや強誘電体メモリ(Ferroelectric Random Access Memory)等の、半導体素子により構成された記録メディアであり、フラッシュメモリを用いたSDカードやFlash SSD(Solid State Drive)などが挙げられる。なお、ここで挙げた記録メディアの種類はあくまでその一例であり、上記の記録メディア以外の記録メディアを用いて記録を行っても良いことは言うまでもない。
 上記の構成により、ユーザは、受信機3700が上記各実施の形態で示した受信方法により受信した番組を記録して保存し、番組の放送されている時間以降の任意の時間に記録されたデータを読み出して視聴することが可能になる。
 なお、上記の説明では、受信機3700は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを記録部3708で記録するとしたが、多重化データに含まれるデータのうち一部のデータを抽出して記録しても良い。例えば、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに映像データや音声データ以外のデータ放送サービスのコンテンツ等が含まれる場合、記録部3708は、復調部3702で復調された多重化データから映像データや音声データを抽出して多重した新しい多重化データを記録しても良い。また、記録部3708は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データ及び音声データのうち、どちらか一方のみを多重した新しい多重化データを記録しても良い。そして、上記で述べた多重化データに含まれるデータ放送サービスのコンテンツを記録部3708は、記録してもよい。
 さらには、テレビ、記録装置(例えば、DVDレコーダ、Blu-rayレコーダ、HDDレコーダ、SDカード等)、携帯電話に、本発明で説明した受信機3700が搭載されている場合、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに、テレビや記録装置を動作させるのに使用するソフトウェアの欠陥(バグ)を修正するためのデータや個人情報や記録したデータの流出を防ぐためのソフトウェアの欠陥(バグ)を修正するためのデータが含まれている場合、これらのデータをインストールすることで、テレビや記録装置のソフトウェアの欠陥を修正してもよい。そして、データに、受信機3700のソフトウェアの欠陥(バグ)を修正するためのデータが含まれていた場合、このデータにより、受信機3700の欠陥を修正することもできる。これにより、受信機3700が搭載されているテレビ、記録装置、携帯電話が、より安定的の動作させることが可能となる。
 ここで、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる複数のデータから一部のデータを抽出して多重する処理は、例えばストリーム入出力部3703で行われる。具体的には、ストリーム入出力部3703が、図示していないCPU等の制御部からの指示により、復調部3702で復調された多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離し、分離後のデータから指定されたデータのみを抽出して多重し、新しい多重化データを生成する。なお、分離後のデータからどのデータを抽出するかについては、例えばユーザが決定してもよいし、記録メディアの種類毎に予め決められていてもよい。
 上記の構成により、受信機3700は記録された番組を視聴する際に必要なデータのみを抽出して記録することができるので、記録するデータのデータサイズを削減することができる。
 また、上記の説明では、記録部3708は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを記録するとしたが、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データを、当該映像データよりもデータサイズまたはビットレートが低くなるよう、当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換し、変換後の映像データを多重した新しい多重化データを記録してもよい。このとき、元の映像データに施された動画像符号化方法と変換後の映像データに施された動画像符号化方法とは、互いに異なる規格に準拠していてもよいし、同じ規格に準拠して符号化時に使用するパラメータのみが異なっていてもよい。同様に、記録部3708は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる音声データを、当該音声データよりもデータサイズまたはビットレートが低くなるよう、当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換し、変換後の音声データを多重した新しい多重化データを記録してもよい。
 ここで、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データや音声データをデータサイズまたはビットレートが異なる映像データや音声データに変換する処理は、例えばストリーム入出力部3703及び信号処理部3704で行われる。具体的には、ストリーム入出力部3703が、CPU等の制御部からの指示により、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離する。信号処理部3704は、制御部からの指示により、分離後の映像データを当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換する処理、及び分離後の音声データを当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換する処理を行う。ストリーム入出力部3703は、制御部からの指示により、変換後の映像データと変換後の音声データとを多重し、新しい多重化データを生成する。なお、信号処理部3704は制御部からの指示に応じて、映像データと音声データのうちいずれか一方に対してのみ変換の処理を行っても良いし、両方に対して変換の処理を行っても良い。また、変換後の映像データ及び音声データのデータサイズまたはビットレートは、ユーザが決定してもよいし、記録メディアの種類毎に予め決められていてもよい。
 上記の構成により、受信機3700は、記録メディアに記録可能なデータサイズや記録部3708がデータの記録または読み出しを行う速度に合わせて映像データや音声データのデータサイズまたはビットレートを変更して記録することができる。これにより、記録メディアに記録可能なデータサイズが復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データのデータサイズよりも小さい場合や、記録部がデータの記録または読み出しを行う速度が復調部3702で復調された多重化データのビットレートよりも低い場合でも記録部が番組を記録することが可能となるので、ユーザは番組の放送されている時間以降の任意の時間に記録されたデータを読み出して視聴することが可能になる。
 また、受信機3700は、復調部3702で復調された多重化データを外部機器に対して通信媒体3730を介して送信するストリーム出力IF(Interface:インターフェース)3709を備える。ストリーム出力IF3709の一例としては、Wi-Fi(登録商標)(IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n等)、WiGiG、WirelessHD、Bluetooth、Zigbee等の無線通信規格に準拠した無線通信方法を用いて変調した多重化データを、無線媒体(通信媒体3730に相当)を介して外部機器に送信する無線通信装置が挙げられる。また、ストリーム出力IF3709は、イーサネット(登録商標)やUSB(Universal Serial Bus)、PLC(Power Line Communication)、HDMI(High-Definition Multimedia Interface)等の有線通信規格に準拠した通信方法を用いて変調された多重化データを当該ストリーム出力IF3709に接続された有線伝送路(通信媒体3730に相当)を介して外部機器に送信する有線通信装置であってもよい。
 上記の構成により、ユーザは、受信機3700が上記各実施の形態で示した受信方法により受信した多重化データを外部機器で利用することができる。ここでいう多重化データの利用とは、ユーザが外部機器を用いて多重化データをリアルタイムで視聴することや、外部機器に備えられた記録部で多重化データを記録すること、外部機器からさらに別の外部機器に対して多重化データを送信すること等を含む。
 なお、上記の説明では、受信機3700は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データをストリーム出力IF3709が出力するとしたが、多重化データに含まれるデータのうち一部のデータを抽出して出力しても良い。例えば、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに映像データや音声データ以外のデータ放送サービスのコンテンツ等が含まれる場合、ストリーム出力IF3709は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データから映像データや音声データを抽出して多重した新しい多重化データを出力しても良い。また、ストリーム出力IF3709は、復調部3702で復調された多重化データに含まれる映像データ及び音声データのうち、どちらか一方のみを多重した新しい多重化データを出力しても良い。
 ここで、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる複数のデータから一部のデータを抽出して多重する処理は、例えばストリーム入出力部3703で行われる。具体的には、ストリーム入出力部3703が、図示していないCPU(Central Processing Unit)等の制御部からの指示により、復調部3702で復調された多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離し、分離後のデータから指定されたデータのみを抽出して多重し、新しい多重化データを生成する。なお、分離後のデータからどのデータを抽出するかについては、例えばユーザが決定してもよいし、ストリーム出力IF3709の種類毎に予め決められていてもよい。
 上記の構成により、受信機3700は外部機器が必要なデータのみを抽出して出力することができるので、多重化データの出力により消費される通信帯域を削減することができる。
 また、上記の説明では、ストリーム出力IF3709は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを出力するとしたが、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データを、当該映像データよりもデータサイズまたはビットレートが低くなるよう、当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換し、変換後の映像データを多重した新しい多重化データを出力してもよい。このとき、元の映像データに施された動画像符号化方法と変換後の映像データに施された動画像符号化方法とは、互いに異なる規格に準拠していてもよいし、同じ規格に準拠して符号化時に使用するパラメータのみが異なっていてもよい。同様に、ストリーム出力IF3709は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる音声データを、当該音声データよりもデータサイズまたはビットレートが低くなるよう、当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換し、変換後の音声データを多重した新しい多重化データを出力してもよい。
 ここで、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データや音声データをデータサイズまたはビットレートが異なる映像データや音声データに変換する処理は、例えばストリーム入出力部3703及び信号処理部3704で行われる。具体的には、ストリーム入出力部3703が、制御部からの指示により、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離する。信号処理部3704は、制御部からの指示により、分離後の映像データを当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換する処理、及び分離後の音声データを当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換する処理を行う。ストリーム入出力部3703は、制御部からの指示により、変換後の映像データと変換後の音声データとを多重し、新しい多重化データを生成する。なお、信号処理部3704は制御部からの指示に応じて、映像データと音声データのうちいずれか一方に対してのみ変換の処理を行っても良いし、両方に対して変換の処理を行っても良い。また、変換後の映像データ及び音声データのデータサイズまたはビットレートは、ユーザが決定してもよいし、ストリーム出力IF3709の種類毎に予め決められていてもよい。
 上記の構成により、受信機3700は、外部機器との間の通信速度に合わせて映像データや音声データのビットレートを変更して出力することができる。これにより、外部機器との間の通信速度が、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データのビットレートよりも低い場合でもストリーム出力IFから外部機器新しい多重化データを出力することが可能となるので、ユーザは他の通信装置において新しい多重化データを利用することが可能になる。
 また、受信機3700は、外部機器に対して信号処理部3704で復号された映像信号及び音声信号を外部の通信媒体に対して出力するAV(Audio and Visual)出力IF(Interface)3711を備える。AV出力IF3711の一例としては、Wi-Fi(登録商標)(IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n等)、WiGiG、WirelessHD、Bluetooth、Gigbee等の無線通信規格に準拠した無線通信方法を用いて変調した映像信号及び音声信号を、無線媒体を介して外部機器に送信する無線通信装置が挙げられる。また、ストリーム出力IF3709は、イーサネット(登録商標)やUSB、PLC、HDMI等の有線通信規格に準拠した通信方法を用いて変調された映像信号及び音声信号を当該ストリーム出力IF3709に接続された有線伝送路を介して外部機器に送信する有線通信装置であってもよい。また、ストリーム出力IF3709は、映像信号及び音声信号をアナログ信号のまま出力するケーブルを接続する端子であってもよい。
 上記の構成により、ユーザは、信号処理部3704で復号された映像信号及び音声信号を外部機器で利用することができる。
 さらに、受信機3700は、ユーザ操作の入力を受け付ける操作入力部3710を備える。受信機3700は、ユーザの操作に応じて操作入力部3710に入力される制御信号に基づいて、電源のON/OFFの切り替えや、受信するチャネルの切り替え、字幕表示の有無や表示する言語の切り替え、音声出力部3706から出力される音量の変更等の様々な動作の切り替えや、受信可能なチャネルの設定等の設定の変更を行う。
 また、受信機3700は、当該受信機3700で受信中の信号の受信品質を示すアンテナレベルを表示する機能を備えていてもよい。ここで、アンテナレベルとは、例えば受信機3700が受信した信号のRSSI(Received Signal Strength Indication、Received Signal Strength Indicator、受信信号強度)、受信電界強度、C/N(Carrier-to-noise power ratio)、BER(Bit Error Rate:ビットエラー率)、パケットエラー率、フレームエラー率、チャネル状態情報(Channel State Information)等に基づいて算出される受信品質を示す指標であり、信号レベル、信号の優劣を示す信号である。この場合、復調部3702は受信した信号のRSSI、受信電界強度、C/N、BER、パケットエラー率、フレームエラー率、チャネル状態情報等を測定する受信品質測定部を備え、受信機3700はユーザの操作に応じてアンテナレベル(信号レベル、信号の優劣を示す信号)をユーザが識別可能な形式で映像表示部3707に表示する。アンテナレベル(信号レベル、信号の優劣を示す信号)の表示形式は、RSSI、受信電界強度、C/N、BER、パケットエラー率、フレームエラー率、チャネル状態情報等に応じた数値を表示するものであっても良いし、RSSI、受信電界強度、C/N、BER、パケットエラー率、フレームエラー率、チャネル状態情報等に応じて異なる画像を表示するようなものであっても良い。また、受信機3700は、上記各実施の形態で示した受信方法を用いて受信して分離された複数のストリームs1、s2、・・・毎に求めた複数のアンテナレベル(信号レベル、信号の優劣を示す信号)を表示しても良いし、複数のストリームs1、s2、・・・から求めた1つのアンテナレベル(信号レベル、信号の優劣を示す信号)を表示しても良い。また、番組を構成する映像データや音声データが階層伝送方式を用いて送信されている場合は、階層毎に信号のレベル(信号の優劣を示す信号)を示しても可能である。
 上記の構成により、ユーザは上記各実施の形態で示した受信方法を用いて受信する場合のアンテナレベル(信号レベル、信号の優劣を示す信号)を数値的に、または、視覚的に把握することができる。
 なお、上記の説明では受信機3700が、音声出力部3706、映像表示部3707、記録部3708、ストリーム出力IF3709、及びAV出力IF3711を備えている場合を例に挙げて説明したが、これらの構成の全てを備えている必要はない。受信機3700が上記の構成のうち少なくともいずれか一つを備えていれば、ユーザは復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを利用することができるため、各受信機はその用途に合わせて上記の構成を任意に組み合わせて備えていれば良い。
(多重化データ)
 次に、多重化データの構造の一例について詳細に説明する。放送に用いられるデータ構造としてはMPEG2-トランスポートストリーム(TS)が一般的であり、ここではMPEG2-TSを例に挙げて説明する。しかし、上記各実施の形態で示した送信方法及び受信方法で伝送される多重化データのデータ構造はMPEG2-TSに限られず、他のいかなるデータ構造であっても上記の各実施の形態で説明した効果を得られることは言うまでもない。
 図38は、多重化データの構成の一例を示す図である。図38に示すように多重化データは、各サービスで現在提供されている番組(programまたはその一部であるevent)を構成する要素である、例えばビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラファイックスストリーム(IG)などのエレメンタリーストリームのうち、1つ以上を多重化することで得られる。多重化データで提供されている番組が映画の場合、ビデオストリームは映画の主映像および副映像を、オーディオストリームは映画の主音声部分と当該主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームとは映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像(例えば、映画のあらすじを示したテキストデータの映像など)のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。
 多重化データに含まれる各ストリームは、各ストリームに割り当てられた識別子であるPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。
 図39は、多重化データがどのように多重化されているかの一例を模式的に示す図である。まず、複数のビデオフレームからなるビデオストリーム3901、複数のオーディオフレームからなるオーディオストリーム3904を、それぞれPESパケット列3902および3905に変換し、TSパケット3903および3906に変換する。同じくプレゼンテーショングラフィックスストリーム3911およびインタラクティブグラフィックス3914のデータをそれぞれPESパケット列3912および3915に変換し、さらにTSパケット3913および3916に変換する。多重化データ3917はこれらのTSパケット(3903、3906、3913、3916)を1本のストリームに多重化することで構成される。
 図40は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図40における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図40の矢印yy1,yy2,yy3,yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。
 図41は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図41下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。
 また、多重化データに含まれるTSパケットには、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリームなどの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自体のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報(フレームレート、アスペクト比など)を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。
 図42は、PMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためのストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。
 図43は、その多重化データ情報ファイルの構成を示す図である。多重化データ情報ファイルは、図43に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。
 多重化データ情報は図43に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。
 図44は、多重化データ情報ファイルに含まれるストリーム属性情報の構成を示す図である。ストリーム属性情報は図44に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。
 図45は、放送局(基地局)から送信された、映像および音声のデータ、または、データ放送のためのデータを含む変調信号を受信する受信装置4504を含む映像音声出力装置4500の構成の一例を示している。なお、受信装置4504の構成は、図37の受信装置3700に相当する。映像音声出力装置4500には、例えば、OS(Operating System:オペレーティングシステム)が搭載されており、また、インターネットに接続するための通信装置4506(例えば、無線LAN(Local Area Network)やイーザーネットのための通信装置)が搭載されている。これにより、映像を表示する部分4501では、映像および音声のデータ、または、データ放送のためのデータにおける映像4502、および、インターネット上で提供されるハイパーテキスト(World Wide Web(ワールド ワイド ウェブ:WWW))4503を同時に表示することが可能となる。そして、リモコン(携帯電話やキーボードであってもよい)4507を操作することにより、データ放送のためのデータにおける映像4502、インターネット上で提供されるハイパーテキスト4503のいずれかを選択し、動作を変更することになる。例えば、インターネット上で提供されるハイパーテキスト4503が選択された場合、表示しているWWWのサイトを、リモコンを操作することにより、変更することになる。また、映像および音声のデータ、または、データ放送のためのデータにおける映像4502が選択されている場合、リモコン4507により、選局したチャネル(選局した(テレビ)番組、選局した音声放送)の情報を送信する。すると、IF4505は、リモコンで送信された情報を取得し、受信装置4504は、選局したチャネルに相当する信号を復調、誤り訂正復号等の処理を行い、受信データを得ることになる。このとき、受信装置4504は、選局したチャネルに相当する信号に含まれる伝送方法(これについては、図5に記載のとおりである。)の情報を含む制御シンボルの情報を得ることで、受信動作、復調方法、誤り訂正復号等の方法を正しく設定することで、放送局(基地局)で送信したデータシンボルに含まれるデータを得ることが可能となる。上述では、ユーザは、リモコン4507によって、チャネルを選局する例を説明したが、映像音声出力装置4500が搭載している選局キーを用いて、チャネルを選局しても、上記と同様の動作となる。
 また、インターネットを用い、映像音声出力装置4500を操作してもよい。例えば、他のインターネット接続している端末から、映像音声出力装置4500に対し、録画(記憶)の予約を行う。(したがって、映像音声出力装置4500は、図37のように、記録部3708を有していることになる。)そして、録画を開始する前に、チャネルを選局することになり、受信装置4504は、選局したチャネルに相当する信号を復調、誤り訂正復号等の処理を行い、受信データを得ることになる。このとき、受信装置4504は、選局したチャネルに相当する信号に含まれる伝送方法(上記の実施の形態で述べた伝送方式、変調方式、誤り訂正方式等)(これについては、図5に記載のとおりである。)の情報を含む制御シンボルの情報を得ることで、受信動作、復調方法、誤り訂正復号等の方法を正しく設定することで、放送局(基地局)で送信したデータシンボルに含まれるデータを得ることが可能となる。
 
(その他補足)
 本明細書において、送信装置を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器であることが考えられ、このとき、受信装置を具備しているのは、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。また、本発明における送信装置、受信装置は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェース(例えば、USB)を介して接続できるような形態であることも考えられる。
 また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(パイロットシンボルをプリアンブル、ユニークワード、ポストアンブル、リファレンスシンボル、スキャッタードパイロット等と呼んでもよい。)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。そして、ここでは、パイロットシンボル、制御情報用のシンボルと名付けているが、どのような名付け方を行ってもよく、機能自身が重要となっている。
 パイロットシンボルは、例えば、送受信機において、PSK変調を用いて変調した既知のシンボル(または、受信機が同期をとることによって、受信機は、送信機が送信したシンボルを知ることができてもよい。)であればよく、受信機は、このシンボルを用いて、周波数同期、時間同期、(各変調信号の)チャネル推定(CSI(Channel State Information)の推定)、信号の検出等を行うことになる。
 また、制御情報用のシンボルは、(アプリケーション等の)データ以外の通信を実現するための、通信相手に伝送する必要がある情報(例えば、通信に用いている変調方式・誤り訂正符号化方式・誤り訂正符号化方式の符号化率、上位レイヤーでの設定情報等)を伝送するためのシンボルである。
 なお、本発明はすべての実施の形態に限定されず、種々変更して実施することが可能である。例えば、上記実施の形態では、通信装置として行う場合について説明しているが、これに限られるものではなく、この通信方法をソフトウェアとして行うことも可能である。
 また、上記では、2つの変調信号を2つのアンテナから送信する方法における位相変更方法について説明したが、これに限ったものではなく、4つのマッピング後の信号に対し、プリコーディングを行うとともに位相を変更して、4つの変調信号を生成し、4つのアンテナから送信する方法、つまり、N個のマッピング後の信号に対し、プリコーディングを行い、N個の変調信号を生成し、N個のアンテナから送信する方法においても同様に位相を規則的に変更する、位相変更方法としても同様に実施することができる。
 また、上記実施の形態に示したシステム例では、2つの変調信号を2つのアンテナから送信し、それぞれを2つのアンテナで受信するMIMO方式の通信システムを開示したが、本発明は、当然にMISO(Multiple Input Single Output)方式の通信システムにも適用できる。MISO方式の場合、受信装置は、図7に示す構成のうち、アンテナ701_Y、無線部703_Y、変調信号z1のチャネル変動推定部707_1、変調信号z2のチャネル変動推定部707_2がない構成となるが、この場合であっても、上記実施の形態1に示した処理を実行することで、r1、r2それぞれを推定することができる。なお、同一周波数帯、同一時間において、送信された複数の信号を1つのアンテナで受信して復号できることは周知のことであり、本明細書においては、信号処理部における送信側で変更された位相を戻すための処理が従来技術に追加される処理となる。
 また、本発明の説明で示したシステム例では、2つの変調信号を2つのアンテナから送信し、それぞれを2つのアンテナで受信するMIMO方式の通信システムを開示したが、本発明は、当然にMISO(Multiple Input Single Output)方式の通信システムにも適用できる。MISO方式の場合、送信装置において、プリコーディングと位相変更を適用している点は、これまでの説明のとおりである。一方で、受信装置は、図7に示す構成のうち、アンテナ701_Y、無線部703_Y、変調信号z1のチャネル変動推定部707_1、変調信号z2のチャネル変動推定部707_2がない構成となるが、この場合であっても、本明細書の中で示した処理を実行することで、送信装置が送信したデータを推定することができる。なお、同一周波数帯、同一時間において、送信された複数の信号を1つのアンテナで受信して復号できることは周知のこと(1アンテナ受信において、ML演算等(Max-log APP等)の処理を施せばよい。)であり、本発明では、図7の信号処理部711において、送信側で用いたプリコーディングと位相変更を考慮した復調(検波)を行えばよいことになる。
 本明細書では、「プリコーディング」「プリコーディングウェイト」「プリコーディング行列」等の用語を用いているが、呼び方自身は、どのようなものでもよく(例えば、コードブック(codebook)と呼んでもよい。)、本発明では、その信号処理自身が重要となる。
 また、本明細書では、送信方法としてOFDM方式を用いた場合を中心に説明したが、これに限ったものではなく、OFDM方式以外のマルチキャリア方式、シングルキャリア方式を用いた場合にも同様に実施することは可能である。このとき、スペクトル拡散通信方式を用いていてもよい。なお、シングルキャリア方式を用いている場合、位相変更は時間軸方向で位相変更が行われることになる。
 また、本明細書において、受信装置で、ML演算、APP、Max-log APP、ZF、MMSE等を用いて説明しているが、この結果、送信装置が送信したデータの各ビットの軟判定結果(対数尤度、対数尤度比)や硬判定結果(「0」または「1」)を得ることになるが、これらを総称して、検波、復調、検出、推定、分離と呼んでもよい。
 ストリームs1(t)、s2(t)(s1(i)、s2(i))により、異なるデータを伝送してもよいし、同一のデータを伝送してもよい。
 また、2ストリームのベースバンド信号s1(i)、s2(i)(ただし、iは、(時間、または、周波数(キャリア)の)順番をあらわす)に対し、規則的な位相変更およびプリコーディングを行い(順番はどちらが先であってもよい)生成された、両者の信号処理後のベースバンド信号z1(i)、z2(i)において、両者の信号処理後のベースバンド信号z1(i)の同相I成分をI(i)、直交成分をQ(i)とし、両者の信号処理後のベースバンド信号z2(i)の同相I成分をI(i)、直交成分をQ(i)とする。このとき、ベースバンド成分の入れ替えを行い、
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)
とし、入れ替え後のベースバンド信号r1(i)に相当する変調信号を送信アンテナ1、入れ替え後のベースバンド信号r2(i)に相当する変調信号を送信アンテナ2から、同一時刻に同一周波数を用いて送信する、というように、入れ替え後のベースバンド信号r1(i)に相当する変調信号と入れ替え後のベースバンド信号r2(i)を異なるアンテナから、同一時刻に同一周波数を用いて送信するとしてもよい。また、
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)
としてもよい。また、上述では、2ストリームの信号に対し両者の信号処理を行い、両者の信号処理後の信号の同相成分と直交成分の入れ替えについて説明したが、これに限ったものではなく、2ストリームより多い信号に対し両者の信号処理後を行い、両者の信号処理後の信号の同相成分と直交成分の入れ替えを行うことも可能である。
 また、上記の例では、同一時刻(同一周波数((サブ)キャリア))のベースバンド信号の入れ替えを説明しているが、同一時刻のベースバンド信号の入れ替えでなくてもよい。例として、以下のように記述することができる
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をI(i+w)
 図55は、上記の記載を説明するためのベースバンド信号入れ替え部5502を示す図である。図55に示すように、両者の信号処理後のベースバンド信号z1(i)5501_1、z2(i)5501_2において、両者の信号処理後のベースバンド信号z1(i)5501_1の同相I成分をI(i)、直交成分をQ(i)とし、両者の信号処理後のベースバンド信号z2(i)5501_2の同相I成分をI(i)、直交成分をQ(i)とする。そして、入れ替え後のベースバンド信号r1(i)5503_1の同相成分をIr1(i)、直交成分をQr1(i)、入れ替え後のベースバンド信号r2(i)5503_2の同相成分をIr2(i)、直交成分をQr2(i)とすると、入れ替え後のベースバンド信号r1(i)5503_1の同相成分Ir1(i)、直交成分Qr1(i)、入れ替え後のベースバンド信号r2(i)5503_2の同相成分Ir2(i)、直交成分をQr2(i)は上述で説明したいずれかであらわされるものとする。なお、この例では、同一時刻(同一周波数((サブ)キャリア))の両者の信号処理後のベースバンド信号の入れ替えについて説明したが、上述のように、異なる時刻(異なる周波数((サブ)キャリア))の両者の信号処理後のベースバンド信号の入れ替えであってもよい。
 送信装置の送信アンテナ、受信装置の受信アンテナ、共に、図面で記載されている1つのアンテナは、複数のアンテナにより構成されていても良い。
 本明細書において、「∀」は全称記号(universal quantifier)をあらわしており、「∃」は存在記号(existential quantifier)をあらわしている。
 また、本明細書において、複素平面における、例えば、偏角のような、位相の単位は、「ラジアン(radian)」としている。
 複素平面を利用すると、複素数の極座標による表示として極形式で表示できる。複素数 z = a + jb (a、bはともに実数であり、jは虚数単位である)に、複素平面上の点 (a, b) を対応させたとき、この点が極座標で[r, θ] とあらわされるなら、
a=r×cosθ、
b=r×sinθ
Figure JPOXMLDOC01-appb-M000049
が成り立ち、r は z の絶対値 (r = |z|) であり、θ が偏角 (argument)となる。そして、z = a + jbは、rejθとあらわされる。
 本発明の説明において、ベースバンド信号、s1、s2、z1、z2は複素信号となるが、複素信号とは、同相信号をI、直交信号をQとしたとき、複素信号はI + jQ(jは虚数単位)とあらわされることになる。このとき、Iがゼロとなってもよいし、Qがゼロとなってもよい。
 本明細書で説明した位相変更方法を用いた放送システムの一例を図46に示す。図46において、映像符号化部4601は、映像を入力とし、映像符号化を行い、映像符号化後のデータ4602を出力する。音声符号化部4603は、音声を入力とし、音声符号化を行い、音声符号化後のデータ4604を出力する。データ符号化部4605は、データを入力とし、データの符号化(例えば、データ圧縮)を行い、データ符号化後のデータ4606を出力する。これらをまとめて、情報源符号化部4600とする。
 送信部4607は、映像符号化後のデータ4602、音声符号化後のデータ4604、データ符号化後のデータ4606を入力とし、これらのデータのいずれか、または、これらのデータ全てを送信データとし、誤り訂正符号化、変調、プリコーディング、位相変更等の処理(例えば、図3の送信装置における信号処理)を施し、送信信号4608_1から4608_Nを出力する。そして、送信信号4608_1から4608_Nはそれぞれアンテナ4609_1から4609_Nにより、電波として送信される。
 受信部4612は、アンテナ4610_1から4610_Mで受信した受信信号4611_1から4611_Mを入力とし、周波数変換、位相変更、プリコーディングのデコード、対数尤度比算出、誤り訂正復号等の処理(例えば、図7の受信装置における処理)を施し、受信データ4613、4615、4617を出力する。情報源復号部4619は、受信データ4613、4615、4617を入力とし、映像復号化部4614は、受信データ4613を入力とし、映像用の復号を行い、映像信号を出力し、映像は、テレビ、ディスプレーに表示される。また、音声復号化部4616は、受信データ4615を入力とし。音声用の復号を行い、音声信号を出力し、音声は、スピーカーから流れる。また、データ復号化部4618は、受信データ4617を入力とし、データ用の復号を行い、データの情報を出力する。
 また、本発明の説明を行っている実施の形態において、以前にも説明したようにOFDM方式のようなマルチキャリア伝送方式において、送信装置が保有している符号化器の数は、いくつであってもよい。したがって、例えば、図4のように、送信装置が、符号化器を1つ具備し、出力を分配する方法を、OFDM方式のようなマルチキャリア伝送方式にも適用することも当然可能である。このとき、図4の無線部310A、310Bを図12のOFDM方式関連処理部1301A、1301Bに置き換えればよいことになる。このとき、OFDM方式関連処理部の説明は、実施の形態1のとおりである。
 また、実施の形態1において、プリコーディング行列の例として、式(36)を与えたが、これとは別にプリコーディング行列として以下の式を用いる方法が考えられる。
Figure JPOXMLDOC01-appb-M000050
 なお、プリコーディング式(36)、式(50)において、αの値として、式(37)、式(38)を設定することを記載したが、これに限ったものではなく、α=1と設定すると、簡単なプリコーディング行列となるので、この値も有効な値の一つである。
 また、実施の形態A1において、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、周期Nのための位相変更値(図3、図4、図6、図12、図25、図29、図51、図53では、一方のベースバンド信号にのみ、位相変更を与えることになるので、位相変更値となる。)として、PHASE[i](i=0,1,2,・・・,N-2,N-1(iは0以上N-1以下の整数))と表現した。そして、本明細書において、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合(つまり、図3、図4、図6、図12、図25、図29、図51、図53)、図3、図4、図6、図12、図25、図29、図51、図53において、プリコーディング後のベースバンド信号z2’のみに位相変更を与えている。このとき、PHASE[k]を以下のように与える。
Figure JPOXMLDOC01-appb-M000051
 このとき、k=0,1,2,・・・,N-2,N-1(kは0以上N-1以下の整数)とする。そして、N=5, 7, 9, 11, 15とすると受信装置において、良好なデータの受信品質を得ることができる。
 また、本明細書では、2つの変調信号を複数のアンテナで送信する場合における位相変更方法について詳しく説明したが、これに限ったものでは、なく、3つ以上の変調方式のマッピングを行ったベースバンド信号に対し、プリコーディング、位相変更を行い、プリコーディング、位相変更後のベースバンド信号に対し、所定の処理を行い、複数のアンテナから送信する場合についても、同様に実施することができる。
 なお、例えば、上記通信方法を実行するプログラムを予めROM(Read Only Memory)に格納しておき、そのプログラムをCPU(Central Processor Unit)によって動作させるようにしても良い。
 また、上記通信方法を実行するプログラムをコンピュータで読み取り可能な記憶媒体に格納し、記憶媒体に格納されたプログラムをコンピュータのRAM(Random Access Memory)に記録して、コンピュータをそのプログラムにしたがって動作させるようにしても良い。
 そして、上記の各実施の形態などの各構成は、典型的には集積回路であるLSI(Large Scale Integration)として実現されてもよい。これらは、個別に1チップ化されてもよいし、各実施の形態の全ての構成または一部の構成を含むように1チップ化されてもよい。 ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限られるものではなく、専用回路または汎用プロセッサで実現しても良い。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。
 さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行っても良い。バイオ技術の適用等が可能性としてあり得る。
 
(実施の形態C1)
 本実施の形態では、実施の形態1で、送信パラメータを変更した際、使用するプリコーディング行列を切り替える場合について説明したが、本実施の形態では、その詳細の例について、上述の(その他の補足)で述べたように、送信パラメータとして、ストリームs1(t)、s2(t)において、異なるデータを伝送する場合と同一のデータを伝送する場合で切り替えるときに、使用するプリコーディング行列を切り替える方法、および、これに伴う位相変更方法について説明する。
 本実施の形態の例では、異なる2つの送信アンテナからそれぞれ変調信号を送信する場合、それぞれの変調信号において同一のデータを含んでいる場合と、それぞれの変調信号において異なるデータを送信する場合を切り替えるときについて説明する。
 図56は、前述のように送信方法を切り替える場合の送信装置の構成の一例を示している。図56において、図54と同様に動作するものについては同一符号を付している。図56において、分配部404は、フレーム構成信号313を入力としていることが、図54と異なる点となる。分配部404の動作について、図57を用いて説明する。
 図57に、同一データを送信する場合と異なるデータを送信する場合の分配部404の動作を示している。図57に示すように、符号化後のデータをx1、x2、x3、x4、x5、x6、・・・とすると、同一データを送信する場合、分配後のデータ405Aは、x1、x2、x3、x4、x5、x6、・・・とあらわされ、同様に、分配後のデータ405Bは、x1、x2、x3、x4、x5、x6、・・・とあらわされる。
 一方、異なるデータを送信する場合、分配後のデータ405Aは、x1、x3、x5、x7、x9、・・・とあらわされ、分配後のデータ405Bは、x2、x4、x6、x8、x10、・・・とあらわされる。
 なお、分配部404は、入力信号であるフレーム構成信号313により、送信モードが、同一データを送信する場合、異なるデータを送信する場合を判断することになる。
 上記の別の方法としては、図58のように、同一データ送信を行う場合、分配部404は、分配後のデータ405Aとしてx1、x2、x3、x4、x5、x6、・・・を出力し、分配後のデータ405Bには、出力を行わない。したがって、フレーム構成信号313が、「同一データ送信」を示している場合、分配部404の動作は上述のとおりであり、また、図56におけるインタリーバ304B、マッピング部306Bは動作しないことになる。そして、図56におけるマッピング部306Aの出力であるベースバンド信号307Aのみが有効となり、重み付け合成部308Aおよび308Bの両者の入力信号となる。
 本実施の形態において、一つの特徴となる点は、送信モードを、同一データを送信する場合と異なるデータを送信する場合の切り替えを行う場合に、プリコーディング行列を切り替える点である。実施の形態1の式(36)、式(39)で示したように、w11、w12、w21、w22で構成される行列であらわした場合、同一データを送信する場合のプリコーディング行列は、以下のようにあらわすとよい。
Figure JPOXMLDOC01-appb-M000052
 式(52)において、aは実数とする(aは複素数であってもよいが、プリコーディングにより、入力するベースバンド信号に位相変更を与えることになるので、回路規模がなるべく大きく、複雑にならないようにすることを考慮すると、実数であったほうがよい。)また、aが1の場合、重み付け合成部308A、308Bは、重み付け合成の動作をせずに、入力信号をそのまま出力することになる。
 したがって、「同一データを送信する」場合、重み付け合成部308A、308Bの出力信号となる、重み付け合成後のベースバンド信号309Aと重み付け合成後のベースバンド信号316Bは同一の信号となる。
 そして、位相変更部5201は、フレーム構成信号313が「同一データを送信する」であることを示している場合、重み付け合成後のベースバンド信号309Aに位相変更を施し、位相変更後のベースバンド信号5202を出力する。そして、位相変更部317Bは、フレーム構成信号313が「同一データを送信する」であることを示している場合、重み付け合成後のベースバンド信号316Bに位相変更を施し、位相変更後のベースバンド信号309Bを出力する。なお、位相変更部5201で施す位相変更をejA(t)(または、ejA(f)または、ejA(t、f))(ただし、tは時間、fは周波数)とし(したがって、ejA(t)(または、ejA(f)または、ejA(t、f))は、入力されたベースバンド信号に乗算する値である。)、位相変更部317Bで施す位相変更をejB(t)(または、ejB(f)または、ejB(t、f))(ただし、tは時間、fは周波数)とすると(したがって、ejB(t)(または、ejB(f)または、ejB(t、f))は、入力されたベースバンド信号に乗算する値である。)、以下の条件を満たすことが重要となる。
Figure JPOXMLDOC01-appb-M000053
 このようにすることで、送信信号は、マルチパスの影響を軽減することができるため、受信装置において、データの受信品質を向上させることができる。(ただし、位相変更は、重み付け合成後のベースバンド信号309Aと重み付け合成後のベースバンド信号316Bのうち、一方のみに行う構成としてもよい。)
 なお、図56において、位相変更後のベースバンド信号5202は、OFDMを用いている場合、IFFT、周波数変換等の処理を施し、送信アンテナから送信される。(図13参照)(したがって、位相変更後のベースバンド信号5202は、図13の信号1301Aであると考えればよい。)同様に、位相変更後のベースバンド信号309Bは、OFDMを用いている場合、IFFT、周波数変換等の処理を施し、送信アンテナから送信される。(図13参照)(したがって、位相変更後のベースバンド信号309Bは、図13の信号1301Bであると考えればよい。)
 一方、送信モードとして、「異なるデータを送信する」が選択されている場合、実施の形態1で示したように、式(36)、式(39)、式(50)のいずれかであらわされるものとする。このとき、図56の位相変更部5201、317Bは、「同一のデータを送信」する場合とは異なる位相変更方法を行うことが重要となる。特に、この場合、実施の形態1で述べたように、例えば、位相変更部5201は位相変更を行い、位相変更部317Bは位相変更を行わない、または、位相変更部5201は位相変更を行わず、位相変更部317Bは位相変更を行う、というように、2つの位相変更部のうち、いずれか一方のみ位相変更を行う、というようにすれば、LOS環境、NLOS環境の両者で、受信装置は、良好なデータの受信品質を得ることができる。
 なお、送信モードとして、「異なるデータを送信する」が選択されている場合、プリコーディング行列として、式(52)を用いてもよいが、式(36)、式(50)、または、式(39)であらわされ、かつ、式(52)と異なるプリコーディング行列を用いると、受信装置において、特に、LOS環境におけるデータの受信品質をさらに向上させることができる可能性がある。
 また、本実施の形態は、送信方法としてOFDM方式を用いた場合を例に説明したが、これに限ったものではなく、OFDM方式以外のマルチキャリア方式、シングルキャリア方式を用いた場合にも同様に実施することは可能である。このとき、スペクトル拡散通信方式を用いていてもよい。なお、シングルキャリア方式を用いている場合、位相変更は時間軸方向で位相変更が行われることになる。
 なお、実施の形態3で説明したように、「異なるデータを送信する」送信方法の場合、データシンボルのみに対し、位相変更を行うものとした。しかし、本実施の形態において説明した「同一データを送信する」の送信方法のとき、位相変更は、データシンボルに限らず、送信信号の送信フレームに挿入されているパイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行うことになる。(ただし、パイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行わないようにしてもよいが、ダイバーシチゲインを得るためには、位相変更を行うとよい。)
 
(実施の形態C2)
 本実施の形態では、実施の形態C1を応用した基地局の構成方法について説明する。
 図59に基地局(放送局)と端末の関係を示している。端末P(5907)は、基地局A(5902A)のアンテナ5904Aから送信された送信信号5903Aとアンテナ5906Aから送信された送信信号5905Aを受信し、所定の処理を行い、受信データを得ているものとする。
 端末Q(5908)は、基地局A(5902A)のアンテナ5904Aから送信された送信信号5903Aと基地局B(5902B)のアンテナ5904Bから送信された送信信号5903Bを受信し、所定の処理を行い、受信データを得ているものとする。
 図60および図61は、基地局A(5902A)がアンテナ5904A、アンテナ5906Aから送信する送信信号5903A、送信信号5905Aの周波数割り当て、および、基地局B(5902B)がアンテナ5904B、アンテナ5906Bから送信する送信信号5903B、送信信号5905Bの周波数割り当て、を示している。図60、図61における図では、横軸を周波数、縦軸を送信パワーとする。
 図60に示すように、基地局A(5902A)が送信する送信信号5903A、送信信号5905A、および、基地局B(5902B)が送信する送信信号5903B、送信信号5905Bは少なくとも周波数帯域Xと周波数帯域Yを使用しており、周波数帯域Xを用いて、第1のチャネルのデータの伝送を行っており、また、周波数帯域Yを用いて、第2のチャネルのデータの伝送を行っているものとする。
 したがって、端末P(5907)は、基地局A(5902A)のアンテナ5904Aから送信された送信信号5903Aとアンテナ5906Aから送信された送信信号5905Aを受信し、周波数帯域Xを抽出し、所定の処理を行い、第1のチャネルのデータを得ることになる。そして、端末Q(5908)は、基地局A(5902A)のアンテナ5904Aから送信された送信信号5903Aと基地局B(5902B)のアンテナ5904Bから送信された送信信号5903Bを受信し、周波数帯域Yを抽出し、所定の処理を行い、第2のチャネルのデータを得ることになる。
 このときの基地局A(5902A)および基地局B(5902B)の構成および動作について説明する。
 基地局A(5902A)および基地局B(5902B)いずれも、実施の形態C1で説明したように、図56および図13で構成された送信装置を具備している。そして、基地局A(5902A)は、図60のように送信する場合、周波数帯域Xにおいては、実施の形態C1で説明したように、異なる2つの変調信号を生成し(プリコーディング、位相変更を行う)、2つの変調信号をそれぞれ図59のアンテナ5904Aおよび5906Aから送信する。周波数帯域Yにおいては、基地局A(5902A)は、図56において、インタリーバ304A、マッピング部306A、重み付け合成部308A、位相変更部5201を動作させ、変調信号5202を生成し、変調信号5202に相当する送信信号を図13のアンテナ1310A、つまり、図59のアンテナ5904Aから送信する。同様に、基地局B(5902B)は、図56において、インタリーバ304A、マッピング部306A、重み付け合成部308A、位相変更部5201を動作させ、変調信号5202を生成し、変調信号5202に相当する送信信号を図13のアンテナ1310A、つまり、図59のアンテナ5904Bから送信する。
 なお、周波数帯域Yの符号化後のデータの作成については、図56のように、基地局が個別に符号化後のデータを生成してもよいが、いずれかの基地局で作成した符号化後のデータを、別の基地局に転送してもよい。また、別の方法としては、変調信号をいずれかの基地局が生成し、生成した変調信号を、別の基地局に渡すような構成としてもよい。
 また、図59において、信号5901は、送信モード(「同一のデータを送信」または「異なるデータを送信」)に関する情報を含んでいることになり、基地局は、この信号を取得することで、各周波数帯域における変調信号の生成方法を切り替えることになる。ここでは、信号5901は、図59のように他の機器あるいはネットワークから入力しているが、例えば、基地局A(5902A)がマスタ局となり、基地局B(5902B)に信号5901に相当する信号をわたすようにしてもよい。
 以上の説明のように、基地局が「異なるデータを送信」する場合、その送信方法に適した、プリコーディング行列、および、位相変更方法を設定し、変調信号を生成することになる。
 一方、「同一のデータを送信」する場合、2つの基地局がそれぞれ、変調信号を生成し、送信することになる。このとき、各基地局は、一つのアンテナから送信するための変調信号を生成することは、2つの基地局を併せて考えた場合、2つの基地局で、式(52)のプリコーディング行列を設定したことに相当する。なお、位相変更方法については、実施の形態C1で説明したとおりであり、例えば、(数53)の条件を満たすとよい。
 また、周波数帯域Xと周波数帯域Yは時間とともに、送信する方法を変更してもよい。したがって、図61のように、時間が経過し、図60のような周波数割り当てから図61のような周波数割り当てに変更してもよい。
 本実施の形態のようにすることで、「同一のデータを送信」「異なるデータを送信」いずれの場合についても、受信装置において、データの受信品質を向上させることができるという効果を得ることができるとともに、送信装置において、位相変更部の共有化を行うことができるという利点がある。
 また、本実施の形態は、送信方法としてOFDM方式を用いた場合を例に説明したが、これに限ったものではなく、OFDM方式以外のマルチキャリア方式、シングルキャリア方式を用いた場合にも同様に実施することは可能である。このとき、スペクトル拡散通信方式を用いていてもよい。なお、シングルキャリア方式を用いている場合、位相変更は時間軸方向で位相変更が行われることになる。
 なお、実施の形態3で説明したように、「異なるデータを送信する」送信方法の場合、データシンボルのみに対し、位相変更を行うものとした。しかし、本実施の形態において説明した「同一データを送信する」の送信方法のとき、位相変更は、データシンボルに限らず、送信信号の送信フレームに挿入されているパイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行うことになる。(ただし、パイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行わないようにしてもよいが、ダイバーシチゲインを得るためには、位相変更を行うとよい。)
 
(実施の形態C3)
 本実施の形態では、実施の形態C1を応用した中継器の構成方法について説明する。なお、中継器は、中継局と呼称されることもある。
 図62に、基地局(放送局)、中継器と端末の関係を示している。基地局6201は、図63に示すように、少なくとも周波数帯域Xと周波数帯域Yの変調信号を送信する。基地局6201は、アンテナ6202Aおよびアンテナ6202Bからそれぞれ変調信号を送信する。このときの送信方法については、図63を用いて後に説明する。
 中継器A(6203A)は、受信アンテナ6204Aで受信した受信信号6205A、および、受信アンテナ6206Aで受信した受信信号6207Aを復調等の処理を施し、受信データを得る。そして、その受信データを端末に伝送するため、送信処理を施し、変調信号6209Aおよび、6211Aを生成し、それぞれ、アンテナ6210Aおよび6212Aから送信する。
 同様に、中継器B(6203B)は、受信アンテナ6204Bで受信した受信信号6205B、および、受信アンテナ6206Bで受信した受信信号6207Bを復調等の処理を施し、受信データを得る。そして、その受信データを端末に伝送するため、送信処理を施し、変調信号6209Bおよび6211Bを生成し、それぞれ、アンテナ6210Bおよび6212Bから送信する。なお、ここでは、中継器B(6203B)は、マスタ中継器であるとし、制御信号6208を出力し、中継器A(6203A)は、この信号を入力とする。なお、必ずしも、マスタ中継器を設ける必要はなく、基地局6201が、中継器A(6203A)、中継器B(6203B)に個別に制御情報を伝送することとしてもよい。
 端末P(5907)は、中継器A(6203A)が送信した変調信号を受信し、データを得ることになる。端末Q(5908)は、中継器A(6203A)および中継器B(6203B)が送信した信号を受信し、データを得ることになる。端末R(6213)は、中継器B(6203B)が送信した変調信号を受信し、データを得ることになる。
 図63は、基地局が送信する送信信号のうち、アンテナ6202Aから送信する変調信号の周波数割り当て、および、アンテナ6202Bから送信する変調信号の周波数割り当て、を示している。図63において、横軸を周波数、縦軸を送信パワーとする。
 図63に示すように、アンテナ6202Aから送信する変調信号、および、アンテナ6202Bから送信する変調信号は少なくとも周波数帯域Xと周波数帯域Yを使用しており、周波数帯域Xを用いて、第1のチャネルのデータの伝送を行っており、また、周波数帯域Yを用いて、第1のチャネルとは異なる第2のチャネルのデータの伝送を行っているものとする。
 そして、第1のチャネルのデータは、実施の形態C1で説明したように、周波数帯域Xを用いて、「異なるデータを送信」するモードで、伝送する。したがって、図63に示すように、アンテナ6202Aから送信する変調信号、および、アンテナ6202Bから送信する変調信号は、周波数帯域Xの成分を含んでいることになる。そして、周波数帯域Xの成分は、中継器Aおよび中継器Bで受信されることになる。したがって、周波数帯域Xの変調信号は、実施の形態1、実施の形態C1で説明したように、マッピング後の信号に対し、プリコーディング(重み付け合成)、および、位相変更が施されることになる。
 第2のチャネルのデータは、図63では、図62のアンテナ6202Aから送信される周波数帯域Yの成分によりデータが伝送される。そして、周波数帯域Yの成分は、中継器Aおよび中継器Bで受信されることになる。
 図64は、中継器A、中継器Bが送信する送信信号のうち、中継器Aのアンテナ6210Aから送信する変調信号6209A、アンテナ6212Aから送信する変調信号6211Aの周波数割り当て、および、中継器Bのアンテナ6210Bから送信する変調信号6209B、アンテナ6212Bから送信する変調信号6211Bの周波数割り当て、を示している。図64において、横軸を周波数、縦軸を送信パワーとする。
 図64に示すように、アンテナ6210Aから送信する変調信号6209A、および、アンテナ6212Aから送信する変調信号6211Aは少なくとも周波数帯域Xと周波数帯域Yを使用しており、また、アンテナ6210Bから送信する変調信号6209B、および、アンテナ6212Bから送信する変調信号6211Bは少なくとも周波数帯域Xと周波数帯域Yを使用しており、周波数帯域Xを用いて、第1のチャネルのデータの伝送を行っており、また、周波数帯域Yを用いて、第2のチャネルのデータの伝送を行っているものとする。
 そして、第1のチャネルのデータは、実施の形態C1で説明したように、周波数帯域Xを用いて、「異なるデータを送信」するモードで、伝送する。したがって、図64に示すように、アンテナ6210Aから送信する変調信号6209A、および、アンテナ6212Aから送信する変調信号6211Aは、周波数帯域Xの成分を含んでいることになる。そして、周波数帯域Xの成分は、端末Pで受信されることになる。同様に、図64に示すように、アンテナ6210Bから送信する変調信号6209B、および、アンテナ6212Bから送信する変調信号6211Bは、周波数帯域Xの成分を含んでいることになる。そして、周波数帯域Xの成分は、端末Rで受信されることになる。したがって、周波数帯域Xの変調信号は、実施の形態1、実施の形態C1で説明したように、マッピング後の信号に対し、プリコーディング(重み付け合成)、および、位相変更が施されることになる。
 第2のチャネルのデータは、図64では、図62の中継器A(6203A)のアンテナ6210Aおよび中継器B(6203B)のアンテナ6210Bから送信される変調信号の周波数帯域Yの成分を用いて、伝送されることになる。このとき、図62の中継器A(6203A)のアンテナ6210Aから送信される変調信号6209Aの周波数帯域Yの成分および中継器B(6203B)のアンテナ6210Bから送信される変調信号6209Bの周波数帯域Yの成分により、実施の形態C1で説明した「同一データを送信する」送信モードを使用することになる。そして、周波数帯域Yの成分は、端末Qで受信されることになる。
 次に、図62における中継器A(6203A)と中継器B(6203B)の構成を、図65を用いて説明する。
 図65は、中継器の受信部と送信部の構成の一例を示しており、図56と同様に動作するものについては、同一符号を付した。受信部6203Xは、受信アンテナ6501aで受信した受信信号6502a、および、受信アンテナ6501bで受信した受信信号6502bを入力とし、周波数帯域Xの成分に対し、信号処理(信号の分離または合成、誤り訂正復号等の処理)を施し、基地局が周波数帯域Xを用いて伝送したデータ6204Xを得て、これを分配部404に出力するとともに、制御情報に含まれる送信方法の情報を得(中継器が送信する際の送信方法の情報も得る)、フレーム構成信号313を出力する。
 なお、受信部6203X以降は、周波数帯域Xで送信するための変調信号を生成するための処理部となる。また、受信部については、図65で示しているように、周波数帯域Xの受信部のみだけではなく、他の周波数帯域の受信部を他に具備しており、各受信部では、その周波数帯域を用いて送信するための変調信号を生成するための処理部を具備することになる。
 分配部404の動作の概要は、実施の形態C2で述べた基地局における分配部の動作と同様になる。
 中継器A(6203A)と中継器B(6203B)は、図64のように送信する場合、周波数帯域Xにおいては、実施の形態C1で説明したように、異なる2つの変調信号を生成し(プリコーディング、位相変更を行う)、2つの変調信号をそれぞれ、中継器A(6203A)は図62のアンテナ6210Aおよび6212Aから、中継器B(6203B)は図62のアンテナ6210Bおよび6212Bから送信する。
 周波数帯域Yにおいては、中継器A(6203A)は、図65において、周波数帯域Xに関連する信号処理部6500に対応する周波数帯域Yに関連する処理部6500において(6500は、周波数帯域X関連の信号処理部であるが、周波数帯域Yについても同様の信号処理部を具備するので、6500内の付加した番号で説明する。)、インタリーバ304A、マッピング部306A、重み付け合成部308A、位相変更部5201を動作させ、変調信号5202を生成し、変調信号5202に相当する送信信号を図13のアンテナ1310A、つまり、図62のアンテナ6210Aから送信する。同様に、中継器B(6203B)は、図62において、周波数帯域Yにおける、インタリーバ304A、マッピング部306A、重み付け合成部308A、位相変更部5201を動作させ、変調信号5202を生成し、変調信号5202に相当する送信信号を図13のアンテナ1310A、つまり、図62のアンテナ6210Bから送信する。
 なお、基地局は、図66に示すように(図66は、基地局が送信する変調信号のフレーム構成であり、横軸時間、縦軸周波数である。)、送信方法に関する情報6601、中継器が施す位相変更に関する情報6602、データシンボル6603を送信し、中継器は、送信方法に関する情報6601、中継器が施す位相変更に関する情報6602を得ることで、送信信号に施す、位相変更の方法を決定することができる。また、図66における中継器が施す位相変更に関する情報6602が、基地局が送信した信号に含まれていない場合は、図62に示すように、中継器B(6203B)がマスタとなり、中継器A(6203A)に位相変更方法の指示をしてもよい。
 以上の説明のように、中継器が「異なるデータを送信」する場合、その送信方法に適した、プリコーディング行列、および、位相変更方法を設定し、変調信号を生成することになる。
 一方、「同一のデータを送信」する場合、2つの中継器がそれぞれ、変調信号を生成し、送信することになる。このとき、各中継器は、一つのアンテナから送信するための変調信号を生成することは、2つの中継器を併せて考えた場合、2つの中継器で、式(52)のプリコーディング行列を設定したことに相当する。なお、位相変更方法については、実施の形態C1で説明したとおりであり、例えば、(数53)の条件を満たすとよい。
 また、実施の形態C1で説明したように、周波数帯域Xのように、基地局、中継器ともに、2つのアンテナからそれぞれ変調信号を送信し、2つのアンテナから、同一のデータを送信するようにしてもよい。このときの基地局及び中継器の動作については実施の形態C1で説明したとおりである。
 本実施の形態のようにすることで、「同一のデータを送信」「異なるデータを送信」いずれの場合についても、受信装置において、データの受信品質を向上させることができるという効果を得ることができるとともに、送信装置において、位相変更部の共有化を行うことができるという利点がある。
 また、本実施の形態は、送信方法としてOFDM方式を用いた場合を例に説明したが、これに限ったものではなく、OFDM方式以外のマルチキャリア方式、シングルキャリア方式を用いた場合にも同様に実施することは可能である。このとき、スペクトル拡散通信方式を用いていてもよい。なお、シングルキャリア方式を用いている場合、位相変更は時間軸方向で位相変更が行われることになる。
 なお、実施の形態3で説明したように、「異なるデータを送信する」送信方法の場合、データシンボルのみに対し、位相変更を行うものとした。しかし、本実施の形態において説明した「同一データを送信する」の送信方法のとき、位相変更は、データシンボルに限らず、送信信号の送信フレームに挿入されているパイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行うことになる。(ただし、パイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行わないようにしてもよいが、ダイバーシチゲインを得るためには、位相変更を行うとよい。)
 
(実施の形態C4)
 本実施の形態では、「実施の形態1」、「その他補足」で説明した位相変更方法とは異なる位相変更方法について説明する。
 実施の形態1において、プリコーディング行列の例として、式(36)を与え、その他補足において、プリコーディング行列の例として、式(50)を与えた。そして、実施の形態A1において、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、周期Nのための位相変更値(図3、図4、図6、図12、図25、図29、図51、図53では、一方のベースバンド信号にのみ、位相変更を与えることになるので、位相変更値となる。)として、PHASE[i](i=0,1,2,・・・,N-2,N-1(iは0以上N-1以下の整数))と表現した。そして、本明細書において、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合(つまり、図3、図4、図6、図12、図25、図29、図51、図53)、図3、図4、図6、図12、図25、図29、図51、図53において、プリコーディング後のベースバンド信号z2’のみに位相変更を与えている。このとき、PHASE[k]を以下のように与える。
Figure JPOXMLDOC01-appb-M000054
このとき、k=0,1,2,・・・,N-2,N-1(kは0以上N-1以下の整数)とする。
 このようにすると、受信装置において、特に、電波伝搬環境が、LOS環境のとき、データの受信品質が向上するという効果を得ることができる。これは、LOS環境において、位相変更を行わなかった場合、定常的な位相関係であったものが、位相変更を行うことで、位相関係の変更が行われ、これにより、バースト的に伝搬環境が悪い状況が回避されるからである。また、式(54)とは別の方法として、PHASE[k]を以下のように与えてもよい。
Figure JPOXMLDOC01-appb-M000055
このとき、k=0,1,2,・・・,N-2,N-1(kは0以上N-1以下の整数)とする。
 また、別の位相変更方法として、PHASE[k]を以下のように与えてもよい。
Figure JPOXMLDOC01-appb-M000056
このとき、k=0,1,2,・・・,N-2,N-1(kは0以上N-1以下の整数)とし、Zは固定値とする。
 また、別の位相変更方法として、PHASE[k]を以下のように与えてもよい。
Figure JPOXMLDOC01-appb-M000057
このとき、k=0,1,2,・・・,N-2,N-1(kは0以上N-1以下の整数)とし、Zは固定値とする。
 以上のように、本実施の形態のような位相変更を行うことで、受信装置は、良好な受信品質を得ることができる可能性が高くなる、という効果を得ることができる。
 本実施の形態の位相変更は、シングルキャリア方式への適用に限ったものではなく、マルチキャリア伝送の場合も適用することができる。したがって、例えば、スペクトル拡散通信方式、OFDM方式、SC-FDMA、SC-OFDM方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても同様に実施することができる。前述したように、本実施の形態では、位相変更を行う説明として、時間t軸方向で位相変更を行う場合があるが、実施の形態1と同様に、周波数軸方向に位相変更を行うときと同様に、つまり、本実施の形態において、t方向での位相変更の説明において、tをf(f:周波数((サブ)キャリア))に置き換えて、考えることで、本実施の形態で説明した位相変更変更を、周波数方向に位相変更に適用することができることになる。また、本実施の形態の位相変更方法は、実施の形態1の説明と同様に、時間-周波数方向に対する位相変更に対して、適用することも可能である。また、本実施の形態で説明した位相変更方法は、実施の形態A1で示した内容を満たすと、受信装置において、良好なデータ品質を得ることができる可能性が高い。
 
(実施の形態C5)
 本実施の形態では、「実施の形態1」、「その他補足」、「実施の形態C4」で説明した位相変更方法とは異なる位相変更方法について説明する。
 実施の形態1において、プリコーディング行列の例として、式(36)を与え、その他補足において、プリコーディング行列の例として、式(50)を与えた。そして、実施の形態A1において、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、周期Nのための位相変更値(図3、図4、図6、図12、図25、図29、図51、図53では、一方のベースバンド信号にのみ、位相変更を与えることになるので、位相変更値となる。)として、PHASE[i](i=0,1,2,・・・,N-2,N-1(iは0以上N-1以下の整数))と表現した。そして、本明細書において、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合(つまり、図3、図4、図6、図12、図25、図29、図51、図53)、図3、図4、図6、図12、図25、図29、図51、図53において、プリコーディング後のベースバンド信号z2’のみに位相変更を与えている。
 本実施の形態における位相変更方法の特徴的な点は、周期N=2n+1とあらわされる点である。そして、周期N=2n+1を実現するために用意する異なる位相変更値は、n+1個となる。そして、n+1個の異なる位相変更値のうち、n個の位相変更値は、1周期内で、それぞれ2回用いられ、1個の位相変更値は、1回用いられることで、周期N=2n+1が実現される。以下では、このときの位相変更値について詳しく説明する。
 周期N=2n+1の規則的に位相変更値を切り替える位相変更方法を実現するために必要となるn+1個の異なる位相変更値をPHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]とする(i=0,1,2,・・・,n-2,n-1,n(iは0以上n以下の整数))。このとき、n+1個の異なる位相変更値PHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]の例を以下のようにあらわす。
Figure JPOXMLDOC01-appb-M000058
 このとき、k=0,1,2,・・・,n-2,n-1,n(kは0以上n以下の整数)とする。式(58)のn+1個の異なる位相変更値PHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]において、PHASE[0]を1回用い、かつ、PHASE[1]~PHASE[n]をそれぞれ2回用いる(PHASE[1]を2回用い、PHASE[2]を2回用い、・・・、PHASE[n-1]を2回用い、PHASE[n]を2回用いる)ことで、周期N=2n+1の規則的に位相変更値を切り替える位相変更方法とすることで、少ない位相変更値で規則的に位相変更値を切り替える位相変更方法を実現することができ、受信装置は、良好なデータの受信品質を得ることができる。用意する位相変更値が少ないため、送信装置、受信装置の効果を削減できる効果を得ることができる。以上のように、受信装置において、特に、電波伝搬環境が、LOS環境のとき、データの受信品質が向上するという効果を得ることができる。これは、LOS環境において、位相変更を行わなかった場合、定常的な位相関係であったものが、位相変更を行うことで、位相関係の変更が行われ、これにより、バースト的に伝搬環境が悪い状況が回避されるからである。また、式(58)とは別の方法として、PHASE[k]を以下のように与えてもよい。
Figure JPOXMLDOC01-appb-M000059
このとき、k=0,1,2,・・・,n-2,n-1,n(kは0以上n以下の整数)とする。
 式(59)のn+1個の異なる位相変更値PHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]において、PHASE[0]を1回用い、かつ、PHASE[1]~PHASE[n]をそれぞれ2回用いる(PHASE[1]を2回用い、PHASE[2]を2回用い、・・・、PHASE[n-1]を2回用い、PHASE[n]を2回用いる)ことで、周期N=2n+1の規則的に位相変更値を切り替える位相変更方法とすることで、少ない位相変更値で規則的に位相変更値を切り替える位相変更方法を実現することができ、受信装置は、良好なデータの受信品質を得ることができる。用意する位相変更値が少ないため、送信装置、受信装置の効果を削減できる効果を得ることができる。
 また、別の方法として、PHASE[k]を以下のように与えてもよい。
Figure JPOXMLDOC01-appb-M000060
このとき、k=0,1,2,・・・,n-2,n-1,n(kは0以上n以下の整数)とし、Zは固定値とする。
 式(60)のn+1個の異なる位相変更値PHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]において、PHASE[0]を1回用い、かつ、PHASE[1]~PHASE[n]をそれぞれ2回用いる(PHASE[1]を2回用い、PHASE[2]を2回用い、・・・、PHASE[n-1]を2回用い、PHASE[n]を2回用いる)ことで、周期N=2n+1の規則的に位相変更値を切り替える位相変更方法とすることで、少ない位相変更値で規則的に位相変更値を切り替える位相変更方法を実現することができ、受信装置は、良好なデータの受信品質を得ることができる。用意する位相変更値が少ないため、送信装置、受信装置の効果を削減できる効果を得ることができる。
 また、別の方法として、PHASE[k]を以下のように与えてもよい。
Figure JPOXMLDOC01-appb-M000061
このとき、k=0,1,2,・・・,n-2,n-1,n(kは0以上n以下の整数)とし、Zは固定値とする。
 式(61)のn+1個の異なる位相変更値PHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]において、PHASE[0]を1回用い、かつ、PHASE[1]~PHASE[n]をそれぞれ2回用いる(PHASE[1]を2回用い、PHASE[2]を2回用い、・・・、PHASE[n-1]を2回用い、PHASE[n]を2回用いる)ことで、周期N=2n+1の規則的に位相変更値を切り替える位相変更方法とすることで、少ない位相変更値で規則的に位相変更値を切り替える位相変更方法を実現することができ、受信装置は、良好なデータの受信品質を得ることができる。用意する位相変更値が少ないため、送信装置、受信装置の効果を削減できる効果を得ることができる。
 以上のように、本実施の形態のような位相変更を行うことで、受信装置は、良好な受信品質を得ることができる可能性が高くなる、という効果を得ることができる。
 本実施の形態の位相変更は、シングルキャリア方式をへの適用に限ったものではなく、マルチキャリア伝送の場合も適用することができる。したがって、例えば、スペクトル拡散通信方式、OFDM方式、SC-FDMA、SC-OFDM方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても同様に実施することができる。前述したように、本実施の形態では、位相変更を行う説明として、時間t軸方向で位相変更を行う場合があるが、実施の形態1と同様に、周波数軸方向に位相変更を行うときと同様に、つまり、本実施の形態において、t方向での位相変更の説明において、tをf(f:周波数((サブ)キャリア))に置き換えて、考えることで、本実施の形態で説明した位相変更変更を、周波数方向に位相変更に適用することができることになる。また、本実施の形態の位相変更方法は、実施の形態1の説明と同様に、時間-周波数方向に対する位相変更に対して、適用することも可能である。
 
(実施の形態C6)
 本実施の形態では、非特許文献12~非特許文献15に示されているように、QC(Quasi Cyclic) LDPC(Low-Density Prity-Check)符号(ただし、QC-LDPC符号でないLDPC(ブロック)符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号等のブロック符号、ターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの、特に、実施の形態C5で述べた規則的に位相変更値を切り替える位相変更方法を用いたときについて詳しく説明する。ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(cyclic redundancy check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
 図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、図4の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
 図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
 そして、図4の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
 同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
 次に、規則的に位相を変更する方法において、上述で定義したスロットと位相との関係について説明する。
 ここでは、周期5の規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図4の送信装置の位相変更部のために、周期5のための5つの位相変更値(または、位相変更セット)を用意するものとする。ただし、実施の形態C5で述べたように、異なる位相変更値は3つ存在することになる。したがって、周期5のための5つの位相変更値の中には、同一の位相変更値が存在することになる。(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。周期5のための5つの位相変更値(または、位相変更セット)をP[0], P[1], P [2], P [3], P [4]とあらわすものとする。
 次に、規則的に位相を変更する方法において、上述で定義したスロットと位相の関係について説明する。
 変調方式がQPSKのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた1500スロットにおいて、位相変更値P[0]を使用するスロットが300スロット、位相変更値P[1]を使用するスロットが300スロット、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300スロット、位相変更値P[4]を使用するスロットが300スロットである必要がある。これは、使用する位相変更値にかたよりがあると、多くの数を使用した位相変更値の影響が大きいデータの受信品質となるからである。
 同様に、変調方式が16QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた750スロットにおいて、位相変更値P[0]を使用するスロットが150スロット、位相変更値P[1]を使用するスロットが150スロット、位相変更値P[2]を使用するスロットが150スロット、位相変更値P[3]を使用するスロットが150スロット、位相変更値P[4]を使用するスロットが150スロットである必要がある。
 同様に、変調方式が64QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた500スロットにおいて、位相変更値P[0]を使用するスロットが100スロット、位相変更値P[1]を使用するスロットが100スロット、位相変更値P[2]を使用するスロットが100スロット、位相変更値P[3]を使用するスロットが100スロット、位相変更値P[4]を使用するスロットが100スロットである必要がある。
 以上のように、実施の形態C5で述べた規則的に位相変更値を切り替える位相変更方法において、周期N=2n+1を実現するための位相変更値P[0], P[1],・・・, P[2n-1], P[2n](ただし、P[0], P[1],・・・, P[2n-1], P[2n]は、PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[n-1]、PHASE[n]で構成されている。(実施の形態C5参照))としたとき、1つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用するスロット数をK, 位相変更値P[1]を使用するスロット数をK1、位相変更値P[i]を使用するスロット数をKi(i=0,1,2,・・・,2n-1,2n(iは0以上2n以下の整数))、位相変更値P[2n] を使用するスロット数をK2nとしたとき、
 
<条件#C01>
=K=・・・=Ki=・・・=K2n、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)
 
であるとよい。
 実施の形態C5で述べた規則的に位相変更値を切り替える位相変更方法において、周期N=2n+1を実現するための異なる位相変更値PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[n-1]、PHASE[n]において、1つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値PHASE[0]を使用するスロット数をG, 位相変更値PHASE[1]を使用するスロット数をG1、位相変更値PHASE[i]を使用するスロット数をGi(i=0,1,2,・・・,n-1,n(iは0以上n以下の整数))、 位相変更値PHASE[n] を使用するスロット数をGnとしたとき、<条件#C01>は、以下のようにあらわすことができる。
 
<条件#C02>
2×G=G=・・・=Gi=・・・=Gn、つまり、2×G=G、(for∀a、ただし、a =1,2,・・・, n-1,n(aは1以上n以下の整数))
 
 そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#C01>(<条件#C02>)が成立するとよいことになる。
 しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#C01>(<条件#C02>)を満たすことができない変調方式が存在することもある。この場合、<条件#C01>にかわり、以下の条件を満たすとよい。
 
<条件#C03>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)
 
<条件#C03>を別の表現にすると、以下の条件となる。
 
<条件#C04>
aとGbの差は0または1または2、つまり、|Ga―Gb|は0または1または2
(for∀a、∀b、ただし、a, b=1,2,・・・, n-1,n(aは1以上n以下の整数、bは1以上n以下の整数)、a≠b)
および
2×GとGの差は0または1または2、つまり、|2×G―G|は0または1または2
(for∀a、ただし、a =1,2,・・・, n-1,n(aは1以上n以下の整数))
 
 図35は、ブロック符号を用いたとき、2つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図35は、図3の送信装置および図12の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、2つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
 図35に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
 そして、図3の送信装置および図12の送信装置では、2つのストリームを同時に送信することになり、また、2つの符号化器が存在するため、2つのストリームでは、異なる符号ブロックを伝送することになる。したがって、変調方式がQPSKのとき、s1、s2により、2つの符号化ブロックが同一区間内で送信されることから、例えば、s1により第1の符号化後のブロックが送信され、s2により、第2の符号化ブロックが送信されることになるので、第1、第2の符号化後のブロックを送信するために3000スロットが必要となる。
 同様に考えると、変調方式が16QAMのとき、2つの符号化後のブロックを構成するすべてのビットを送信するために1500スロットが必要となり、変調方式が64QAMのとき、2ブロックを構成するすべてのビットを送信するために1000スロットが必要となる。
 次に、規則的に位相を変更する方法において、上述で定義したスロットと位相との関係について説明する。
 ここでは、周期5の規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図4の送信装置の位相変更部のために、周期5のための5つの位相変更値(または、位相変更セット)を用意するものとする。ただし、実施の形態C5で述べたように、異なる位相変更値は3つ存在することになる。したがって、周期5のための5つの位相変更値の中には、同一の位相変更値が存在することになる。(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。周期5のための5つの位相変更値(または、位相変更セット)をP[0], P[1], P [2], P [3], P [4]とあらわすものとする。
 変調方式がQPSKのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた3000スロットにおいて、位相変更値P[0]を使用するスロットが600スロット、位相変更値P[1]を使用するスロットが600スロット、位相変更値P[2]を使用するスロットが600スロット、位相変更値P[3]を使用するスロットが600スロット、位相変更値P[4]を使用するスロットが600スロットである必要がある。これは、使用する位相変更値にかたよりがあると、多くの数を使用した位相変更値の影響が大きいデータの受信品質となるからである。
 また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが600回、位相変更値P[1]を使用するスロットが600回、位相変更値P[2]を使用するスロットが600回、位相変更値P[3]を使用するスロットが600回、プ位相変更値P[4]を使用するスロットが600回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが600回、位相変更値P[1]を使用するスロットが600回、位相変更値P[2]を使用するスロットが600回、位相変更値P[3]を使用するスロットが600回、位相変更値P[4]を使用するスロットが600回であるとよい。
 同様に、変調方式が16QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1500スロットにおいて、位相変更値P[0]を使用するスロットが300スロット、位相変更値P[1]を使用するスロットが300スロット、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300スロット、位相変更値P[4]を使用するスロットが300スロットである必要がある。
 また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが300回、位相変更値P[1]を使用するスロットが300回、位相変更値P[2]を使用するスロットが300回、位相変更値P[3]を使用するスロットが300回、位相変更値P[4]を使用するスロットが300回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが300回、位相変更値P[1]を使用するスロットが300回、位相変更値P[2]を使用するスロットが300回、位相変更値P[3]を使用するスロットが300回、位相変更値P[4]を使用するスロットが300回であるとよい。
 同様に、変調方式が64QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1000スロットにおいて、位相変更値P[0]を使用するスロットが200スロット、位相変更値P[1]を使用するスロットが200スロット、位相変更値P[2]を使用するスロットが200スロット、位相変更値P[3]を使用するスロットが200スロット、位相変更値P[4]を使用するスロットが200スロットである必要がある。
 また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが200回、位相変更値P[1]を使用するスロットが200回、位相変更値P[2]を使用するスロットが200回、位相変更値P[3]を使用するスロットが200回、位相変更値P[4]を使用するスロットが200回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが200回、位相変更値P[1]を使用するスロットが200回、位相変更値P[2]を使用するスロットが200回、位相変更値P[3]を使用するスロットが200回、位相変更値P[4]を使用するスロットが200回であるとよい。
 以上のように、実施の形態C5で述べた規則的に位相変更値を切り替える位相変更方法において、周期N=2n+1を実現するための位相変更値P[0], P[1],・・・, P[2n-1], P[2n](ただし、P[0], P[1],・・・, P[2n-1], P[2n]は、PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[n-1]、PHASE[n]で構成されている。(実施の形態C5参照))としたとき、2つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用するスロット数をK, 位相変更値P[1]を使用するスロット数をK1、位相変更値P[i]を使用するスロット数をKi(i=0,1,2,・・・,2n-1,2n(iは0以上2n以下の整数))、位相変更値P[2n] を使用するスロット数をK2nとしたとき、
 
<条件#C05>
=K=・・・=Ki=・・・=K2n、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)
 
であり、第1の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用する回数をK0,1, 位相変更値P[1]を使用する回数をK1,1、位相変更値P[i]を使用する回数をKi,1(i=0,1,2,・・・,2n-1,2n(iは0以上2n以下の整数))、位相変更値P[2n] を使用する回数をK2n,1としたとき、
 
<条件#C06>
0,1=K1,1=・・・=Ki,1=・・・=K2n,1、つまり、Ka,1=Kb,1、(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)
 
であり、第2の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用する回数をK0,2, 位相変更値P[1]を使用する回数をK1,2、位相変更値P[i]を使用する回数をKi,2(i=0,1,2,・・・,2n-1,2n(iは0以上2n以下の整数))、位相変更値P[2n] を使用する回数をK2n,2としたとき、
 
<条件#C07>
0,2=K1,2=・・・=Ki,2=・・・=K2n,2、つまり、Ka,2=Kb,2、(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)
 
であるとよい。
 実施の形態C5で述べた規則的に位相変更値を切り替える位相変更方法において、周期N=2n+1を実現するための異なる位相変更値PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[n-1]、PHASE[n]において、2つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値PHASE[0]を使用するスロット数をG, 位相変更値PHASE[1]を使用するスロット数をG1、位相変更値PHASE[i]を使用するスロット数をGi(i=0,1,2,・・・,n-1,n(iは0以上n以下の整数))、 位相変更値PHASE[n] を使用するスロット数をGnとしたとき、<条件#C05>は、以下のようにあらわすことができる。
 
<条件#C08>
2×G=G=・・・=Gi=・・・=Gn、つまり、2×G=G、(for∀a、ただし、a =1,2,・・・, n-1,n(aは1以上n以下の整数))
 
であり、第1の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値PHASE[0]を使用する回数をG0,1, 位相変更値PHASE[1]を使用する回数をK1,1、位相変更値PHASE[i]を使用する回数をGi,1(i=0,1,2,・・・,n-1,n(iは0以上n以下の整数))、位相変更値PHASE[n] を使用する回数をGn,1としたとき、
 
<条件#C09>
2×G0,1=G1,1=・・・=Gi,1=・・・=Gn,1、つまり、2×G0,1=Ga,1、(for∀a、ただし、a =1,2,・・・, n-1,n(aは1以上n以下の整数))
 
であり、第2の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値PHASE[0]を使用する回数をG0,2, 位相変更値PHASE[1]を使用する回数をG1,2、位相変更値PHASE[i]を使用する回数をGi,2(i=0,1,2,・・・,n-1,n(iは0以上n以下の整数))、位相変更値PHASE[n]  を使用する回数をGn,2としたとき、
 
<条件#C10>
2×G0,2=G1,2=・・・=Gi,2=・・・=Gn,2、つまり、2×G0,2=Ga,2、(for∀a、ただし、a =1,2,・・・, n-1,n(aは1以上n以下の整数))
 
であるとよい。
 そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#C05><条件#C06><条件#C07>(<条件#C08><条件#C09><条件#C10>)が成立するとよいことになる。
 しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#C05><条件#C06><条件#C07>(<条件#C08><条件#C09><条件#C10>)を満たすことができない変調方式が存在することもある。この場合、<条件#C05><条件#C06><条件#C07>にかわり、以下の条件を満たすとよい。
 
<条件#C11>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n((aは0以上2n以下の整数、bは0以上2n以下の整数))、a≠b)
 
<条件#C12>
a,1とKb,1の差は0または1、つまり、|Ka,1―Kb,1|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n((aは0以上2n以下の整数、bは0以上2n以下の整数))、a≠b)
 
<条件#C13>
a,2とKb,2の差は0または1、つまり、|Ka,2―Kb,2|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)
 
<条件#C11><条件#C12><条件#C13>を別の表現にすると、以下の条件となる。
 
<条件#C14>
aとGbの差は0または1または2、つまり、|Ga―Gb|は0または1または2
(for∀a、∀b、ただし、a, b=1,2,・・・, n-1,n((aは1以上n以下の整数、bは1以上n以下の整数))、a≠b)
および
2×GとGの差は0または1または2、つまり、|2×G―G|は0または1または2
(for∀a、ただし、a =1,2,・・・, n-1,n(aは、1以上n以下の整数))
 
<条件#C15>
a,1とGb,1の差は0または1または2、つまり、|Ga,1―Gb,1|は0または1または2
(for∀a、∀b、ただし、a, b=1,2,・・・, n-1,n(aは1以上n以下の整数、bは1以上n以下の整数)、a≠b)
および
2×G0,1とGa,1の差は0または1または2、つまり、|2×G0,1―Ga,1|は0または1または2
(for∀a、ただし、a =1,2,・・・, n-1,n(aは、1以上n以下の整数))
 
<条件#C16>
a,2とGb,2の差は0または1または2、つまり、|Ga,2―Gb,2|は0または1または2
(for∀a、∀b、ただし、a, b=1,2,・・・, n-1,n(aは1以上n以下の整数、bは1以上n以下の整数)、a≠b)
および
2×G0,2とGa,2の差は0または1または2、つまり、|2×G0,2―Ga,2|は0または1または2
(for∀a、ただし、a =1,2,・・・, n-1,n(aは、1以上n以下の整数))
 
 以上のように、符号化後のブロックと位相変更値の関係付けを行うことで、符号化ブロックを伝送するために使用する位相変更値にかたよりがなくなるため、受信装置において、データの受信品質が向上するという効果を得ることができる。
 本実施の形態では、規則的に位相を変更する方法において、周期Nの位相変更方法のためには、N個の位相変更値(または、位相変更セット)が必要となる。このとき、N個の位相変更値(または、位相変更セット)として、P[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]を用意することになるが、周波数軸方向にP[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]の順に並べる方法もあるが、必ずしもこれに限ったものではなく、N個の位相変更値(または、位相変更セット)P[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]を実施の形態1と同様に、時間軸、周波数―時間軸のブロックに対し、シンボルを配置することで、位相を変更することもできる。なお、周期Nの位相変更方法として説明しているが、N個の位相変更値(または、位相変更セット)をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の位相変更値(または、位相変更セット)を用いる必要はないが、上記で説明した条件を満たすことは、受信装置において、高いデータの受信品質を得る上では、重要となる。
 また、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のモードが存在し、送信装置(放送局、基地局)は、これらのモードから、いずれかの送信方法を選択することができるようにしてもよい。
 なお、空間多重MIMO伝送方式とは、非特許文献3に示されているように、選択した変調方式でマッピングした信号s1、s2をそれぞれ異なるアンテナから送信する方法であり、プリコーディング行列が固定のMIMO伝送方式とは、プリコーディングのみを行う(位相変更を行わない)方式である。また、時空間ブロック符号化方式とは、非特許文献9、16、17に示されている伝送方式である。1ストリームのみ送信とは、選択した変調方式でマッピングした信号s1の信号を所定の処理を行いアンテナから送信する方法である。
 また、OFDMのようなマルチキャリアの伝送方式を用いており、複数のキャリアで構成された第1キャリア群、複数のキャリアで構成された第1キャリア群とは異なる第2キャリア群、・・・というように複数のキャリア群でマルチキャリア伝送を実現しており、キャリア群ごとに、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のいずれかに設定してもよく、特に、規則的に位相を変更する方法を選択した(サブ)キャリア群では、本実施の形態を実施するとよい。
 なお、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、P[i]の位相変更値を「Xラジアン」とした場合、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになる。そして、両者のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、P[i]の位相変更セットを「Xラジアン」および「Yラジアン」とした場合、図26、図27、図28、図52、図54における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになり、ejYをプリコーディング後のベースバンド信号z1’に乗算することになる。
 
(実施の形態C7)
 本実施の形態では、非特許文献12~非特許文献15に示されているように、QC(Quasi Cyclic) LDPC(Low-Density Prity-Check)符号(ただし、QC-LDPC符号でないLDPC(ブロック)符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号等のブロック符号、ターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの、実施の形態A1、実施の形態C6を一般化させた場合について説明する。ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(cyclic redundancy check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
 図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、図4の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
 図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
 そして、図4の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
 同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
 次に、規則的に位相を変更する方法において、上述で定義したスロットと位相との関係について説明する。
 ここでは、周期5の規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。周期5の規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)をP[0], P[1], P[2], P[3], P[4]とする。ただし、P[0], P[1], P[2], P[3], P[4]には、少なくとも2つ以上の異なる位相変更値が含まれていればよい(P[0], P[1], P[2], P[3], P[4]に同一の位相変更値が含まれていてもよい。)。(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。
 変調方式がQPSKのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた1500スロットにおいて、位相変更値P[0]を使用するスロットが300スロット、位相変更値P[1]を使用するスロットが300スロット、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300スロット、位相変更値P[4]を使用するスロットが300スロットである必要がある。これは、使用する位相変更値にかたよりがあると、多くの数を使用した位相変更値の影響が大きいデータの受信品質となるからである。
 同様に、変調方式が16QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた750スロットにおいて、位相変更値P[0]を使用するスロットが150スロット、位相変更値P[1]を使用するスロットが150スロット、位相変更値P[2]を使用するスロットが150スロット、位相変更値P[3]を使用するスロットが150スロット、位相変更値P[4]を使用するスロットが150スロットである必要がある。
 同様に、変調方式が64QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた500スロットにおいて、位相変更値P[0]を使用するスロットが100スロット、位相変更値P[1]を使用するスロットが100スロット、位相変更値P[2]を使用するスロットが100スロット、位相変更値P[3]を使用するスロットが100スロット、位相変更値P[4]を使用するスロットが100スロットである必要がある。
 以上のように、周期Nの規則的に位相変更値を切り替える位相変更方法における位相変更値P[0], P[1],・・・, P[N-2] , P[N-1]とあらわすものとする。ただし、P[0], P[1],・・・, P[N-2] , P[N-1]は少なくとも2つ以上の異なる位相変更値で構成されているものとする。(P[0], P[1],・・・, P[N-2] , P[N-1]に同一の位相変更値が含まれていてもよい。)1つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用するスロット数をK, 位相変更値P[1]を使用するスロット数をK1、位相変更値P[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、位相変更値P[N-1] を使用するスロット数をKN-1としたとき、
 
<条件#C17>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であるとよい。
 そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#C17>が成立するとよいことになる。
 しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#C17>を満たすことができない変調方式が存在することもある。この場合、<条件#C17>にかわり、以下の条件を満たすとよい。
 
<条件#C18>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
 図35は、ブロック符号を用いたとき、2つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図35は、図3の送信装置および図12の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、2つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
 図35に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
 そして、図3の送信装置および図12の送信装置では、2つのストリームを同時に送信することになり、また、2つの符号化器が存在するため、2つのストリームでは、異なる符号ブロックを伝送することになる。したがって、変調方式がQPSKのとき、s1、s2により、2つの符号化ブロックが同一区間内で送信されることから、例えば、s1により第1の符号化後のブロックが送信され、s2により、第2の符号化ブロックが送信されることになるので、第1、第2の符号化後のブロックを送信するために3000スロットが必要となる。
 同様に考えると、変調方式が16QAMのとき、2つの符号化後のブロックを構成するすべてのビットを送信するために1500スロットが必要となり、変調方式が64QAMのとき、2ブロックを構成するすべてのビットを送信するために1000スロットが必要となる。
 次に、規則的に位相を変更する方法において、上述で定義したスロットと位相との関係について説明する。
 ここでは、周期5の規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図4の送信装置の位相変更部のために、周期5のための5つの位相変更値(または、位相変更セット)P[0], P[1], P[2],P[3], P[4]を用意するものとする。ただし、P[0], P[1], P[2],P[3], P[4]には、少なくとも2つ以上の異なる位相変更値が含まれていればよい(P[0], P[1], P[2],P[3], P[4]に同一の位相変更値が含まれていてもよい。)。(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。周期5のための5つの位相変更値(または、位相変更セット)をP[0], P[1], P [2], P [3], P [4]とあらわすものとする。
 変調方式がQPSKのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた3000スロットにおいて、位相変更値P[0]を使用するスロットが600スロット、位相変更値P[1]を使用するスロットが600スロット、位相変更値P[2]を使用するスロットが600スロット、位相変更値P[3]を使用するスロットが600スロット、位相変更値P[4]を使用するスロットが600スロットである必要がある。これは、使用する位相変更値にかたよりがあると、多くの数を使用した位相変更値の影響が大きいデータの受信品質となるからである。
 また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが600回、位相変更値P[1]を使用するスロットが600回、位相変更値P[2]を使用するスロットが600スロット、位相変更値P[3]を使用するスロットが600回、プ位相変更値P[4]を使用するスロットが600回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが600回、位相変更値P[1]を使用するスロットが600回、位相変更値P[2]を使用するスロットが600スロット、位相変更値P[3]を使用するスロットが600回、位相変更値P[4]を使用するスロットが600回であるとよい。
 同様に、変調方式が16QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1500スロットにおいて、位相変更値P[0]を使用するスロットが300スロット、位相変更値P[1]を使用するスロットが300スロット、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300スロット、位相変更値P[4]を使用するスロットが300スロットである必要がある。
 また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが300回、位相変更値P[1]を使用するスロットが300回、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300回、位相変更値P[4]を使用するスロットが300回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが300回、位相変更値P[1]を使用するスロットが300回、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300回、位相変更値P[4]を使用するスロットが300回であるとよい。
 同様に、変調方式が64QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1000スロットにおいて、位相変更値P[0]を使用するスロットが200スロット、位相変更値P[1]を使用するスロットが200スロット、位相変更値P[2]を使用するスロットが200スロット、位相変更値P[3]を使用するスロットが200スロット、位相変更値P[4]を使用するスロットが200スロットである必要がある。
 また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが200回、位相変更値P[1]を使用するスロットが200回、位相変更値P[2]を使用するスロットが200スロット、位相変更値P[3]を使用するスロットが200回、位相変更値P[4]を使用するスロットが200回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが200回、位相変更値P[1]を使用するスロットが200回、位相変更値P[2]を使用するスロットが200スロット、位相変更値P[3]を使用するスロットが200回、位相変更値P[4]を使用するスロットが200回であるとよい。
 以上のように、周期Nの規則的に位相変更値を切り替える位相変更方法における位相変更値をP[0], P[1], P[2],・・・, P[N-2] , P[N-1]とあらわすものとする。ただし、P[0], P[1], P[2],・・・, P[N-2] , P[N-1]は少なくとも2つ以上の異なる位相変更値で構成されているものとする。(P[0], P[1], P[2],・・・, P[N-2] , P[N-1]に同一の位相変更値が含まれていてもよい。)2つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用するスロット数をK, 位相変更値P[1]を使用するスロット数をK1、位相変更値P[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、位相変更値P[N-1] を使用するスロット数をKN-1としたとき、
 
<条件#C19>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であり、第1の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用する回数をK0,1, 位相変更値P[1]を使用する回数をK1,1、位相変更値P[i]を使用する回数をKi,1(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、位相変更値P[N-1] を使用する回数をKN-1,1としたとき、
 
<条件#C20>
0,1=K1,1=・・・=Ki,1=・・・=KN-1,1、つまり、Ka,1=Kb,1、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であり、第2の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用する回数をK0,2, 位相変更値P[1]を使用する回数をK1,2、位相変更値P[i]を使用する回数をKi,2(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、位相変更値P[N-1] を使用する回数をKN-1,2としたとき、
 
<条件#C21>
0,2=K1,2=・・・=Ki,2=・・・=KN-1,2、つまり、Ka,2=Kb,2、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であるとよい。
 そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#C19><条件#C20><条件#C21>が成立するとよいことになる。
 しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#C19><条件#C20><条件#C21>を満たすことができない変調方式が存在することもある。この場合、<条件#C19><条件#C20><条件#C21>にかわり、以下の条件を満たすとよい。
 
<条件#C22>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
<条件#C23>
a,1とKb,1の差は0または1、つまり、|Ka,1―Kb,1|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
<条件#C24>
a,2とKb,2の差は0または1、つまり、|Ka,2―Kb,2|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
 以上のように、符号化後のブロックと位相変更値の関係付けを行うことで、符号化ブロックを伝送するために使用する位相変更値にかたよりがなくなるため、受信装置において、データの受信品質が向上するという効果を得ることができる。
 本実施の形態では、規則的に位相を変更する方法において、周期Nの位相変更方法のためには、N個の位相変更値(または、位相変更セット)が必要となる。このとき、N個の位相変更値(または、位相変更セット)として、P[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]を用意することになるが、周波数軸方向にP[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]の順に並べる方法もあるが、必ずしもこれに限ったものではなく、N個の位相変更値(または、位相変更セット)P[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]を実施の形態1と同様に、時間軸、周波数―時間軸のブロックに対し、シンボルを配置することで、位相を変更することもできる。なお、周期Nの位相変更方法として説明しているが、N個の位相変更値(または、位相変更セット)をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の位相変更値(または、位相変更セット)を用いる必要はないが、上記で説明した条件を満たすことは、受信装置において、高いデータの受信品質を得る上では、重要となる。
 また、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のモードが存在し、送信装置(放送局、基地局)は、これらのモードから、いずれかの送信方法を選択することができるようにしてもよい。
 なお、空間多重MIMO伝送方式とは、非特許文献3に示されているように、選択した変調方式でマッピングした信号s1、s2をそれぞれ異なるアンテナから送信する方法であり、プリコーディング行列が固定のMIMO伝送方式とは、プリコーディングのみを行う(位相変更を行わない)方式である。また、時空間ブロック符号化方式とは、非特許文献9、16、17に示されている伝送方式である。1ストリームのみ送信とは、選択した変調方式でマッピングした信号s1の信号を所定の処理を行いアンテナから送信する方法である。
 また、OFDMのようなマルチキャリアの伝送方式を用いており、複数のキャリアで構成された第1キャリア群、複数のキャリアで構成された第1キャリア群とは異なる第2キャリア群、・・・というように複数のキャリア群でマルチキャリア伝送を実現しており、キャリア群ごとに、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のいずれかに設定してもよく、特に、規則的に位相を変更する方法を選択した(サブ)キャリア群では、本実施の形態を実施するとよい。
 なお、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、P[i]の位相変更値を「Xラジアン」とした場合、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになる。そして、両者のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、P[i]の位相変更セットを「Xラジアン」および「Yラジアン」とした場合、図26、図27、図28、図52、図54における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになり、ejYをプリコーディング後のベースバンド信号z1’に乗算することになる。
 
(実施の形態D1)
 本実施の形態では、まず、実施の形態1の変形例について説明する。図67は、本実施の形態における送信装置の構成の一例であり、図3と同様に動作するものについては、同一符号を付しており、また、以降では、図3での説明と同様に動作素部部分については、説明を省略する。そして、図67が図3と異なる点は、重み付け合成部の直後にベースバンド信号入れ替え部6702が挿入されている部分である。したがって、以降では、ベースバンド信号入れ替え部6702周辺の動作の動作を中心に説明を行う。
 図21に重み付け合成部(308A、308B)の構成を示す。図21において点線で囲まれる領域が重み付け合成部となる。ベースバンド信号307Aは、w11と乗算し、w11・s1(t)を生成し、w21と乗算し、w21・s1(t)を生成する。同様に、ベースバンド信号307Bは、w12と乗算し、w12・s2(t)を生成し、w22と乗算し、w22・s2(t)を生成する。次に、z1(t)=w11・s1(t)+w12・s2(t)、z2(t)=w21・s1(t)+w22・s2(t)を得る。このとき、s1(t)およびs2(t)は、実施の形態1の説明からわかるように、BPSK(Binary Phase Shift Keying)、QPSK、8PSK(8 Phase Shift Keying)、16QAM、32QAM(32  Quadrature Amplitude Modulation)、64QAM、256QAM、16APSK(16 Amplitude Phase Shift Keying)等の変調方式のベースバンド信号となる。ここで、両重み付け合成部は、固定のプリコーディング行列を用いて重み付けを実行するものとし、プリコーディング行列としては、一例として、下記、式(63)又は式(64)の条件のもと、式(62)を用いる方法がある。ただし、これは一例であり、αの値は、式(63)、式(64)に限ったものではなく、別の値、例えば、αを1、としてもよいし、αは0であってもよい(αは0以上の実数であってよいし、αは虚数でもよい。)。
 なお、プリコーディング行列は、
Figure JPOXMLDOC01-appb-M000062
 但し、上記式(62)において、αは、
Figure JPOXMLDOC01-appb-M000063
である。
 あるいは、上記式(62)において、αは、
Figure JPOXMLDOC01-appb-M000064
である。
 また、プリコーディング行列は、式(62)に限ったものではなく、
Figure JPOXMLDOC01-appb-M000065
 a=Aejδ11、b=Bejδ12、c=Cejδ21、d=Dejδ22であらわされればよい。また、a、b、c、dのいずれか一つが「ゼロ」であってもよい。例えば、(1)aがゼロであり、b、c、dはゼロでない、(2)bがゼロであり、a、c、dはゼロでない、(3)cがゼロであり、a、b、dはゼロでない、(4)dがゼロであり、a、b、cはゼロでない、であってもよい。
 また、a、b、c、dのうち、2つの値をゼロとしてもよい。例えば、(1)aおよびdがゼロであり、b、cはゼロでない、(2)bおよびcがゼロであり、a、dはゼロでないという方法が有効である。
 なお、変調方式、誤り訂正符号、その符号化率のいずれかを変更したときは、使用するプリコーディング行列を設定、変更し、そのプリコーディング行列を固定的に使用してもよい。
 次に、図67における、ベースバンド信号入れ替え部6702について説明する。ベースバンド信号入れ替え部6702は、重み付け合成後の信号309Aおよび重み付け合成後の信号316Bを入力とし、ベースバンド信号入れ替えを行い、入れ替え後ベースバンド信号6701A、および、入れ替え後ベースバンド信号6701Bを出力する。なお、ベースバンド信号の入れ替えの詳細については、図55を用いて説明したとおりである。本実施の形態のベースバンド信号の入れ替えは、ベースバンド信号の入れ替えするための信号が図55と異なる。以下では、本実施の形態のベースバンド信号の入れ替えについて、図68を用いて説明する。
 図68において、重み付け合成後の信号309A(p1(i))の同相I成分Ip1(i)、直交Q成分をQp1(i)とあらわし、重み付け合成後の信号316B(p2(i))の同相I成分Ip2(i)、直交Q成分をQp2(i)とあらわす。そして、入れ替え後ベースバンド信号6701A(q1(i))の同相I成分Iq1(i)、直交Q成分をQq1(i)とあらわし、入れ替え後ベースバンド信号6701B(q2(i))の同相I成分Iq2(i)、直交Q成分をQq2(i)とあらわす。(ただし、iは、(時間、または、周波数(キャリア)の)順番をあらわす。図67の例では、iは時間となるが、図67を図12のようにOFDM方式を用いている場合に適用した場合、iは周波数(キャリア)であってもよい。後に、この点について説明する。)
 このとき、ベースバンド信号入れ替え部6702は、ベースバンド成分の入れ替えを行い、
 
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i)、直交成分をQp2(i)、入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i)、直交成分をQp1(i)
 
とし、入れ替え後のベースバンド信号q1(i)に相当する変調信号を送信アンテナ1、入れ替え後のベースバンド信号q2(i)に相当する変調信号を送信アンテナ2から、同一時刻に同一周波数を用いて送信する、というように、入れ替え後のベースバンド信号q1(i)に相当する変調信号と入れ替え後のベースバンド信号q2(i)を異なるアンテナから、同一時刻に同一周波数を用いて送信するとしてもよい。また、
 
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i)、直交成分をIp2(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i)、直交成分をQp2(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i)、直交成分をQp2(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i)、直交成分をIp2(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i)、直交成分をQp2(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i)、直交成分をIp2(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i)、直交成分をIp2(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i)、直交成分をIp2(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i)、直交成分をQp2(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i)、直交成分をQp2(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i)、直交成分をIp2(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i)、直交成分をQp2(i)、入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i)、直交成分をQp2(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i)、直交成分をIp2(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i)、直交成分をIp2(i)
 
としてもよい。また、上述では、重み付け合成後の信号309Aおよび重み付け合成後の信号316Bの同相成分と直交成分の入れ替えについて説明したが、これに限ったものではなく、2つの信号より多い信号同相成分と直交成分の入れ替えを行うことも可能である。
 また、上記の例では、同一時刻(同一周波数((サブ)キャリア))のベースバンド信号の入れ替えを説明しているが、同一時刻(同一周波数((サブ)キャリア))のベースバンド信号の入れ替えでなくてもよい。例として、以下のように記述することができる。
 
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i+v)、直交成分をQp2(i+w)、入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i+v)、直交成分をIp2(i+w)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i+v)、直交成分をQp2(i+w)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i+v)、直交成分をQp2(i+w)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i+v)、直交成分をIp2(i+w)、入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i+v)、直交成分をQp2(i+w)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i+v)、直交成分をIp2(i+w)
・入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i+v)、直交成分をIp2(i+w)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i+v)、直交成分をIp2(i+w)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i+v)、直交成分をQp2(i+w)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i+v)、直交成分をQp2(i+w)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i+v)、直交成分をIp2(i+w)、入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i+v)、直交成分をQp2(i+w)、入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i+v)、直交成分をQp2(i+w)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i+v)、直交成分をIp2(i+w)
・入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i+v)、直交成分をIp2(i+w)
 
 重み付け合成後の信号309A(p1(i))の同相I成分Ip1(i)、直交Q成分をQp1(i)とあらわし、重み付け合成後の信号316B(p2(i))の同相I成分Ip2(i)、直交Q成分をQp2(i)とあらわす。そして、入れ替え後ベースバンド信号6701A(q1(i))の同相I成分Iq1(i)、直交Q成分をQq1(i)とあらわし、入れ替え後ベースバンド信号6701B(q2(i))の同相I成分Iq2(i)、直交Q成分をQq2(i)とあらわす。
 図68は、上記の記載を説明するための図であり、前述に記載したとおり、重み付け合成後の信号309A(p1(i))の同相I成分Ip1(i)、直交Q成分をQp1(i)とあらわし、重み付け合成後の信号316B(p2(i))の同相I成分Ip2(i)、直交Q成分をQp2(i)とあらわす。そして、入れ替え後ベースバンド信号6701A(q1(i))の同相I成分Iq1(i)、直交Q成分をQq1(i)とあらわし、入れ替え後ベースバンド信号6701B(q2(i))の同相I成分Iq2(i)、直交Q成分をQq2(i)とあらわす。
 すると、入れ替え後ベースバンド信号6701A(q1(i))の同相I成分Iq1(i)、直交Q成分をQq1(i)、および、入れ替え後ベースバンド信号6701B(q2(i))の同相I成分Iq2(i)、直交Q成分をQq2(i)上述で説明したいずれかであらわされるものとする。
 そして、入れ替え後ベースバンド信号6701A(q1(i))に相当する変調信号を送信アンテナ312A、入れ替え後ベースバンド信号6701B(q2(i))に相当する変調信号を送信アンテナ312Bから、同一時刻に同一周波数を用いて送信する、というように、入れ替え後ベースバンド信号6701A(q1(i))に相当する変調信号と入れ替え後ベースバンド信号6701B(q2(i))相当する変調信号を異なるアンテナから、同一時刻に同一周波数を用いて送信することになる。
 位相変更部317Bは、入れ替え後ベースバンド信号6701B及び信号処理方法に関する情報315を入力とし、当該信号入れ替え後ベースバンド信号6701Bの位相を規則的に変更して出力する。規則的に変更するとは、予め定められた周期(例えば、n個のシンボル毎(nは1以上の整数)あるいは予め定められた時間毎)で、予め定められた位相変更パターンに従って位相を変更する。位相変更パターンの詳細については、実施の形態4において説明したとおりである。
 無線部310Bは、位相変更後の信号309Bを入力とし、直交変調、帯域制限、周波数変換、増幅等の処理を施し、送信信号311Bを出力し、送信信号311Bは、アンテナ312Bから電波として出力される。
 なお、図67は、図3のように、符号化器が複数ある場合で説明したが、図67に対し、図4のように符号化器と分配部を具備し、分配部が出力する信号をそれぞれ、インタリーバの入力信号とするようにし、それ以降は、図67の構成を踏襲する場合についても、上述と同様に動作させることができる。
 図5は、本実施の形態における送信装置の時間軸におけるフレーム構成の一例を示している。シンボル500_1は、受信装置に、送信方法を通知するためのシンボルであり、例えば、データシンボルを伝送するために用いる誤り訂正方式、その符号化率の情報、データシンボルを伝送するために用いる変調方式の情報等を伝送する。
 シンボル501_1は、送信装置が送信する変調信号z1(t){ただし、tは時間}のチャネル変動を推定するためのシンボルである。シンボル502_1は変調信号z1(t)が(時間軸における)シンボル番号uに送信するデータシンボル、シンボル503_1は変調信号z1(t)がシンボル番号u+1に送信するデータシンボルである。
 シンボル501_2は、送信装置が送信する変調信号z2(t){ただし、tは時間}のチャネル変動を推定するためのシンボルである。シンボル502_2は変調信号z2(t)がシンボル番号uに送信するデータシンボル、シンボル503_2は変調信号z2(t)がシンボル番号u+1に送信するデータシンボルである。
 このとき、z1(t)におけるシンボルとz2(t)におけるシンボルにおいて、同一時刻(同一時間)のシンボルは、同一(共通)の周波数を用いて、送信アンテナから送信されることになる。
 送信装置が送信する変調信号z1(t)と変調信号z2(t)、及び、受信装置における受信信号r1(t)、r2(t)の関係について説明する。
 図5において、504#1、504#2は送信装置における送信アンテナ、505#1、505#2は受信装置における受信アンテナを示しており、送信装置は、変調信号z1(t)を送信アンテナ504#1、変調信号z2(t)を送信アンテナ504#2から送信する。このとき、変調信号z1(t)および変調信号z2(t)は、同一(共通の)周波数(帯域)を占有しているものとする。送信装置の各送信アンテナと受信装置の各アンテナのチャネル変動をそれぞれh11(t)、h12(t)、h21(t)、h22(t)とし、受信装置の受信アンテナ505#1が受信した受信信号をr1(t)、受信装置の受信アンテナ505#2が受信した受信信号をr2(t)とすると、以下の関係式が成立する。
Figure JPOXMLDOC01-appb-M000066
 図69は、本実施の形態における重み付け方法(プリコーディング(Precoding)方法)、ベースバンド信号の入れ替え及び位相変更方法に関連する図であり、重み付け合成部600は、図67の重み付け合成部308Aと308Bの両者を統合した重み付け合成部である。図69に示すように、ストリームs1(t)およびストリームs2(t)は、図3のベースバンド信号307Aおよび307Bに相当する、つまり、QPSK、16QAM、64QAMなどの変調方式のマッピングにしたがったベースバンド信号の同相I成分、直交Q成分となる。そして、図69のフレーム構成のようにストリームs1(t)は、シンボル番号uの信号をs1(u)、シンボル番号u+1の信号をs1(u+1)、・・・とあらわす。同様に、ストリームs2(t)は、シンボル番号uの信号をs2(u)、シンボル番号u+1の信号をs2(u+1)、・・・とあらわす。そして、重み付け合成部600は、図67におけるベースバンド信号307A(s1(t))および307B(s2(t))、信号処理方法に関する情報315を入力とし、信号処理方法に関する情報315にしたがった重み付けを施し、図67の重み付け合成後の信号309A(p1(t))、316B(p2(t))を出力する。
 このとき、p1(t)は、固定のプリコーディング行列Fにおける第1行のベクトルをW1=(w11,w12)とすると、以下の式(67)であらわすことができる。
Figure JPOXMLDOC01-appb-M000067
 一方、p2(t)は、プリコーディング行列Fにおける第2行のベクトルをW2=(w21,w22)とすると、以下の式(68)であらわすことができる。
Figure JPOXMLDOC01-appb-M000068
 したがって、プリコーディング行列Fは、次式であらわすことができる。
Figure JPOXMLDOC01-appb-M000069
 ベースバンド信号の入れ替えを行った後の、入れ替え後ベースバンド信号6701A(q1(i))の同相I成分Iq1(i)、直交Q成分をQq1(i)、および、入れ替え後ベースバンド信号6701B(q2(i))の同相I成分Iq2(i)、直交Q成分をQq2(i)と、p1(t)およびp2(t)の関係は、上述説明したとおりである。そして、位相変更部による位相変更式をy(t)とすると、位相変更後のベースバンド信号309B(q2’(i))は、以下の式(70)であらわすことができる。
Figure JPOXMLDOC01-appb-M000070
 ここで、y(t)は、予め定められた方式に従って、位相を変更するための式であり、例えば、周期を4とすると、時刻uの位相変更式は、例えば、式(71)であらわすことができる。
Figure JPOXMLDOC01-appb-M000071
 同様に時刻u+1の位相変更式は、例えば、式(72)であらわすことができる。
Figure JPOXMLDOC01-appb-M000072
 即ち、時刻u+kの位相変更式は、式(73)であらわすことができる。
Figure JPOXMLDOC01-appb-M000073
 なお、式(71)~(73)に示した規則的な位相変更例は一例に過ぎない。
 規則的な位相変更の周期は4に限ったものではない。この周期の数が多くなればその分だけ、受信装置の受信性能(より正確には誤り訂正性能)の向上を促すことができる可能性がある(周期が大きければよいというわけではないが、2のような小さい値は避ける方がよい可能性が高い。)。
 また、上記式(71)~(73)で示した位相変更例では逐次所定の位相(上記式では、π/2ずつ)だけ回転させていく構成を示したが、同じ位相量だけ回転させるのではなくランダムに位相を変更することとしてもよい。例えば、y(t)は予め定められた周期に従って、式(74)や式(75)に示すような順に乗じる位相が変更されてもよい。位相の規則的な変更において重要となるのは、変調信号の位相が規則的に変更されることであり、変更される位相の度合いについては、なるべく均等になる、例えば、-πラジアンからπラジアンに対し、一様分布となるのが望ましいもののランダムであってもよい。
Figure JPOXMLDOC01-appb-M000074
Figure JPOXMLDOC01-appb-M000075
 このように、図6の重み付け合成部600は、予め定められた固定のプリコーディングウェイトを用いてプリコーディングを実行し、ベースバンド信号入れ替え部は、上述のベースバンド信号の入れ替えを行い、位相変更部は、入力された信号の位相を、その変更度合いを規則的に変えながら、変更する。
 LOS環境では、特殊なプリコーディング行列を用いると、受信品質が大きく改善する可能性があるが、直接波の状況により、その特殊なプリコーディング行列は受信した際の直接波の位相、振幅成分により異なる。しかし、LOS環境には、ある規則があり、この規則に従い送信信号の位相を規則的に変更すれば、データの受信品質が大きく改善する。本発明は、LOS環境を改善する信号処理方法を提案している。
 図7は、本実施の形態における受信装置700の構成の一例を示している。無線部703_Xは、アンテナ701_Xで受信された受信信号702_Xを入力とし、周波数変換、直交復調等の処理を施し、ベースバンド信号704_Xを出力する。
 送信装置で送信された変調信号z1におけるチャネル変動推定部705_1は、ベースバンド信号704_Xを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(66)のh11に相当する値を推定し、チャネル推定信号706_1を出力する。
 送信装置で送信された変調信号z2におけるチャネル変動推定部705_2は、ベースバンド信号704_Xを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_2を抽出し、式(66)のh12に相当する値を推定し、チャネル推定信号706_2を出力する。
 無線部703_Yは、アンテナ701_Yで受信された受信信号702_Yを入力とし、周波数変換、直交復調等の処理を施し、ベースバンド信号704_Yを出力する。
 送信装置で送信された変調信号z1におけるチャネル変動推定部707_1は、ベースバンド信号704_Yを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(66)のh21に相当する値を推定し、チャネル推定信号708_1を出力する。
 送信装置で送信された変調信号z2におけるチャネル変動推定部707_2は、ベースバンド信号704_Yを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_2を抽出し、式(66)のh22に相当する値を推定し、チャネル推定信号708_2を出力する。
 制御情報復号部709は、ベースバンド信号704_Xおよび704_Yを入力とし、図5の送信方法を通知するためのシンボル500_1を検出し、送信装置が通知した送信方法の情報に関する信号710を出力する。
 信号処理部711は、ベースバンド信号704_X、704_Y、チャネル推定信号706_1、706_2、708_1、708_2、及び、送信装置が通知した送信方法の情報に関する信号710を入力とし、検波、復号を行い、受信データ712_1および712_2を出力する。
 次に、図7の信号処理部711の動作について詳しく説明する。図8は、本実施の形態における信号処理部711の構成の一例を示している。図8は、主にINNER MIMO検波部とsoft-in/soft-outデコーダ、係数生成部から構成されている。この構成における反復復号の方法については、非特許文献2、非特許文献3で詳細が述べられているが、非特許文献2、非特許文献3に記載されているMIMO伝送方式は空間多重MIMO伝送方式であるが、本実施の形態における伝送方式は、時間とともに信号の位相を規則的に変更し、かつ、プリコーディング行列が使用、また、ベースバンド信号の入れ替えを行っているMIMO伝送方式である点が、非特許文献2、非特許文献3と異なる点である。式(66)における(チャネル)行列をH(t)、図69におけるプリコーディングウェイト行列をF(ここでプリコーディング行列は1の受信信号中においては変更されない固定のものである)、図69の位相変更部による位相変更式の行列をY(t)(ここでY(t)はtによって変化する)、ベースバンド信号の入れ替えから、受信ベクトルをR(t)=(r1(t),r2(t))、とストリームベクトルS(t)=(s1(t),s2(t))の関係を導き、受信ベクトルをR(t)に対して非特許文献2、非特許文献3の復号方法を適用することができる、MIMO検波を行うことができる。
 したがって、図8の係数生成部819は、送信装置が通知した送信方法の情報(用いた固定のプリコーディング行列及び位相を変更していた場合の位相変更パターンを特定するための情報)に関する信号818(図7の710に相当)を入力とし、信号処理方法の情報に関する信号820を出力する。
 INNER MIMO検波部803は、信号処理方法の情報に関する信号820を入力とし、この信号を利用して、反復検波・復号を行うことになるがその動作について説明する。
 図8に示す構成の信号処理部では、反復復号(反復検波)を行うため図10に示すような処理方法を行う必要がある。初めに、変調信号(ストリーム)s1の1符号語(または、1フレーム)、および、変調信号(ストリーム)s2の1符号語(または、1フレーム)の復号を行う。その結果、soft-in/soft-outデコーダから、変調信号(ストリーム)s1の1符号語(または、1フレーム)、および、変調信号(ストリーム)s2の1符号語(または、1フレーム)の各ビットの対数尤度比(LLR:Log-Likelihood Ratio)が得られる。そして、そのLLRを用いて再度、検波・復号が行われる。この操作が複数回行われる(この操作を反復復号(反復検波)と呼ぶ。)。以降では、1フレームにおける特定の時間のシンボルの対数尤度比(LLR)の作成方法を中心に説明する。
 図8において、記憶部815は、ベースバンド信号801X(図7のベースバンド信号704_Xに相当する。)、チャネル推定信号群802X(図7のチャネル推定信号706_1、706_2に相当する。)、ベースバンド信号801Y(図7のベースバンド信号704_Yに相当する。)、チャネル推定信号群802Y(図7のチャネル推定信号708_1、708_2に相当する。)を入力とし、反復復号(反復検波)を実現するために、算出した行列を変形チャネル信号群として記憶する。そして、記憶部815は、必要なときに上記信号を、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Yとして出力する。
 その後の動作については、初期検波の場合と反復復号(反復検波)の場合を分けて説明する。
 <初期検波の場合>
 INNER MIMO検波部803は、ベースバンド信号801X、チャネル推定信号群802X、ベースバンド信号801Y、チャネル推定信号群802Yを入力とする。ここでは、変調信号(ストリーム)s1、変調信号(ストリーム)s2の変調方式が16QAMとして説明する。
 INNER MIMO検波部803は、まず、チャネル推定信号群802X、チャネル推定信号群802Yからベースバンド信号801Xに対応する候補信号点を求める。そのときの様子を図11に示す。図11において、●(黒丸)は、IQ平面における候補信号点であり、変調方式が16QAMのため、候補信号点は256個存在する。(ただし、図11では、イメージ図を示しているため、256個の候補信号点全ては示していない。)ここで、変調信号s1で伝送する4ビットをb0、b1、b2、b3、変調信号s2で伝送する4ビットをb4、b5、b6、b7とすると、図11において(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点が存在することになる。そして、受信信号点1101(ベースバンド信号801Xに相当する。)と候補信号点それぞれとの2乗ユークリッド距離を求める。そして、それぞれの2乗ユークリッド距離をノイズの分散σで除算する。したがって、(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点と受信信号点2乗ユークリッド距離をノイズの分散で除算した値をE(b0,b1,b2,b3,b4,b5,b6,b7)が求まることになる。なお、各ベースバンド信号、変調信号s1、s2は、複素信号である。
 同様に、チャネル推定信号群802X、チャネル推定信号群802Yから、ベースバンド信号801Yに対応する候補信号点をもとめ、受信信号点(ベースバンド信号801Yに相当する。)との2乗ユークリッド距離を求め、この2乗ユークリッド距離をノイズの分散σで除算する。したがって、(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点と受信信号点2乗ユークリッド距離をノイズの分散で除算した値をE(b0,b1,b2,b3,b4,b5,b6,b7)が求まることになる。
 そして、E(b0,b1,b2,b3,b4,b5,b6,b7)+E(b0,b1,b2,b3,b4,b5,b6,b7)=E(b0,b1,b2,b3,b4,b5,b6,b7)を求める。
 INNER MIMO検波部803は、E(b0,b1,b2,b3,b4,b5,b6,b7)を信号804として出力する。
 対数尤度算出部805Aは、信号804を入力とし、ビットb0およびb1およびb2およびb3の対数尤度(log likelihood)を算出し、対数尤度信号806Aを出力する。ただし、対数尤度の算出では、“1”のときの対数尤度および“0”のときの対数尤度が算出される。その算出方法は、式(28)、式(29)、式(30)に示した通りであり、詳細については、非特許文献2、非特許文献3に示されている。
 同様に、対数尤度算出部805Bは、信号804を入力とし、ビットb4およびb5およびb6およびb7の対数尤度を算出し、対数尤度信号806Bを出力する。
 デインタリーバ(807A)は、対数尤度信号806Aを入力とし、インタリーバ(図67のインタリーバ(304A))に対応するデインタリーブを行い、デインタリーブ後の対数尤度信号808Aを出力する。
 同様に、デインタリーバ(807B)は、対数尤度信号806Bを入力とし、インタリーバ(図67のインタリーバ(304B))に対応するデインタリーブを行い、デインタリーブ後の対数尤度信号808Bを出力する。
 対数尤度比算出部809Aは、デインタリーブ後の対数尤度信号808Aを入力とし、図67の符号化器302Aで符号化されたビットの対数尤度比(LLR:Log-Likelihood Ratio)を算出し、対数尤度比信号810Aを出力する。
 同様に、対数尤度比算出部809Bは、デインタリーブ後の対数尤度信号808Bを入力とし、図67の符号化器302Bで符号化されたビットの対数尤度比(LLR:Log-Likelihood Ratio)を算出し、対数尤度比信号810Bを出力する。
 Soft-in/soft-outデコーダ811Aは、対数尤度比信号810Aを入力とし、復号を行い、復号後の対数尤度比812Aを出力する。
 同様に、Soft-in/soft-outデコーダ811Bは、対数尤度比信号810Bを入力とし、復号を行い、復号後の対数尤度比812Bを出力する。
 <反復復号(反復検波)の場合、反復回数k>
 インタリーバ(813A)は、k-1回目のsoft-in/soft-outデコードで得られた復号後の対数尤度比812Aを入力とし、インタリーブを行い、インタリーブ後の対数尤度比814Aを出力する。このとき、インタリーブ(813A)のインタリーブのパターンは、図67のインタリーバ(304A)のインタリーブパターンと同様である。
 インタリーバ(813B)は、k-1回目のsoft-in/soft-outデコードで得られた復号後の対数尤度比812Bを入力とし、インタリーブを行い、インタリーブ後の対数尤度比814Bを出力する。このとき、インタリーブ(813B)のインタリーブのパターンは、図67のインタリーバ(304B)のインタリーブパターンと同様である。
 INNER MIMO検波部803は、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Y、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bを入力とする。ここで、ベースバンド信号801X、チャネル推定信号群802X、ベースバンド信号801Y、チャネル推定信号群802Yではなく、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Yを用いているのは、反復復号のため、遅延時間が発生しているためである。
 INNER MIMO検波部803の反復復号時の動作と、初期検波時の動作の異なる点は、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bを信号処理の際に用いていることである。INNER MIMO検波部803は、まず、初期検波のときと同様に、E(b0,b1,b2,b3,b4,b5,b6,b7)を求める。加えて、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比914Bから、式(11)、式(32)に相当する係数を求める。そして、E(b0,b1,b2,b3,b4,b5,b6,b7)の値をこの求めた係数を用いて補正し、その値をE’(b0,b1,b2,b3,b4,b5,b6,b7)とし、信号804として出力する。
 対数尤度算出部805Aは、信号804を入力とし、ビットb0およびb1およびb2およびb3の対数尤度(log likelihood)を算出し、対数尤度信号806Aを出力する。ただし、対数尤度の算出では、“1”のときの対数尤度および“0”のときの対数尤度が算出される。その算出方法は、式(31)、式(数32)、式(33)、式(34)、式(35)に示したとおりであり、非特許文献2、非特許文献3に示されている。
 同様に、対数尤度算出部805Bは、信号804を入力とし、ビットb4およびb5およびb6およびb7の対数尤度を算出し、対数尤度信号806Bを出力する。デインタリーバ以降の動作は、初期検波と同様である。
 なお、図8では、反復検波を行う場合の、信号処理部の構成について示したが、反復検波は必ずしも良好な受信品質を得る上で必須の構成ではなく、反復検波のみに必要とする構成部分、インタリーバ813A、813Bを有していない構成でもよい。このとき、INNER MIMO検波部803は、反復的な検波を行わないことになる。
 なお、非特許文献5等に示されているように、QR分解を用いて初期検波、反復検波を行ってもよい。また、非特許文献11に示されているように、MMSE(Minimum Mean Square Error)、ZF(Zero Forcing)の線形演算を行い、初期検波を行ってもよい。
 図9は、図8と異なる信号処理部の構成であり、図67に対し、図4の符号化器、分配部を適用した送信装置が送信した変調信号のための信号処理部である。図8と異なる点は、soft-in/soft-outデコーダの数であり、soft-in/soft-outデコーダ901は、対数尤度比信号810A、810Bを入力とし、復号を行い、復号後の対数尤度比902を出力する。分配部903は、復号後の対数尤度比902を入力とし、分配を行う。それ以外の部分については、図8と同様の動作となる。
 以上のように、本実施の形態のように、MIMO伝送システムの送信装置が複数アンテナから複数の変調信号を送信する際、プリコーディング行列を乗算するとともに、時間とともに位相を変更するし、当該位相の変更を規則的に行うことで、直接波が支配的なLOS環境において、従来の空間多重MIMO伝送を用いるときと比べ、受信装置におけるデータの受信品質が向上するという効果を得ることができる。
 本実施の形態において、特に、受信装置の構成については、アンテナ数を限定して、動作を説明したが、アンテナ数が増えても、同様に実施することができる。つまり、受信装置におけるアンテナ数は、本実施の形態の動作、効果に影響を与えるものではない。
 また、本実施の形態では、符号化として、特にLDPC符号に限ったものではなく、また、復号方法についても、soft-in/soft-outデコーダとして、sum-product復号を例に限ったものではなく、他のsoft-in/soft-outの復号方法、例えば、BCJRアルゴリズム、SOVAアルゴリズム、Max-log-MAPアルゴリズムなどがある。詳細については、非特許文献6に示されている。
 また、上述では、シングルキャリア方式を例に説明したが、これに限ったものではなく、マルチキャリア伝送を行った場合でも同様に実施することができる。したがって、例えば、スペクトル拡散通信方式、OFDM方式、SC-FDMA、SC-OFDM方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても同様に実施することができる。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報の伝送用のシンボルなどが、フレームにどのように配置されていてもよい。
 次に、マルチキャリア方式の一例として、OFDM方式を用いたときの例を説明する。
 図70は、OFDM方式を用いたときの送信装置の構成を示している。図70において、図3、図12、図67と同様に動作するものについては、同一符号を付した。
 OFDM方式関連処理部1201Aは、重み付け後の信号309Aを入力とし、OFDM方式関連の処理を施し、送信信号1202Aを出力する。同様に、OFDM方式関連処理部1201Bは、位相変更後の信号309Bを入力とし、送信信号1202Bを出力する。
 図13は、図70のOFDM方式関連処理部1201A、1201B以降の構成の一例を示しており、図70の1201Aから312Aに関連する部分が、1301Aから1310Aであり、1201Bから312Bに関連する部分が1301Bから1310Bである。
 シリアルパラレル変換部1302Aは、入れ替え後のベースバンド信号1301A(図70の入れ替え後のベースバンド信号6701Aに相当する)シリアルパラレル変換を行い、パラレル信号1303Aを出力する。
 並び換え部1304Aは、パラレル信号1303Aを入力とし、並び換えを行い、並び換え後の信号1305Aを出力する。なお、並び換えについては、後で詳しく述べる。
 逆高速フーリエ変換部1306Aは、並び換え後の信号1305Aを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1307Aを出力する。
 無線部1308Aは、逆フーリエ変換後の信号1307Aを入力とし、周波数変換、増幅等の処理を行い、変調信号1309Aを出力し、変調信号1309Aはアンテナ1310Aから電波として出力される。
 シリアルパラレル変換部1302Bは、位相が変更された後の信号1301B(図12の位相変更後の信号309Bに相当する)に対し、シリアルパラレル変換を行い、パラレル信号1303Bを出力する。
 並び換え部1304Bは、パラレル信号1303Bを入力とし、並び換えを行い、並び換え後の信号1305Bを出力する。なお、並び換えについては、後で詳しく述べる。
 逆高速フーリエ変換部1306Bは、並び換え後の信号1305Bを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1307Bを出力する。
 無線部1308Bは、逆フーリエ変換後の信号1307Bを入力とし、周波数変換、増幅等の処理を行い、変調信号1309Bを出力し、変調信号1309Bはアンテナ1310Bから電波として出力される。
 図67の送信装置では、マルチキャリアを用いた伝送方式でないため、図69のように、4周期となるように位相を変更し、位相変更後のシンボルを時間軸方向に配置している。図70に示すようなOFDM方式のようなマルチキャリア伝送方式を用いている場合、当然、図67のようにプリコーディング、ベースバンド信号の入れ替えをし、位相を変更した後のシンボルを時間軸方向に配置し、それを各(サブ)キャリアごとに行う方式が考えられるが、マルチキャリア伝送方式の場合、周波数軸方向、または、周波数軸・時間軸両者を用いて配置する方法が考えられる。以降では、この点について説明する。
 図14は、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、周波数軸は、(サブ)キャリア0から(サブ)キャリア9で構成されており、変調信号z1とz2は、同一時刻(時間)に同一の周波数帯域を使用しており、図14(A)は変調信号z1のシンボルの並び替え方法、図14(B)は変調信号z2のシンボルの並び替え方法を示している。シリアルパラレル変換部1302Aが入力とする入れ替え後のベースバンド信号1301Aのシンボルに対し、順番に、#0、#1、#2、#3、・・・と番号をふる。ここでは、周期4の場合を考えているので、#0、#1、#2、#3が一周期分となる。同様に考えると、#4n、#4n+1、#4n+2、#4n+3(nは0以上の整数)が一周期分となる。
 このとき、図14(a)のように、シンボル#0、#1、#2、#3、・・・をキャリア0から順番に配置し、シンボル#0から#9を時刻$1に配置し、その後、シンボル#10から#19を時刻$2に配置するというように規則的に配置するものとする。なお、変調信号z1とz2は、複素信号である。
 同様に、シリアルパラレル変換部1302Bが入力とする位相が変更された後の信号1301Bのシンボルに対し、順番に、#0、#1、#2、#3、・・・と番号をふる。ここでは、周期4の場合を考えているので、#0、#1、#2、#3はそれぞれ異なる位相変更を行っていることになり、#0、#1、#2、#3が一周期分となる。同様に考えると、#4n、#4n+1、#4n+2、#4n+3(nは0以上の整数)はそれぞれ異なる位相変更を行っていることになり、#4n、#4n+1、#4n+2、#4n+3が一周期分となる。
 このとき、図14(b)のように、シンボル#0、#1、#2、#3、・・・をキャリア0から順番に配置し、シンボル#0から#9を時刻$1に配置し、その後、シンボル#10から#19を時刻$2に配置するというように規則的に配置するものとする。
 そして、図14(B)に示すシンボル群1402は、図69に示す位相変更方法を用いたときの1周期分のシンボルであり、シンボル#0は図69の時刻uの位相を用いたときのシンボルであり、シンボル#1は図69の時刻u+1の位相を用いたときのシンボルであり、シンボル#2は図69の時刻u+2の位相を用いたときのシンボルであり、シンボル#3は図69の時刻u+3の位相を用いたときのシンボルである。したがって、シンボル#xにおいて、x mod 4(xを4で割ったときの余り、したがって、mod:modulo)が0のとき、シンボル#xは図69の時刻uの位相を用いたときのシンボルであり、x mod 4が1のとき、シンボル#xは図69の時刻u+1の位相を用いたときのシンボルであり、x mod 4が2のとき、シンボル#xは図69の時刻u+2の位相を用いたときのシンボルであり、x mod 4が3のとき、シンボル#xは図69の時刻u+3の位相を用いたときのシンボルである。
 なお、本実施の形態においては、図14(A)に示す変調信号z1は位相を変更されていない。
 このように、OFDM方式などのマルチキャリア伝送方式を用いた場合、シングルキャリア伝送のときとは異なり、シンボルを周波数軸方向に並べることができるという特徴を持つことになる。そして、シンボルの並べ方については、図14のような並べ方に限ったものではない。他の例について、図15、図16を用いて説明する。
 図15は、図14とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図15(A)は変調信号z1のシンボルの並び替え方法、図15(B)は変調信号z2のシンボルの並び替え方法を示している。図15(A)(B)が図14と異なる点は、変調信号z1のシンボルの並び替え方法と変調信号z2のシンボルの並び替え方法が異なる点であり、図15(B)では、シンボル#0から#5をキャリア4からキャリア9に配置し、シンボル#6から#9をキャリア0から3に配置し、その後、同様の規則で、シンボル#10から#19を各キャリアに配置する。このとき、図14(B)と同様に、図15(B)に示すシンボル群1502は、図6に示す位相変更方法を用いたときの1周期分のシンボルである。
 図16は、図14と異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図16(A)は変調信号z1のシンボルの並び替え方法、図16(B)は変調信号z2のシンボルの並び替え方法を示している。図16(A)(B)が図14と異なる点は、図14では、シンボルをキャリアに順々に配置しているのに対し、図16では、シンボルをキャリアに順々に配置していない点である。当然であるが、図16において、図15と同様に、変調信号z1のシンボルの並び替え方法と変調信号z2の並び替え方法を異なるようにしてもよい。
 図17は、図14~16とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図17(A)は変調信号z1のシンボルの並び替え方法、図17(B)は変調信号z2のシンボルの並び替え方法を示している。図14~16では、シンボルを周波数軸方向に並べているが、図17ではシンボルを周波数、時間軸の両者を利用して配置している。
 図69では、位相の変更を4スロットで切り替える場合の例を説明したが、ここでは、8スロットで切り替える場合を例に説明する。図17に示すシンボル群1702は、位相変更方法を用いたときの1周期分のシンボル(したがって、8シンボル)であり、シンボル#0は時刻uの位相を用いたときのシンボルであり、シンボル#1は時刻u+1の位相を用いたときのシンボルであり、シンボル#2は時刻u+2の位相を用いたときのシンボルであり、シンボル#3は時刻u+3の位相を用いたときのシンボルであり、シンボル#4は時刻u+4の位相を用いたときのシンボルであり、シンボル#5は時刻u+5の位相を用いたときのシンボルであり、シンボル#6は時刻u+6の位相を用いたときのシンボルであり、シンボル#7は時刻u+7の位相を用いたときのシンボルである。したがって、シンボル#xにおいて、x mod 8が0のとき、シンボル#xは時刻uの位相を用いたときのシンボルであり、x mod 8が1のとき、シンボル#xは時刻u+1の位相を用いたときのシンボルであり、x mod 8が2のとき、シンボル#xは時刻u+2の位相を用いたときのシンボルであり、x mod 8が3のとき、シンボル#xは時刻u+3の位相を用いたときのシンボルであり、x mod 8が4のとき、シンボル#xは時刻u+4の位相を用いたときのシンボルであり、x mod 8が5のとき、シンボル#xは時刻u+5の位相を用いたときのシンボルであり、x mod 8が6のとき、シンボル#xは時刻u+6の位相を用いたときのシンボルであり、x mod 8が7のとき、シンボル#xは時刻u+7の位相を用いたときのシンボルである。図17のシンボルの並べ方では、時間軸方向に4スロット、周波数軸方向で2スロットの計4×2=8スロットを用いて、1周期分のシンボルを配置しているが、このとき、1周期分のシンボルの数をm×nシンボル(つまり、乗じる位相はm×n種類存在する。)1周期分のシンボルを配置するのに使用する周波数軸方向のスロット(キャリア数)をn、時間軸方向に使用するスロットをmとすると、m>nとするとよい。これは、直接波の位相は、時間軸方向の変動は、周波数軸方向の変動と比較し、緩やかである。したがって、定常的な直接波の影響を小さくするために本実施の形態の規則的な位相の変更を行うので、位相の変更を行う周期では直接波の変動を小さくしたい。したがって、m>nとするとよい。また、以上の点を考慮すると、周波数軸方向のみ、または、時間軸方向のみにシンボルを並び替えるより、図17のように周波数軸と時間軸の両者を用いて並び換えを行うほうが、直接波は定常的になる可能性が高く、本発明の効果を得やすいという効果が得られる。ただし、周波数軸方向に並べると、周波数軸の変動が急峻であるため、ダイバーシチゲインを得ることが出来る可能性があるので、必ずしも周波数軸と時間軸の両者を用いて並び換えを行う方法が最適な方法であるとは限らない。
 図18は、図17とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図18(A)は変調信号z1のシンボルの並び替え方法、図18(B)は変調信号z2のシンボルの並び替え方法を示している。図18は、図17と同様、シンボルを周波数、時間軸の両者を利用して配置しているが、図17と異なる点は、図17では、周波数方向を優先し、その後、時間軸方向にシンボルを配置しているのに対し、図18では、時間軸方向を優先し、その後、時間軸方向にシンボルを配置している点である。図18において、シンボル群1802は、位相変更方法を用いたときの1周期分のシンボルである。
 なお、図17、図18では、図15と同様に、変調信号z1のシンボルの配置方法と変調信号z2のシンボル配置方法が異なるように配置しても同様に実施することができ、また、高い受信品質を得ることができるという効果を得ることができる。また、図17、図18において、図16のようにシンボルを順々に配置していなくても、同様に実施することができ、また、高い受信品質を得ることができるという効果を得ることができる。
 図22は、上記とは異なる、横軸周波数、縦軸時間における図13の並び替え部1301A、130Bにおけるシンボルの並び換え方法の一例を示している。図69の時刻u~u+3のような4スロットを用いて規則的に位相を変更する場合を考える。図22において特徴的な点は、周波数軸方向にシンボルを順に並べているが、時間軸方向に進めた場合、サイクリックにn(図22の例ではn=1)シンボルサイクリックシフトさせている点である。図22における周波数軸方向のシンボル群2210に示した4シンボルにおいて、図69の時刻u~u+3の位相の変更を行うものとする。
 このとき、#0のシンボルでは時刻uの位相を用いた位相変更、#1では時刻u+1の位相を用いた位相変更、#2では時刻u+2の位相を用いた位相変更、#3では時刻u+3の位相を用いた位相変更を行うものとする。
 周波数軸方向のシンボル群2220についても同様に、#4のシンボルでは時刻uの位相を用いた位相変更、#5では時刻u+1の位相を用いた位相変更、#6では時刻u+2の位相を用いた位相変更、#7では時刻u+3の位相を用いた位相変更を行うものとする。
 時間$1のシンボルにおいて、上記のような位相の変更を行ったが、時間軸方向において、サイクリックシフトしているため、シンボル群2201、2202、2203、2204については以下のように位相の変更を行うことになる。
 時間軸方向のシンボル群2201では、#0のシンボルでは時刻uの位相を用いた位相変更、#9では時刻u+1の位相を用いた位相変更、#18では時刻u+2の位相を用いた位相変更、#27では時刻u+3の位相を用いた位相変更を行うものとする。
 時間軸方向のシンボル群2202では、#28のシンボルでは時刻uの位相を用いた位相変更、#1では時刻u+1の位相を用いた位相変更、#10では時刻u+2の位相を用いた位相変更、#19では時刻u+3の位相を用いた位相変更を行うものとする。
 時間軸方向のシンボル群2203では、#20のシンボルでは時刻uの位相を用いた位相変更、#29では時刻u+1の位相を用いた位相変更、#2では時刻u+2の位相を用いた位相変更、#11では時刻u+3の位相を用いた位相変更を行うものとする。
 時間軸方向のシンボル群2204では、#12のシンボルでは時刻uの位相を用いた位相変更、#21では時刻u+1の位相を用いた位相変更、#30では時刻u+2の位相を用いた位相変更、#3では時刻u+3の位相を用いた位相変更を行うものとする。
 図22においての特徴は、例えば#11のシンボルに着目した場合、同一時刻の周波数軸方向の両隣のシンボル(#10と#12)は、ともに#11とは異なる位相を用いて位相の変更を行っているとともに、#11のシンボルの同一キャリアの時間軸方向の両隣のシンボル(#2と#20)は、ともに#11とは異なる位相を用いて位相の変更を行っていることである。そして、これは#11のシンボルに限ったものではなく、周波数軸方向および時間軸方向ともに両隣にシンボルが存在するシンボルすべてにおいて#11のシンボルと同様の特徴をもつことになる。これにより、効果的に位相を変更していることになり、直接波の定常的な状況に対する影響を受けづらくなるため、データの受信品質が改善される可能性が高くなる。
 図22では、n=1として説明したが、これに限ったものではなく、n=3としても同様に実施することができる。また、図22では、周波数軸にシンボルを並べ、時間が軸方向にすすむ場合、シンボルの配置の順番をサイクリックシフトするという特徴を持たせることで、上記の特徴を実現したが、シンボルをランダム(規則的であってもよい)に配置することで上記特徴を実現するような方法もある。
 なお、本実施の形態では、実施の形態1の変形例として、位相変更前に、ベースバンド信号入れ替え部を挿入する構成を示したが、本実施の形態と実施の形態2を組み合わせ、図26、図28において、位相変更を行う前に、ベースバンド信号の入れ替え部を挿入して、実施してもよい。したがって、図26において、位相変更部317Aは、入れ替え後ベースバンド信号6701A(q1(i))を入力とし、位相変更部317Bは、入れ替え後ベースバンド信号6701B(q2(i))を入力とすることになる。また、図28の位相変更部317Aおよび位相変更部317Bについても同様となる。
 次に、送信装置から見て、各所に点在することになる受信装置において、受信装置がどこに配置されていても、各受信装置が良好なデータの受信品質を得るための手法について開示する。
 図31は、規則的に位相を変更する送信方式において、OFDM方式のようなマルチキャリア方式を用いたときの、時間-周波数軸における信号の一部のシンボルのフレーム構成の一例を示している。
 図31は、図67に示した位相変更部317Bの入力である入れ替え後のベースバンド信号に対応する変調信号z2’のフレーム構成を示しており、1つの四角がシンボル(ただし、プリコーディングを行っているため、s1とs2の両者の信号を含んでいるのが通常であるが、プリコーディング行列の構成しだいでは、s1とs2の一方の信号のみであることもある。)を示している。
 ここで、図31のキャリア2、時刻$2のシンボル3100について着目する。なお、ここではキャリアと記載しているが、サブキャリアと呼称することもある。
 キャリア2において、時刻$2に時間的に最も隣接するシンボル、つまりキャリア2の時刻$1のシンボル3103と時刻$3のシンボル3101のそれぞれのチャネル状態は、キャリア2、時刻$2のシンボル610aのチャネル状態と、非常に相関が高い。
 同様に時刻$2において、周波数軸方向でキャリア2に最も隣接している周波数のシンボル、即ち、キャリア1、時刻$2のシンボル3104と時刻$2、キャリア3のシンボル3104とのチャネル状態は、ともに、キャリア2、時刻$2のシンボル3100のチャネル状態と、非常に相関が高い。
 上述したように、シンボル3101、3102、3103、3104のそれぞれのチャネル状態は、シンボル3100のチャネル状態との相関が非常に高い。
 本明細書において、規則的に位相を変更する送信方法において、乗じる位相として、N種類の位相(但し、Nは2以上の整数)を用意しているものとする。図31に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける図6における信号z2’に対し、「ej0」が乗じられて位相が変更されたことを意味する。つまり、図31の各シンボルに記載している値は、式(70)におけるy(t)の値となる。
 本実施の形態においては、この周波数軸方向で隣接しあうシンボル及び/または時間軸方向で隣接しあうシンボルのチャネル状態の相関性が高いことを利用して受信装置側において、高いデータの受信品質が得られる位相が変更されたシンボルのシンボル配置を開示する。
 この受信側で高いデータの受信品質が得られる条件として、条件#D1-1、条件#D1-2が考えられる。
 
<条件#D1-1>
図69のように、入れ替え後のベースバンド信号q2に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、時間軸方向で隣接するシンボル、即ち、時間X-1・キャリアYおよび時間X+1・キャリアYがいずれもデータシンボルであり、これら3つのデータシンボルに対応する入れ替え後のベースバンド信号q2、つまり、時間X・キャリアY、時間X-1・キャリアYおよび時間X+1・キャリアYにおけるそれぞれの入れ替え後のベースバンド信号q2では、いずれも異なる位相変更が行われる。
 
<条件#D1-2>
図69のように、入れ替え後のベースバンド信号q2に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、周波数軸方向で隣接するシンボル、即ち、時間X・キャリアY-1および時間X・キャリアY+1がいずれもデータシンボルである場合、これら3つのデータシンボルに対応する入れ替え後のベースバンド信号q2、つまり、時間X・キャリアY、時間X・キャリアY-1および時間X・キャリアY+1におけるそれぞれの入れ替え後のベースバンド信号q2では、いずれも異なる位相変更が行われる。
 
 そして、<条件#D1-1>を満たすデータシンボルが存在するとよい。同様に、<条件#D1-2>を満たすデータシンボルが存在するとよい。
 当該<条件#D1-1><条件#D1-2>が導出される理由は以下の通りである。
 送信信号においてあるシンボル(以降、シンボルAと呼称する)があり、当該シンボルAに時間的に隣接したシンボルそれぞれのチャネル状態は、上述したとおり、シンボルAのチャネル状態との相関が高い。
 したがって、時間的に隣接した3シンボルで、異なる位相を用いていると、LOS環境において、シンボルAが劣悪な受信品質(SNRとしては高い受信品質を得ているものの、直接波の位相関係が劣悪な状況であるため受信品質が悪い状態)であっても、残りのシンボルAに隣接する2シンボルでは、良好な受信品質を得ることができる可能性が非常に高く、その結果、誤り訂正復号後は良好な受信品質を得ることができる。
 同様に、送信信号においてあるシンボル(以降、シンボルAと呼称する)があり、当該シンボルAに周波数的に隣接したシンボルそれぞれのチャネル状態は、上述したとおり、シンボルAのチャネル状態との相関が高い。
 したがって、周波数的に隣接した3シンボルで、異なる位相を用いていると、LOS環境において、シンボルAが劣悪な受信品質(SNRとしては高い受信品質を得ているものの、直接波の位相関係が劣悪な状況であるため受信品質が悪い状態)であっても、残りのシンボルAに隣接する2シンボルでは、良好な受信品質を得ることができる可能性が非常に高く、その結果、誤り訂正復号後は良好な受信品質を得ることができる。
 また、<条件#D1-1>と<条件#D1-2>を組み合わせると、受信装置において、より、データの受信品質を向上させることができる可能性がある。したがって、以下の条件を導くことができる。
 
<条件#D1-3>
 図69のように、入れ替え後のベースバンド信号q2に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、時間軸方向で隣接するシンボル、即ち、時間X-1・キャリアYおよび時間X+1・キャリアYがいずれもデータシンボルであり、かつ、周波数軸方向で隣接するシンボル、即ち、時間X・キャリアY-1および時間X・キャリアY+1がいずれもデータシンボルである場合、これら5つのデータシンボルに対応する入れ替え後のベースバンド信号q2、つまり、時間X・キャリアYおよび時間X-1・キャリアYおよび時間X+1・キャリアYおよび時間X・キャリアY-1および時間X・キャリアY+1におけるそれぞれの入れ替え後のベースバンド信号q2では、いずれも異なる位相変更が行われる。
 
 ここで、「異なる位相変更」について、補足を行う。位相変更は、0ラジアンから2πラジアンで定義されることになる。例えば、時間X・キャリアYにおいて、図69の入れ替え後のベースバンド信号q2に対して施す位相変更をejθX,Y、時間X-1・キャリアYにおいて、図69の入れ替え後のベースバンド信号q2に対して施す位相変更をejθX-1,Y、時間X+1・キャリアYにおいて、図69の入れ替え後のベースバンド信号q2に対して施す位相変更をejθX+1,Yとすると、0ラジアン≦θX,Y<2π、0ラジアン≦θX-1,Y<2π、0ラジアン≦θX+1,Y<2πとなる。したがって、<条件#D1-1>では、θX,Y≠θX-1,YかつθX,Y≠θX+1,YかつθX+1,Y≠θX-1,Yが成立することになる。同様に考えると、<条件#D1-2>では、θX,Y≠θX,Y-1かつθX,Y≠θX,Y+1かつθX,Y-1≠θX-1,Y+1が成立することになり、<条件#D1-3>では、θX,Y≠θX-1,YかつθX,Y≠θX+1,YかつθX,Y≠θX,Y-1かつθX,Y≠θX,Y+1かつθX-1,Y≠θX+1,YかつθX-1,Y≠θX,Y-1かつθX-1,Y≠θX,Y+1かつθX+1,Y≠θX,Y-1かつθX+1,Y≠θX,Y+1かつθX,Y-1≠θX,Y+1が成立することになる。
 そして、<条件#D1-3>を満たすデータシンボルが存在するとよい。
 図31は<条件#D1-3>の例であり、シンボルAに該当するシンボル3100に相当する図69の入れ替え後のベースバンド信号q2に乗じられている位相と、そのシンボル3100に時間的に隣接するシンボル3101に相当する図69の入れ替え後のベースバンド信号q2、3103に相当する図69の入れ替え後のベースバンド信号q2に乗じられている位相と、周波数的に隣接するシンボル3102に相当する図69の入れ替え後のベースバンド信号q2、3104に相当する図69の入れ替え後のベースバンド信号q2に乗じられている位相が互いに異なるように配されており、これによって、受信側においてシンボル3100の受信品質が劣悪であろうとも、その隣接するシンボルの受信品質は非常に高くなるため、誤り訂正復号後の高い受信品質を確保できる。
 この条件のもとで、位相を変更して得られるシンボルの配置例を図32に示す。
 図32を見ればわかるように、いずれのデータシンボルにおいても、その位相が周波数軸方向及び時間軸方向の双方において隣接しあうシンボルに対して変更された位相の度合いは互いに異なる位相変更量となっている。このようにすることで、受信装置における誤り訂正能力を更に向上させることができる。
 つまり、図32では、時間軸方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#D1-1>がすべてのX、すべてのYで成立している。
 同様に、図32では、周波数方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#D1-2>がすべてのX、すべてのYで成立している。
 同様に、図32では、周波数方向で隣接するシンボルにデータシンボルが存在し、かつ、時間軸方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#D1-3>がすべてのX、すべてのYで成立している。
 次に、上述で説明した、2つの入れ替え後のベースバンド信号q2に位相変更を行った場合(図68参照)の例で説明する。
 入れ替え後のベースバンド信号q1、および、入れ替え後のベースバンド信号q2の両者に位相変更を与える場合、位相変更方法について、いくつかの方法がある。その点について、詳しく説明する。
 方法1として、入れ替え後のベースバンド信号q2の位相変更は、前述のように、図32のように位相変更を行うものとする。図32において、入れ替え後のベースバンド信号q2の位相変更は周期10としている。しかし、前述で述べたように、<条件#D1-1><条件#D1-2><条件#D1-3>を満たすようにするために、(サブ)キャリア1で、入れ替え後のベースバンド信号q2に施す位相変更を時間とともに変更している。(図32では、このような変更をほどこしているが、周期10をとし、別の位相変更方法であってもよい)そして、入れ替え後のベースバンド信号q1の位相変更は、図33ように、入れ替え後のベースバンド信号q2の位相変更は周期10の1周期分の位相変更する値は一定とする。図33では、(入れ替え後のベースバンド信号q2の位相変更の)1周期分を含む時刻$1において、入れ替え後のベースバンド信号q1の位相変更の値は、ej0としており、次の(入れ替え後のベースバンド信号q2の位相変更の)1周期分を含む時刻$2において、入れ替え後のベースバンド信号q1の位相変更の値は、ejπ/9としており、・・・、としている。
 なお、図33に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける図26における信号q1に対し、「ej0」が乗じられて位相が変更されたことを意味する。
 入れ替え後のベースバンド信号q1の位相変更は、図33ように、プリコーディング後の入れ替え後のベースバンド信号q2の位相変更は周期10の1周期分の位相変更する値は一定とし、位相変更する値は、1周期分の番号とともに変更するようにする。(上述のように、図33では、第1の1周期分では、ej0とし、第2の1周期分ではejπ/9、・・・としている。)
 以上のようにすることで、入れ替え後のベースバンド信号q2の位相変更は周期10であるが、入れ替え後のベースバンド信号q1の位相変更と入れ替え後のベースバンド信号q2の位相変更の両者を考慮したときの周期は10より大きくすることができるという効果を得ることができる。これにより、受信装置のデータの受信品質が向上する可能性がある。
 方法2として、入れ替え後のベースバンド信号q2の位相変更は、前述のように、図32のように位相変更を行うものとする。図32において、入れ替え後のベースバンド信号q2の位相変更は周期10としている。しかし、前述で述べたように、<条件#D1-1><条件#D1-2><条件#D1-3>を満たすようにするために、(サブ)キャリア1で、入れ替え後のベースバンド信号q2に施す位相変更を時間とともに変更している。(図32では、このような変更をほどこしているが、周期10をとし、別の位相変更方法であってもよい)そして、入れ替え後のベースバンド信号q1の位相変更は、図30ように、入れ替え後のベースバンド信号q2の位相変更は周期10とは異なる周期3での位相変更を行う。
 なお、図30に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける入れ替え後のベースバンド信号q1に対し、「ej0」が乗じられて位相が変更されたことを意味する。
 以上のようにすることで、入れ替え後のベースバンド信号q2の位相変更は周期10であるが、入れ替え後のベースバンド信号q1の位相変更と入れ替え後のベースバンド信号q2の位相変更の両者を考慮したときの周期は30となり入れ替え後のベースバンド信号q1の位相変更と入れ替え後のベースバンド信号q2の位相変更の両者を考慮したときの周期を10より大きくすることができるという効果を得ることができる。これにより、受信装置のデータの受信品質が向上する可能性がある。方法2の一つの有効な方法としては、入れ替え後のベースバンド信号q1の位相変更の周期をNとし、入れ替え後のベースバンド信号q2の位相変更の周期をMとしたとき、特に、NとMが互いに素の関係であると、入れ替え後のベースバンド信号q1の位相変更と入れ替え後のベースバンド信号q2の位相変更の両者を考慮したときの周期はN×Mと容易に大きな周期に設定することができるという利点があるが、NとMが互いに素の関係でも、周期を大きくすることは可能である。
 なお、上述の位相変更方法は一例であり、これに限ったものではなく、周波数軸方向で位相変更を行ったり、時間軸方向で位相変更を行ったり、時間-周波数のブロックで位相変更を行っても同様に、受信装置におけるデータの受信品質を向上させることができるという効果を持つことになる。
 上記で説明したフレーム構成以外にも、データシンボル間にパイロットシンボル(SP(Scattered Pilot))や制御情報を伝送するシンボルなどが挿入されることも考えられる。この場合の位相変更について詳しく説明する。
 図47は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’および変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成を示しており、図47(a)は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’ の時間―周波数軸におけるフレーム構成、図47(b)は、変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成である。図47において、4701はパイロットシンボル、4702はデータシンボルを示しており、データシンボル4702は、入れ替え後のベースバンド信号または入れ替え後のベースバンド信号と位相変更を施したシンボルとなる。
 図47は、図69のように、入れ替え後のベースバンド信号q2に対し、位相変更を行う場合のシンボル配置を示している(入れ替え後のベースバンド信号q1には位相変更を行わない)。(なお、図69では時間軸方向で位相変更を行う場合を示しているが、図69において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図47の入れ替え後のベースバンド信号qのシンボルに記載されている数値は、位相の変更値を示している。なお、図47の入れ替え後のベースバンド信号q1(z1)のシンボルは、位相変更を行わないので、数値を記載していない。
 図47において重要な点は、入れ替え後のベースバンド信号q2に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号入れ替えを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
 図48は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’および変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成を示しており、図48(a)は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’ の時間―周波数軸におけるフレーム構成、図48(b)は、変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成である。図48において、4701はパイロットシンボル、4702はデータシンボルを示しており、データシンボル4702は、プリコーディングと位相変更を施したシンボルとなる。
 図48は、入れ替え後のベースバンド信号q1および入れ替え後のベースバンド信号q2に対し、位相変更を行う場合のシンボル配置を示している。したがって、図48の入れ替え後のベースバンド信号q1および入れ替え後のベースバンド信号q2のシンボルに記載されている数値は、位相の変更値を示している。
 図48において重要な点は、入れ替え後のベースバンド信号q1に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号の入れ替えを施したシンボルに対して施している、また、入れ替え後のベースバンド信号q2に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号の入れ替えを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z1’に挿入されたパイロットシンボルに対しては、位相変更を施さず、また、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
 図49は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’および変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成を示しており、図49(a)は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’の時間―周波数軸におけるフレーム構成、図49(b)は、変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成である。図49において、4701はパイロットシンボル、4702はデータシンボル、4901はヌルシンボルであり、ベースバンド信号の同相成分I=0であり、直交成分Q=0となる。このとき、データシンボル4702は、プリコーディングまたはプリコーディングと位相変更を施したシンボルとなる。図49と図47の違いは、データシンボル以外のシンボルの構成方法であり、変調信号z1’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z2’はヌルシンボルとなっており、逆に、変調信号z2’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z1’はヌルシンボルとなっている点である。
 図49は、図69のように、入れ替え後のベースバンド信号q2に対し、位相変更を行う場合のシンボル配置を示している(入れ替え後のベースバンド信号q1には位相変更を行わない)。(なお、図69では時間軸方向で位相変更を行う場合を示しているが、図6において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図49の入れ替え後のベースバンド信号q2のシンボルに記載されている数値は、位相の変更値を示している。なお、図49の入れ替え後のベースバンド信号q1のシンボルは、位相変更を行わないので、数値を記載していない。
 図49において重要な点は入れ替え後のベースバンド信号q2に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号入れ替えを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
 図50は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’および変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成を示しており、図50(a)は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’の時間―周波数軸におけるフレーム構成、図50(b)は、変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成である。図50において、4701はパイロットシンボル、4702はデータシンボル、4901はヌルシンボルであり、ベースバンド信号の同相成分I=0であり、直交成分Q=0となる。このとき、データシンボル4702は、プリコーディングまたはプリコーディングと位相変更を施したシンボルとなる。図50と図48の違いは、データシンボル以外のシンボルの構成方法であり、変調信号z1’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z2’はヌルシンボルとなっており、逆に、変調信号z2’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z1’はヌルシンボルとなっている点である。
 図50は、入れ替え後のベースバンド信号q1および入れ替え後のベースバンド信号q2に対し、位相変更を行う場合のシンボル配置を示している。したがって、図50の入れ替え後のベースバンド信号q1および入れ替え後のベースバンド信号q2のシンボルに記載されている数値は、位相の変更値を示している。
 図50において重要な点は、入れ替え後のベースバンド信号q1に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号入れ替えを施したシンボルに対して施している、また、入れ替え後のベースバンド信号q2に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号入れ替えを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z1’に挿入されたパイロットシンボルに対しては、位相変更を施さず、また、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
 図51は、図47、図49のフレーム構成の変調信号を生成し、送信する送信装置の構成の一例を示しており、図4と同様に動作するものについては、同一符号を付している。なお、図51では、図67や図70で示したベースバンド信号入れ替え部を図示していないが、図51に対し、図67や図70と同様、重み付け合成部と位相変更部の間にベースバンド信号入れ替え部を挿入すればよい。
 図51において、重み付け合成部308A、308B、および、位相変更部317B、および、ベースバンド信号入れ替え部は、フレーム構成信号313がデータシンボルであるタイミングを示しているときのみ動作することになる。
 図51のパイロットシンボル(ヌルシンボル生成を兼ねるものとする)生成部5101は、フレーム構成信号313がパイロットシンボル(かつヌルシンボル)であることをしめしていた場合、パイロットシンボルのベースバンド信号5102A、および5102Bを出力する。
 図47から図50のフレーム構成では示していなかったが、プリコーディング(および、位相回転を施さない)を施さない、例えば、1アンテナから変調信号を送信する方式、(この場合、もう一方のアンテナからは信号を伝送しないことになる)、または、時空間符号(特に、時空間ブロック符号)を用いた伝送方式を用いて制御情報シンボルを送信する場合、制御情報シンボル5104は、制御情報5103、フレーム構成信号313を入力とし、フレーム構成信号313が制御情報シンボルであることを示している場合、制御情報シンボルのベースバンド信号5102A、5102Bを出力する。
 図51の無線部310A、310Bは、入力となる複数のベースバンド信号のうち、フレーム構成信号313に基づき、複数のベースバンド信号から、所望のベースバンド信号を選択する。そして、OFDM関連の信号処理を施し、フレーム構成にしたがった変調信号311A、311Bをそれぞれ出力する。
 図52は、図48、図50のフレーム構成の変調信号を生成し、送信する送信装置の構成の一例を示しており、図4、図51と同様に動作するものについては、同一符号を付している。図51に対して追加した位相変更部317Aは、フレーム構成信号313がデータシンボルであるタイミングを示しているときのみ動作することになる。その他については、図51と同様の動作となる。なお、図52では、図67や図70で示したベースバンド信号入れ替え部を図示していないが、図52に対し、図67や図70と同様、重み付け合成部と位相変更部の間にベースバンド信号入れ替え部を挿入すればよい。
 図53は、図51とは異なる送信装置の構成方法である。なお、図53では、図67や図70で示したベースバンド信号入れ替え部を図示していないが、図53に対し、図67や図70と同様、重み付け合成部と位相変更部の間にベースバンド信号入れ替え部を挿入すればよい。以降では異なる点について説明する。位相変更部317Bは、図53のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部317Bは、プリコーディング後のベースバンド信号316Bに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部317Bは、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
 選択部5301は、複数のベースバンド信号を入力とし、フレーム構成信号313が示したシンボルのベースバンド信号を選択し、出力する。
 図54は、図52とは異なる送信装置の構成方法である。なお、図54では、図67や図70で示したベースバンド信号入れ替え部を図示していないが、図54に対し、図67や図70と同様、重み付け合成部と位相変更部の間にベースバンド信号入れ替え部を挿入すればよい。以降では異なる点について説明する。位相変更部317Bは、図54のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部317Bは、プリコーディング後のベースバンド信号316Bに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部317Bは、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
 同様に、位相変更部5201は、図54のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部5201は、プリコーディング後のベースバンド信号309Aに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部5201は、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
 上述の説明では、パイロットシンボルと制御シンボルとデータシンボルを例に説明したが、これに限ったものではなく、プリコーディングとは異なる伝送方法、例えば、1アンテナ送信、時空間ブロック符号を用いた伝送方式、等を用いて伝送するシンボルであれば、同様に、位相変更を与えない、ということが重要となり、これとは逆に、プリコーディングおよびベースバンド信号入れ替えを行ったシンボルに対しては、位相変更を行うことが本発明では重要なこととなる。
 したがって、時間-周波数軸におけるフレーム構成におけるすべてのシンボルで位相変更が行われるわけではなく、プリコーディングおよびベースバンド信号入れ替えを行った信号のみに位相変更を与える点が、本発明の特徴となる。
 次に、非特許文献12~非特許文献15に示されているように、QC(Quasi Cyclic) LDPC(Low-Density Prity-Check)符号(QC-LDPC符号でない、LDPC符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号、テイルバイティングを用いたターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの規則的に位相を変更する方法について詳しく説明する。ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(cyclic redundancy check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
 図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、図69、図70の送信装置に対し、図4のような符号器と分配部を適用し、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
 図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
 そして、上述の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
 同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
 次に、規則的に位相を変更する方法において、上述で定義したスロットと乗じる位相との関係について説明する。
 ここでは、規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、上述の送信装置の位相変更部のために、5つの位相変更値(または、位相変更セット)を用意するものとする。(図69のように、入れ替え後のベースバンド信号q2のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、入れ替え後のベースバンド信号q1および入れ替え後のベースバンド信号q2の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)この5つの位相変更値(または、位相変更セット)をPHASE[0], PHASE[1], PHASE[2],PHASE[3], PHASE[4]とあらわすものとする。
 変調方式がQPSKのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた1500スロットにおいて、位相PHASE[0]を使用するスロットが300スロット、位相PHASE[1]を使用するスロットが300スロット、位相PHASE[2]を使用するスロットが300スロット、位相PHASE[3]を使用するスロットが300スロット、位相PHASE[4]を使用するスロットが300スロットである必要がある。これは、使用する位相にかたよりがあると、多くの数を使用した位相の影響が大きく、受信装置において、この影響に依存したデータの受信品質となるからである。
 同様に、変調方式が16QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた750スロットにおいて、位相PHASE[0]を使用するスロットが150スロット、位相PHASE[1]を使用するスロットが150スロット、位相PHASE[2]を使用するスロットが150スロット、位相PHASE[3]を使用するスロットが150スロット、位相PHASE[4]を使用するスロットが150スロットである必要がある。
 同様に、変調方式が64QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた500スロットにおいて、位相PHASE[0]を使用するスロットが100スロット、位相PHASE[1]を使用するスロットが100スロット、位相PHASE[2]を使用するスロットが100スロット、位相PHASE[3]を使用するスロットが100スロット、位相PHASE[4]を使用するスロットが100スロットである必要がある。
 以上のように、規則的に位相を変更する方法において、用意する位相変更値(または、位相変更セット)をN個(N個の異なる位相をPHASE[0], PHASE[1], PHASE[2],・・・, PHASE[N-2] , PHASE[N-1]とあらわすものとする)としたとき、1つの符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用するスロット数をK, 位相PHASE[1]を使用するスロット数をK1、位相PHASE[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用するスロット数をKN-1としたとき、
 
<条件#D1-4>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であるとよい。
 そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#D1-4>が成立するとよいことになる。
 しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#D1-4>を満たすことができない変調方式が存在することもある。この場合、<条件#D1-4>にかわり、以下の条件を満たすとよい。
 
<条件#D1-5>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
 図35は、ブロック符号を用いたとき、2つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図35は、図67の送信装置および図70の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、2つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
 図35に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
 そして、図67の送信装置および図70の送信装置では、2つのストリームを同時に送信することになり、また、2つの符号化器が存在するため、2つのストリームでは、異なる符号ブロックを伝送することになる。したがって、変調方式がQPSKのとき、s1、s2により、2つの符号化ブロックが同一区間内で送信されることから、例えば、s1により第1の符号化後のブロックが送信され、s2により、第2の符号化ブロックが送信されることになるので、第1、第2の符号化後のブロックを送信するために3000スロットが必要となる。
 同様に考えると、変調方式が16QAMのとき、2つの符号化後のブロックを構成するすべてのビットを送信するために1500スロットが必要となり、変調方式が64QAMのとき、2つの符号化ブロックを構成するすべてのビットを送信するために1000スロットが必要となる。
 次に、規則的に位相を変更する方法において、上述で定義したスロットと乗じる位相との関係について説明する。
 ここでは、規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図67の送信装置および図70の送信装置の位相変更部のために、5つの位相変更値(または、位相変更セット)を用意するものとする。(図69のように、入れ替え後のベースバンド信号q2のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、入れ替え後のベースバンド信号qおよび入れ替え後のベースバンド信号q2の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)この5つの位相変更値(または、位相変更セット)をPHASE[0], PHASE[1], PHASE[2],PHASE[3], PHASE[4]とあらわすものとする。
 変調方式がQPSKのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた3000スロットにおいて、位相PHASE[0]を使用するスロットが600スロット、位相PHASE[1]を使用するスロットが600スロット、位相PHASE[2]を使用するスロットが600スロット、位相PHASE[3]を使用するスロットが600スロット、位相PHASE[4]を使用するスロットが600スロットである必要がある。これは、使用する位相にかたよりがあると、多くの数を使用した位相の影響が大きく、受信装置において、この影響に依存したデータの受信品質となるからである。
 また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが600回、位相PHASE[1]を使用するスロットが600回、位相PHASE[2]を使用するスロットが600回、位相PHASE[3]を使用するスロットが600回、位相PHASE[4]を使用するスロットが600回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが600回、位相PHASE[1]を使用するスロットが600回、位相PHASE[2]を使用するスロットが600回、位相PHASE[3]を使用するスロットが600回、位相PHASE[4]を使用するスロットが600回であるとよい。
 同様に、変調方式が16QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1500スロットにおいて、位相PHASE[0]を使用するスロットが300スロット、位相PHASE[1]を使用するスロットが300スロット、位相PHASE[2]を使用するスロットが300スロット、位相PHASE[3]を使用するスロットが300スロット、位相PHASE[4]を使用するスロットが300スロットである必要がある。
 また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが300回、位相PHASE[1]を使用するスロットが300回、位相PHASE[2]を使用するスロットが300回、位相PHASE[3]を使用するスロットが300回、位相PHASE[4]を使用するスロットが300回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが300回、位相PHASE[1]を使用するスロットが300回、位相PHASE[2]を使用するスロットが300回、位相PHASE[3]を使用するスロットが300回、位相PHASE[4]を使用するスロットが300回であるとよい。
 同様に、変調方式が64QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1000スロットにおいて、位相PHASE[0]を使用するスロットが200スロット、位相PHASE[1]を使用するスロットが200スロット、位相PHASE[2]を使用するスロットが200スロット、位相PHASE[3]を使用するスロットが200スロット、位相PHASE[4]を使用するスロットが200スロットである必要がある。
 また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが200回、位相PHASE[1]を使用するスロットが200回、位相PHASE[2]を使用するスロットが200回、位相PHASE[3]を使用するスロットが200回、位相PHASE[4]を使用するスロットが200回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが200回、位相PHASE[1]を使用するスロットが200回、位相PHASE[2]を使用するスロットが200回、位相PHASE[3]を使用するスロットが200回、位相PHASE[4]を使用するスロットが200回であるとよい。
 以上のように、規則的に位相を変更する方法において、用意する位相変更値(または、位相変更セット)をN個(N個の異なる位相をPHASE[0], PHASE[1], PHASE[2],・・・, PHASE[N-2] , PHASE[N-1]とあらわすものとする)としたとき、2つの符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用するスロット数をK, 位相PHASE[1]を使用するスロット数をK1、位相PHASE[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用するスロット数をKN-1としたとき、
 
<条件#D1-6>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であり、第1の符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用する回数をK0,1, 位相PHASE[1]を使用する回数をK1,1、位相PHASE[i]を使用する回数をKi,1(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用する回数をKN-1,1としたとき、
 
<条件#D1-7>
0,1=K1,1=・・・=Ki,1=・・・=KN-1,1、つまり、Ka,1=Kb,1、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であり、第2の符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用する回数をK0,2, 位相PHASE[1]を使用する回数をK1,2、位相PHASE[i]を使用する回数をKi,2(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用する回数をKN-1,2としたとき、
 
<条件#D1-8>
0,2=K1,2=・・・=Ki,2=・・・=KN-1,2、つまり、Ka,2=Kb,2、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
であるとよい。
 そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#D1-6><条件#D1-7><条件#D1-8>が成立するとよいことになる。
 しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#D1-6><条件#D1-7><条件#D1-8>を満たすことができない変調方式が存在することもある。この場合、<条件#D1-6><条件#D1-7><条件#D1-8>にかわり、以下の条件を満たすとよい。
 
<条件#D1-9>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
<条件#D1-10>
a,1とKb,1の差は0または1、つまり、|Ka,1―Kb,1|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
<条件#D1-11>
a,2とKb,2の差は0または1、つまり、|Ka,2―Kb,2|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)
 
 以上のように、符号化後のブロックと乗じる位相の関係付けを行うことで、符号化ブロックを伝送するために使用する位相にかたよりがなくなるため、受信装置において、データの受信品質が向上するという効果を得ることができる。
 上述では、規則的に位相を変更する方法において、周期Nの位相変更方法のためには、N個の位相変更値(または、位相変更セット)が必要となる。このとき、N個の位相変更値(または、位相変更セット)として、PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]を用意することになるが、周波数軸方向にPHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]の順に並べる方法もあるが、必ずしもこれに限ったものではなく、N個の位相変更値(または、位相変更セット)PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]を時間軸、周波数―時間軸のブロックに対し、シンボルを配置することで、位相を変更することもできる。なお、周期Nの位相変更方法として説明しているが、N個の位相変更値(または、位相変更セット)をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の位相変更値(または、位相変更セット)を用いる必要はないが、上記で説明した条件を満たすことは、受信装置において、高いデータの受信品質を得る上では、重要となる。
 また、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のモードが存在し、送信装置(放送局、基地局)は、これらのモードから、いずれかの送信方法を選択することができるようにしてもよい。
 なお、空間多重MIMO伝送方式とは、非特許文献3に示されているように、選択した変調方式でマッピングした信号s1、s2をそれぞれ異なるアンテナから送信する方法であり、プリコーディング行列が固定のMIMO伝送方式とは、プリコーディングのみを行う(位相変更を行わない)方式である。また、時空間ブロック符号化方式とは、非特許文献9、16、17に示されている伝送方式である。1ストリームのみ送信とは、選択した変調方式でマッピングした信号s1の信号を所定の処理を行いアンテナから送信する方法である。
 また、OFDMのようなマルチキャリアの伝送方式を用いており、複数のキャリアで構成された第1キャリア群、複数のキャリアで構成された第1キャリア群とは異なる第2キャリア群、・・・というように複数のキャリア群でマルチキャリア伝送を実現しており、キャリア群ごとに、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のいずれかに設定してもよく、特に、規則的に位相を変更する方法を選択した(サブ)キャリア群では、上述を実施するとよい。
 なお、本実施の説明した、プリコーディング、ベースバンド信号の入れ替え、位相変更を施す、送信装置と、本明細書で説明した内容は、組み合わせて使用することができ、特に、本実施の形態で説明した位相変更部に対し、本明細書で説明した全ての位相変更に関する内容を組み合わせて使用することは可能である。
 
(実施の形態D2)
 本実施の形態では、図4の送信装置の場合、図4の送信装置に対しOFDM方式のようなマルチキャリア方式に対応した場合、図67、図70の送信装置に対し図4のように、一つの符号化器と分配部を適用した場合において、本明細書の中で説明した規則的に位相変更を行った場合の位相変更のイニシャライズ方法について説明する。
 非特許文献12~非特許文献15に示されているように、QC(Quasi Cyclic) LDPC(Low-Density Prity-Check)符号(QC-LDPC符号でない、LDPC符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号、テイルバイティングを用いたターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの規則的に位相を変更する場合を考える。
 ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(cyclic redundancy check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
 図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、上述の送信装置に対し、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
 図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
 そして、上述の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
 同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
 次に、図71のようなフレーム構成で、送信装置が、変調信号を送信する場合を考える。図71(a)は、変調信号z1’またはz1(アンテナ312Aで送信)の時間および周波数軸におけるフレーム構成を示している。また、図71(b)は、変調信号z2(アンテナ312Bで送信)の時間および周波数軸におけるフレーム構成を示している。このとき、変調信号z1’またはz1が用いている周波数(帯)と変調信号z2が用いている周波数(帯)は同一であるものとし、同一時刻に変調信号z1’またはz1、と、変調信号z2が存在することになる。
 図71(a)に示すように、送信装置は区間Aではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第1、第2符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Bで、第1符号化ブロックを送信することになる。送信装置は区間Cで、第2符号化ブロックを送信することになる。
 送信装置は区間Dではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第3、第4、・・・、符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Eで、第3符号化ブロックを送信することになる。送信装置は区間Fで、第4符号化ブロックを送信することになる。
 図71(b)に示すように、送信装置は区間Aではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第1、第2符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Bで、第1符号化ブロックを送信することになる。送信装置は区間Cで、第2符号化ブロックを送信することになる。
 送信装置は区間Dではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第3、第4、・・・、符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Eで、第3符号化ブロックを送信することになる。送信装置は区間Fで、第4符号化ブロックを送信することになる。
 図72は、図34のように符号化ブロックを伝送する場合において、特に、第1符号化ブロックでは、変調方式として16QAMを用いた場合に使用するスロット数を示しており、第1符号化ブロックを伝送するためには、750スロットが必要となる。
 同様に、第2符号化ブロックでは、変調方式としてQPSKを用いた場合に使用するスロット数を示しており、第2符号化ブロックを伝送するためには、1500スロットが必要となる。
 図73は、図34のように符号化ブロックを伝送する場合において、特に、第3符号化ブロックでは、変調方式としてQPSKを用いた場合に使用するスロット数を示しており、第3符号化ブロックを伝送するためには、1500スロットが必要となる。
 そして、本明細書で説明したように、変調信号z1、つまり、アンテナ312Aで送信する変調信号に対しては、位相変更を行わず、変調信号z2、つまり、アンテナ312Bで送信する変調信号に対しては、位相変更を行う場合を考える。このとき、図72、図73では、位相変更を行う方法について示している。
 まず、前提として、位相変更するために、異なる位相変更値を7つ用意し、7つの位相変更値を#0、#1、#2、#3、#4、#5、#6と名付ける。また、位相変更は規則的、且つ周期的に用いるものとする。つまり、位相変更値は、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、・・・というように規則的にかつ、周期的に変更を行うものとする。
 図72に示すように、まず、第1ブロック符号化ブロックでは、750スロット存在するので、位相変更値を#0から使用を開始すると、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、・・・、#4、#5、#6、#0となり、750番目のスロットは#0を用いて終了することになる。
次に、第2符号化ブロックの各スロットに対し、位相変更を適用することになる。本明細書では、マルチキャスト通信、放送に適用する場合を想定しているので、ある受信端末は、第1符号化ブロックを必要とせず、第2符号化ブロックのみ抽出する場合が考えられる。この場合、第1符号化ブロックの最後のスロットを送信するために位相変更値#0を用いたからといって、第2符号化ブロックを伝送するために、最初に位相変更値#1を用いたものとする。すると、
 
 (a):前述の端末は、第1符号化ブロックがどのように送信されたかを監視、つまり、第1符号化ブロックの最後のスロットの送信に位相変更値がどのパターンであるかを監視し、第2符号化ブロックの最初のスロットに使用する位相変更値を推定する、
 (b):(a)を行わないために、送信装置は、第2符号化ブロックの最初のスロットに使用する位相変更値の情報を伝送する
 
という方法が考えられる。(a)の場合、端末は第1符号化ブロックの伝送を監視する必要があるため消費電力が増大してしまい、(b)の場合、データの伝送効率の低下を招くことになる。
 したがって、上述のような位相変更値の割り当てには改善の余地がある。そこで、各符号化ブロックの最初のスロットを伝送するために使用する位相変更値を固定とする方法を提案する。したがって、図72に示すように、第2符号化ブロックの最初のスロットを伝送するために使用する位相変更値は、第1符号化ブロックの最初のスロットを伝送するために用いた位相変更値と同様に、#0とする。
 同様に、図73に示すように、第3符号化ブロックの最初のスロットを伝送するために使用する位相変更値は、#3とするのではなく、第1、第2符号化ブロックの最初のスロットを伝送するために使用する位相変更値と同様に、#0とする。
 以上のようにすることで、(a)、(b)で発生する課題を抑制することができるという効果を得ることができる。
 なお、本実施の形態では、符号化ブロックごとに位相変更値をイニシャライズする方法、つまり、いずれの符号化ブロックの最初のスロットに使用する位相変更値は、#0と固定と方法について述べたが、別の方法として、フレーム単位で行うことも可能である。例えば、プリアンブルや制御シンボル伝送後の情報を伝送するためのシンボルにおいて、最初のスロットで使用する位相変更値は#0と固定としてもよい。
 
(実施の形態D3)
 なお、上述の各実施の形態では、重み付け合成部がプリコーディングに使用するプリコーディング行列を複素数で表現しているが、プリコーディング行列を実数で表現することもできる。
 つまり、例えば、2つのマッピング後の(使用した変調方式の)ベースバンド信号をs1(i)、s2(i)(ただし、iは時間、または、周波数)とし、プリコーディングに得られる2つのプリコーディング後のベースバンド信号をz1(i)、z2(i)とする。そして、マッピング後の(使用した変調方式の)ベースバンド信号をs1(i)の同相成分をIs1(i)、直交成分をQs1(i)、マッピング後の(使用した変調方式の)ベースバンド信号をs2(i)の同相成分をIs2(i)、直交成分をQs2(i)、プリコーディング後のベースバンド信号をz1(i)の同相成分をIz1(i)、直交成分をQz1(i)、プリコーディング後のベースバンド信号をz2(i)の同相成分をIz2(i)、直交成分をQz2(i)とすると、実数で構成されたプリコーディング行列Hを用いると以下の関係式が成立する。
Figure JPOXMLDOC01-appb-M000076
 ただし、実数で構成されたプリコーディング行列Hは以下のようにあらわされる。
Figure JPOXMLDOC01-appb-M000077
 このとき、a11、a12、a13、a14、a21、a22、a23、a24、a31、a32、a33、a34、a41、a42、a43、a44は実数である。ただし、{a11=0かつa12=0かつa13=0かつa14=0}が成立してはならず、{a21=0かつa22=0かつa23=0かつa24=0}が成立してはならず、{a31=0かつa32=0かつa33=0かつa34=0}が成立してはならず、{a41=0かつa42=0かつa43=0かつa44=0}が成立してはならない。そして、{a11=0かつa21=0かつa31=0かつa41=0}が成立してはならず、{a12=0かつa22=0かつa32=0かつa42=0}が成立してはならず、{a13=0かつa23=0かつa33=0かつa43=0}が成立してはならず、{a14=0かつa24=0かつa34=0かつa44=0}が成立してはならない。
 
(実施の形態E1)
 本実施の形態では、(1)図4の送信装置の場合、(2)図4の送信装置に対してOFDM方式のようなマルチキャリア方式に対応した場合、(3)図67、図70の送信装置に対して図4のように一つの符号化器と分配部を適用した場合にの3つの場合のどれにも適用できる、本明細書の中で説明した規則的に位相変更を行った場合の位相変更のイニシャライズ方法について説明する。
 非特許文献12~非特許文献15に示されているように、QC(Quasi Cyclic) LDPC(Low-Density Parity-Check)符号(QC-LDPC符号でない、LDPC符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号、テイルバイティングを用いたターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの規則的に位相を変更する場合を考える。
 ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(Cyclic Redundancy Check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
 図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、上述の送信装置に対し、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
 図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
 そして、上述の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
 同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
 次に、図71のようなフレーム構成で、送信装置が、変調信号を送信する場合を考える。図71(a)は、変調信号z1’またはz1(アンテナ312Aで送信)の時間および周波数軸におけるフレーム構成を示している。また、図71(b)は、変調信号z2(アンテナ312Bで送信)の時間および周波数軸におけるフレーム構成を示している。このとき、変調信号z1’またはz1が用いている周波数(帯)と変調信号z2が用いている周波数(帯)は同一であるものとし、同一時刻に変調信号z1’またはz1、と、変調信号z2が存在することになる。
 図71(a)に示すように、送信装置は区間Aではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第1、第2符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Bで、第1符号化ブロックを送信することになる。送信装置は区間Cで、第2符号化ブロックを送信することになる。
 送信装置は区間Dではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第3、第4、・・・、符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Eで、第3符号化ブロックを送信することになる。送信装置は区間Fで、第4符号化ブロックを送信することになる。
 図71(b)に示すように、送信装置は区間Aではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第1、第2符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Bで、第1符号化ブロックを送信することになる。送信装置は区間Cで、第2符号化ブロックを送信することになる。
 送信装置は区間Dではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第3、第4、・・・、符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Eで、第3符号化ブロックを送信することになる。送信装置は区間Fで、第4符号化ブロックを送信することになる。
 図72は、図34のように符号化ブロックを伝送する場合において、特に、第1符号化ブロックでは、変調方式として16QAMを用いた場合に使用するスロット数を示しており、第1符号化ブロックを伝送するためには、750スロットが必要となる。
 同様に、第2符号化ブロックでは、変調方式としてQPSKを用いた場合に使用するスロット数を示しており、第2符号化ブロックを伝送するためには、1500スロットが必要となる。
 図73は、図34のように符号化ブロックを伝送する場合において、特に、第3符号化ブロックでは、変調方式としてQPSKを用いた場合に使用するスロット数を示しており、第3符号化ブロックを伝送するためには、1500スロットが必要となる。
 そして、本明細書で説明したように、変調信号z1、つまり、アンテナ312Aで送信する変調信号に対しては、位相変更を行わず、変調信号z2、つまり、アンテナ312Bで送信する変調信号に対しては、位相変更を行う場合を考える。このとき、図72、図73では、位相変更を行う方法について示している。
 まず、前提として、位相変更するために、異なる位相変更値を7つ用意し、7つの位相変更値を#0、#1、#2、#3、#4、#5、#6と名付ける。また、位相変更は規則的、且つ周期的に用いるものとする。つまり、位相変更値は、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、・・・というように規則的にかつ、周期的に変更を行うものとする。
 図72に示すように、まず、第1ブロック符号化ブロックでは、750スロット存在するので、位相変更値を#0から使用を開始すると、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、・・・、#4、#5、#6、#0となり、750番目のスロットは#0を用いて終了することになる。
 次に、第2符号化ブロックの各スロットに対し、位相変更を適用することになる。本明細書では、マルチキャスト通信、放送に適用する場合を想定しているので、ある受信端末は、第1符号化ブロックを必要とせず、第2符号化ブロックのみ抽出する場合が考えられる。この場合、第1符号化ブロックの最後のスロットを送信するために位相変更値#0を用いたからといって、第2符号化ブロックを伝送するために、最初に位相変更値#1を用いたものとする。すると、
 
(a)前述の端末は、第1符号化ブロックがどのように送信されたかを監視、つまり、第1符号化ブロックの最後のスロットの送信に位相変更値がどのパターンであるかを監視し、第2符号化ブロックの最初のスロットに使用する位相変更値を推定する、
(b)(a)を行わないために、送信装置は、第2符号化ブロックの最初のスロットに使用する位相変更値の情報を伝送する
 
という方法が考えられる。(a)の場合、端末は第1符号化ブロックの伝送を監視する必要があるため消費電力が増大してしまい、(b)の場合、データの伝送効率の低下を招くことになる。
 したがって、上述のような位相変更値の割り当てには改善の余地がある。そこで、各符号化ブロックの最初のスロットを伝送するために使用する位相変更値を固定とする方法を提案する。したがって、図72に示すように、第2符号化ブロックの最初のスロットを伝送するために使用する位相変更値は、第1符号化ブロックの最初のスロットを伝送するために用いた位相変更値と同様に、#0とする。
 同様に、図73に示すように、第3符号化ブロックの最初のスロットを伝送するために使用する位相変更値は、#3とするのではなく、第1、第2符号化ブロックの最初のスロットを伝送するために使用する位相変更値と同様に、#0とする。
 以上のようにすることで、上述の(a)、(b)で発生する課題を抑制することができるという効果を得ることができる。
 なお、本実施の形態では、符号化ブロックごとに位相変更値をイニシャライズする方法、つまり、いずれの符号化ブロックの最初のスロットに使用する位相変更値は、#0と固定と方法について述べたが、別の方法として、フレーム単位で行うことも可能である。例えば、プリアンブルや制御シンボル伝送後の情報を伝送するためのシンボルにおいて、最初のスロットで使用する位相変更値は#0と固定としてもよい。
 例えば、図71において、フレームがプリアンブルから開始される、と解釈すると、第1フレームにおいて、最初の符号化ブロックは、第1符号化ブロックとなり、第2フレームにおいて、最初の符号ブロックは、第3符号化ブロックとなり、図72、図73を用いて上述で説明したようにした場合、上述の「フレーム単位で、最初のスロットで使用する位相変更値は(#0と)固定」の例となっている。
 次に、DVB(Digital Video Broadcasting)-T2(T:Terrestrial)規格を用いた放送システムに適用する場合について説明する。はじめに、DVB―T2規格を用いた放送システムのフレーム構成について説明する。
 図74は、DVB-T2規格における、放送局が送信する信号のフレーム構成の概要を示している。DVB-T2規格では、OFDM方式を用いているため、時間―周波数軸にフレームが構成されている。図74は、時間-周波数軸におけるフレーム構成を示しており、フレームは、P1 Signalling data(7401)、L1 Pre-Signalling data(7402)、L1 Post-Signalling data(7403)、Common PLP(7404)、PLP#1~#N(7405_1~7405_N)で構成されている(PLP:Physical Layer Pipe)。 (ここで、L1 Pre-Signalling data(7402)、L1 Post-Signalling data(7403)をP2シンボルと呼ぶ。)このように、P1 Signalling data(7401)、L1 Pre-Signalling data(7402)、L1 Post-Signalling data(7403)、Common PLP(7404)、PLP#1~#N(7405_1~7405_N)で構成されているフレームをT2フレームと名付けており、フレーム構成の一つの単位となっている。
 P1 Signalling data(7401)により、受信装置が信号検出、周波数同期(周波数オフセット推定も含む)を行うためのシンボルであると同時に、フレームにおけるFFT(Fast Fourier Transform)サイズの情報、SISO(Single-Input Single-Output)/MISO(Multiple-Input Single-Output)のいずれの方式で変調信号を送信するかの情報等を伝送する。(SISO方式の場合、一つの変調信号を送信する方式で、MISO方式の場合、複数の変調信号を送信する方法であり、かつ、非特許文献9、16、17に示されている時空間ブロック符号を用いている。)
 L1 Pre-Signalling data(7402)により、送信フレームで使用するガードインターバルの情報、PAPR(Peak to Average Power Ratio)を削減するために行う信号処理方法に関する情報、L1 Post-Signalling dataを伝送する際の変調方式、誤り訂正方式(FEC: Forward Error Correction)、誤り訂正方式の符号化率の情報、L1 Post-Signalling dataのサイズおよび情報サイズの情報、パイロットパターンの情報、セル(周波数領域)固有番号の情報、ノーマルモードおよび拡張モード(ノーマルモードと拡張モードでは、データ伝送に用いるサブキャリア数が異なる。)のいずれの方式を用いているかの情報等を伝送する。
 L1 Post-Signalling data(7403)により、PLPの数の情報、使用する周波数領域に関する情報、各PLPの固有番号の情報、各PLPを伝送するのに使用する変調方式、誤り訂正方式、誤り訂正方式の符号化率の情報、各PLPの送信するブロック数の情報等を伝送する。
 Common PLP(7404)、PLP#1~#N(7405_1~7405_N)は、データを伝送するための領域である。
 図74のフレーム構成では、P1 Signalling data(7401)、L1 Pre-Signalling data(7402)、L1 Post-Signalling data(7403)、Common PLP(7404)、PLP#1~#N(7405_1~6105_N)は時分割で送信されているように記載しているが、実際は、同一時刻に2種類以上の信号が存在している。その例を図75に示す。図75に示すように、同一時刻に、L1 Pre-Signalling data、L1 Post-Signalling data、Common PLPが存在していたり、同一時刻に、PLP#1、PLP#2が存在したりすることもある。つまり、各信号は、時分割および周波数分割を併用し、フレームが構成されている。
 図76は、DVB-T2規格における(例えば、放送局)の送信装置に対し、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に位相変更を行う送信方法を適用した送信装置の構成の一例を示している。
 PLP信号生成部7602は、PLP用の送信データ7601(複数PLP用のデータ)、制御信号7609を入力とし、制御信号7609に含まれる各PLPの誤り訂正符号化の情報、変調方式の情報等の情報に基づき、誤り訂正符号化、変調方式に基づくマッピングを行い、PLPの(直交)ベースバンド信号7603を出力する。
 P2シンボル信号生成部7605は、P2シンボル用送信データ7604、制御信号7609を入力とし、制御信号7609に含まれるP2シンボルの誤り訂正の情報、変調方式の情報等の情報に基づき、誤り訂正符号化、変調方式に基づくマッピングを行い、P2シンボルの(直交)ベースバンド信号7606を出力する。
 制御信号生成部7608は、P1シンボル用の送信データ7607、P2シンボル用送信データ7604を入力とし、図74における各シンボル群(P1 Signalling data(7401)、L1 Pre-Signalling data(7402)、L1 Post-Signalling data(7403)、Common PLP(7404)、PLP#1~#N(7405_1~7405_N))の送信方法(誤り訂正符号、誤り訂正符号の符号化率、変調方式、ブロック長、フレーム構成、規則的にプリコーディング行列を切り替える送信方法を含む選択した送信方法、パイロットシンボル挿入方法、IFFT(Inverse Fast Fourier Transform)/FFTの情報等、PAPR削減方法の情報、ガードインターバル挿入方法の情報)の情報を制御信号7609として出力する。
 フレーム構成部7610は、PLPのベースバンド信号7603、P2シンボルのベースバンド信号7606、制御信号7609を入力とし、制御信号に含まれるフレーム構成の情報に基づき、周波数、時間軸における並び替えを施し、フレーム構成にしたがった、ストリーム1の(直交)ベースバンド信号7611_1(マッピング後の信号、つまり、使用する変調方式に基づくベースバンド信号)、ストリーム2の(直交)ベースバンド信号7611_2(マッピング後の信号、つまり、使用する変調方式に基づくベースバンド信号)を出力する。
 信号処理部7612は、ストリーム1のベースバンド信号7611_1、ストリーム2のベースバンド信号7611_2、制御信号7609を入力とし、制御信号7609に含まれる送信方法に基づいた信号処理後の変調信号1(7613_1)および信号処理後の変調信号2(7613_2)を出力する。
 ここで特徴的な点は、送信方法として、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に位相変更を行う送信方法が選択されたとき、信号処理部は、図6、図25、図26、図27、図28、図29、図69と同様に、プリコーディング後(またはプリコーディングおよびベースバンド信号入れ替え後)の信号に位相変更を行う処理を行い、この信号処理を行われた信号が、信号処理後の変調信号1(7613_1)および信号処理後の変調信号2(7613_2)となる。
 パイロット挿入部7614_1は、信号処理後の変調信号1(7613_1)、制御信号7609を入力とし、制御信号7609に含まれるパイロットシンボルの挿入方法に関する情報に基づき、信号処理後の変調信号1(7613_1)にパイロットシンボルを挿入し、パイロットシンボル挿入後の変調信号7615_1を出力する。
 パイロット挿入部7614_2は、信号処理後の変調信号2(7613_2)、制御信号7609を入力とし、制御信号7609に含まれるパイロットシンボルの挿入方法に関する情報に基づき、信号処理後の変調信号2(7613_2)にパイロットシンボルを挿入し、パイロットシンボル挿入後の変調信号7615_2を出力する。
 IFFT(Inverse Fast Fourier Transform)部7616_1は、パイロットシンボル挿入後の変調信号7615_1、制御信号7609を入力とし、制御信号7609に含まれるIFFTの方法の情報に基づき、IFFTを施し、IFFT後の信号7617_1を出力する。
 IFFT部7616_2は、パイロットシンボル挿入後の変調信号7615_2、制御信号7609を入力とし、制御信号7609に含まれるIFFTの方法の情報に基づき、IFFTを施し、IFFT後の信号7617_2を出力する。
 PAPR削減部7618_1は、IFFT後の信号7617_1、制御信号7609を入力とし、制御信号7609に含まれるPAPR削減に関する情報に基づき、IFFT後の信号7617_1にPAPR削減のための処理を施し、PAPR削減後の信号7619_1を出力する。
 PAPR削減部7618_2は、IFFT後の信号7617_2、制御信号7609を入力とし、制御信号7609に含まれるPAPR削減に関する情報に基づき、IFFT後の信号7617_2にPAPR削減のための処理を施し、PAPR削減後の信号7619_2を出力する。
 ガードインターバル挿入部7620_1は、PAPR削減後の信号7619_1、制御信号7609を入力とし、制御信号7609に含まれるガードインターバルの挿入方法に関する情報に基づき、PAPR削減後の信号7619_1にガードインターバルを挿入し、ガードインターバル挿入後の信号7621_1を出力する。
 ガードインターバル挿入部7620_2は、PAPR削減後の信号7619_2、制御信号7609を入力とし、制御信号7609に含まれるガードインターバルの挿入方法に関する情報に基づき、PAPR削減後の信号7619_2にガードインターバルを挿入し、ガードインターバル挿入後の信号7621_2を出力する。
 P1シンボル挿入部7622は、ガードインターバル挿入後の信号7621_1、ガードインターバル挿入後の信号7621_2、P1シンボル用の送信データ7607を入力とし、P1シンボル用の送信データ7607からP1シンボルの信号を生成し、ガードインターバル挿入後の信号7621_1に対し、P1シンボルを付加し、P1シンボルを付加した後の信号7623_1と、および、ガードインターバル挿入後の信号7621_2に対し、P1シンボルを付加し、P1シンボルを付加した後の信号7623_2とを出力する。なお、P1シンボルの信号は、P1シンボルを付加した後の信号7623_1、P1シンボルを付加した後の信号7623_2両者に付加されていてもよく、また、いずれもか一方に付加されていてもよい。一方に付加されている場合、付加されている信号の付加されている区間では、付加されていない信号には、ベースバンド信号としてゼロの信号が存在することになる。
 無線処理部7624_1は、P1シンボルを付加した後の信号7623_1、制御信号7609を入力とし、周波数変換、増幅等の処理が施され、送信信号7625_1を出力する。そして、送信信号7625_1は、アンテナ7626_1から電波として出力される。
 無線処理部7624_2は、P1シンボル用処理後の信号7623_2、制御信号7609を入力とし、周波数変換、増幅等の処理が施され、送信信号7625_2を出力する。そして、送信信号7625_2は、アンテナ7626_2から電波として出力される。
 上述で説明したように、P1シンボル、P2シンボル、制御シンボル群により、各PLPの伝送方法(例えば、一つの変調信号を送信する送信方法、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に位相変更を行う送信方法)、および、使用している変調方式の情報が、端末に伝送される。このとき、端末は、情報として必要なPLPのみを切り出して、復調(信号分離、信号検波を含む)、誤り訂正復号を行うと、端末の消費電力は少なくてすむ。したがって、図71~図73を用いて説明したときと同様に、伝送方法として、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法を用いて伝送されるPLPの先頭のスロットで使用する位相変更値(#0と)固定とする方法を提案する。なお、PLPの伝送方法は上記に限ったものではなく、非特許文献9、非特許文献16、非特許文献17に示されているような時空間符号や、他の送信方法を指定することも可能である。
 例えば、図74のようなフレーム構成により、放送局が、各シンボルを送信したものとする。このとき、一例として、PLP(混乱を避けるため#1から$1と変更する)$1とPLP$Kを、放送局が、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に位相変更を用いて送信するときの、周波数―時間軸におけるフレーム構成を図77に示す。
 なお、前提として、以下の説明では、一例として、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法では、位相変更値を7つ用意し、7つの位相変更値を#0、#1、#2、#3、#4、#5、#6と名付ける。また、位相変更値は規則的、かつ、周期的に用いるものとする。つまり、位相変更値は、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、・・・というように規則的にかつ、周期的に変更を行うものとする。
 図77のように、PLP$1は、時刻T、キャリア3(図77の7701)をスロットの先頭とし、時刻T+4、キャリア4をスロットの最後(図77の7702)として、スロット(シンボル)が存在している(図77参照)。
 つまり、PLP$1にとって、時刻T、キャリア3は第1番目のスロットであり、第2番目のスロットは時刻T、キャリア4であり、第3番目のスロットは時刻T、キャリア5であり、・・・、第7番目のスロットは時刻T+1、キャリア1であり、第8番目のスロットは時刻T+1、キャリア2であり、第9番目のスロットは時刻T+1、キャリア3であり、・・・、第14番目のスロットは時刻T+1、キャリア8であり、第15番目のスロットは時刻T+2、キャリア1であり、・・・、となる。
 そして、PLP$Kは、時刻S、キャリア4(図77の7703)をスロットの先頭とし、時刻S+8、キャリア4をスロットの最後(図77の7704)として、スロット(シンボル)が存在している(図77参照)。
 つまり、PLP$Kにとって、時刻S、キャリア4は第1番目のスロットであり、第2番目のスロットは時刻S、キャリア5であり、第3番目のスロットは時刻S、キャリア6であり、・・・、第5番目のスロットは時刻S、キャリア8であり、第9番目のスロットは時刻S+1、キャリア1であり、第10番目のスロットは時刻S+1、キャリア2であり、・・・、第16番目のスロットは時刻S+1、キャリア8であり、第17番目のスロットは時刻S+2、キャリア1であり、・・・、となる。
 なお、各PLPの先頭のスロット(シンボル)の情報と最後のスロット(シンボル)の情報を含む各PLPが使用しているスロットの情報は、P1シンボル、P2シンボル、制御シンボル群等の制御シンボルにより、伝送されていることになる。
 このとき、図71~図73を用いて説明したときと同様に、PLP$1の先頭のスロットである、時刻T、キャリア3(図77の7701)のスロットは、位相変更値#0を用いて位相変更を行うものとする。同様に、PLP$K-1の最後のスロットである、時刻S、キャリア3(図77の7705)をスロットで用いている、位相変更値の番号にかかわらず、PLP$Kの先頭のスロットである、時刻S、キャリア4(図77の7703)のスロットは、プリコーディング行列#0を用いて位相変更を行うものとする。(ただし、これまで説明したように、位相変更を行う前に、プリコーディング(または、プリコーディングおよびベースバンド信号入れ替え)が行われているものとする。)
 また、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法を用いて送信する他のPLPの先頭のスロットは、プリコーディング行列#0を用いてプリコーディングを行うものとする。
 以上のようにすることで、上述で述べた実施の形態D2で説明した(a)および(b)の課題を抑制することができるという効果を得ることができる。
 当然であるが、受信装置は、P1シンボル、P2シンボル、制御シンボル群等の制御シンボルに含む各PLPが使用しているスロットの情報から必要としているPLPを抽出して復調(信号分離、信号検波を含む)、誤り訂正復号を行うことになる。また、受信装置は、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法の位相変更規則について、予め知っており、(複数の規則がある場合は、送信装置が、使用する規則の情報を伝送し、受信装置はその情報を得て、使用している規則を知ることになる。)各PLPの先頭のスロットの番号に基づいて、位相変更の切り替え規則のタイミングを合わせることで、情報シンボルの復調(信号分離、信号検波を含む)が可能となる。
 次に、図78のようなフレーム構成で(図78のシンボル群で構成されるフレームをメインフレームと呼ぶ。)、放送局(基地局)が変調信号を送信する場合を考える。図78において、図74と同様に動作するものについては、同一符号を付している。特徴的な点は、(端末の)受信装置において、受信信号のゲインコントロールを調整しやすいように、メインフレームにおいて、一つの変調信号を送信するサブフレームと、複数の変調信号を送信するサブフレームに分離されている点である。なお、「一つの変調信号を送信する」とは、一つの変調信号を一つのアンテナから送信する場合と同一の変調信号を複数生成し、この複数の信号を複数の異なるアンテナから送信する場合も含むものとする。
 図78において、PLP#1(7405_1)~PLP#N(7405_N)により、一つの変調信号を送信するサブフレーム7800を構成しており、サブフレーム7800は、PLPのみで構成されているとともに、複数変調信号により送信するPLPは存在しない。そして、PLP$1(7802_1)~PLP$M(7802_M)により、複数の変調信号を送信するサブフレーム7801を構成しており、サブフレーム7801は、PLPのみで構成されているとともに、一つの変調信号を送信するPLPは存在しない。
 このとき、これまで説明したときと同様に、サブフレーム7801において、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法を用いている場合、PLP(PLP$1(7802_1)~PLP$M(7802_M))の先頭のスロットは、プリコーディング行列#0を用いてプリコーディングを行うものとする(プリコーディング行列のイニシャライズ、と呼ぶ)。ただし、PLP$1(7802_1)~PLP$M(7802_M)において、別の送信方法、例えば、位相変更を行わないプリコーディング方法を用いる送信方法、時空間ブロック符号を用いる送信方法、空間多重MIMO伝送方法(図23参照)のいずれかを用いているPLPは、上記で述べたプリコーディング行列のイニシャライズは関係ないことになる。
 また、図79のように、PLP$1は、第Xのメインフレームの複数の変調信号を送信するサブフレームの最初のPLPであり、PLP$1’は、第Y(ただしXとは異なる)のメインフレームの複数の変調信号を送信するサブフレームの最初のPLPであるものとする。そして、PLP$1、PLP$1’いずれもプリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法を用いているものとする。なお、図79において、図77と同様のものは、同一符号を付している。
 このとき、第Xのメインフレームの複数の変調信号を送信するサブフレームの最初のPLPであるPLP$1の先頭のスロット(図79の7701(時刻T、キャリア3のスロット))は、位相変更値#0を用いて位相変更を行うものとする。
 同様に、第Yのメインフレームの複数の変調信号を送信するサブフレームの最初のPLPであるPLP$1’の先頭のスロット(図79の7901(時刻T’、キャリア7のスロット))は、位相変更値#0を用いて位相変更を行うものとする。
 以上のように、各メインフレームにおいて、複数の変調信号を送信するサブフレームの最初のPLPの最初のスロットにおいて、位相変更値#0を用いて位相変更を行うものとすることを特徴とする。
 このようにすることも、実施の形態D2で説明した(a)および(b)の課題を抑制するためには重要となる。
 なお、PLP$1の先頭のスロット(図79の7701(時刻T、キャリア3のスロット))は位相変更値#0を用いて位相変更を行っているので、周波数軸に位相変更値を更新するとした場合、時刻T、キャリア4のスロットは位相変更値#1を用いて位相変更を行い、時刻T、キャリア5のスロットは位相変更値#2を用いて位相変更を行い、時刻T、キャリア6のスロットは位相変更値#3を用いて位相変更を行う、・・・、とする。
 同様に、PLP$1’の先頭のスロット(図79の7901(時刻T’、キャリア7のスロット))は位相変更値#0を用いて位相変更を行っているので、周波数軸に位相変更値を更新するとした場合、時刻T’、キャリア8のスロットは位相変更値#1を用いて位相変更を行い、時刻T’+1、キャリア1のスロットは位相変更値#2を用いて位相変更を行い、時刻T’+2、キャリア1のスロットは位相変更値#3を用いて位相変更を行い、時刻T’+3、キャリア1のスロットは位相変更値#4を用いて位相変更を行う、・・・、とする。
 なお、本実施の形態は、図4の送信装置の場合、図4の送信装置に対しOFDM方式のようなマルチキャリア方式に対応した場合、図67、図70の送信装置に対し図4のように、一つの符号化器と分配部を適用した場合を例に説明したが、図3の送信装置、図12の送信装置、図67の送信装置、図70の送信装置のように、s1、s2の2つのストリームを送信し、かつ、送信装置が、2つの符号化器を有している場合についても、本実施の形態で説明した位相変更値のイニシャライズを適用することは可能である。
 なお、本明細書の発明に関連する送信装置の図面、図3、図4、図12、図13、図51、図52、図67、図70、図76等で、2つの送信アンテナから送信される変調信号をそれぞれ、変調信号#1、変調信号#2としたとき、変調信号#1の平均送信電力と変調信号#2の平均送信電力はどのように設定しても良い。例えば、両変調信号の平均送信電力を異なるように設定する場合、一般的な無線通信システムで用いられている送信電力制御の技術を適用することで、変調信号#1の平均送信電力と変調信号#2の平均送信電力を異なるように設定できる。このとき、送信電力制御は、ベースバンド信号の状態(例えば、用いる変調方式のマッピング時点で、送信電力制御を行う)で、信号の電力制御を行ってもよいし、アンテナの手前の電力増幅器(パワーアンプ)で、送信電力制御を行ってもよい。
 
(実施の形態F1)
 実施の形態1-4、実施の形態A1、実施の形態C1-C7、実施の形態D1-D3及び実施の形態E1で説明したプリコーディング後の変調信号に対し、規則的に位相を変更する方法は、I-Q平面にマッピングされた任意のベースバンド信号s1とs2に対して適用可能である。そのため、実施の形態1-4、実施の形態A1、実施の形態C1-C7、実施の形態D1-D3及び実施の形態E1では、ベースバンド信号s1とs2について詳細に説明していない。一方、例えば、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を、誤り訂正符号化されたデータから生成されたベースバンド信号s1とs2に対して適用する場合、s1とs2の平均電力(平均値)を制御することによりさらに良好な受信品質を得られる可能性がある。本実施の形態では、誤り訂正符号化されたデータから生成されたベースバンド信号s1とs2に対して、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を適用する場合の、s1とs2の平均電力(平均値)の設定方法について述べる。
 ここでは、一例として、ベースバンド信号s1に対して適用する変調方式がQPSK、ベースバンド信号s2に対して適用する変調方式が16QAMとして説明をする。
 s1の変調方式がQPSKであるので、s1は1シンボルあたり2ビットのデータを伝送することになる。この伝送する2ビットをb0、b1と名付ける。これに対して、s2の変調方式は16QAMであるので、s2は1シンボルあたり4ビットのデータを伝送することになる。この伝送する4ビットをb2、b3、b4、b5と名付ける。送信装置は、s1の1シンボルとs2の1シンボルで構成される1スロットを送信するので、1スロットあたり、b0、b1、b2、b3、b4、b5の6ビットのデータを伝送することになる。
 例えば、I-Q平面における16QAMの信号点配置の一例である図80では、(b2、b3、b4、b5)=(0、0、0、0)は(I、Q)=(3×g、3×g)に、(b2、b3、b4、b5)=(0、0、0、1)は(I、Q)=(3×g、1×g)に、(b2、b3、b4、b5)=(0、0、1、0)は(I、Q)=(1×g、3×g)に、(b2、b3、b4、b5)=(0、0、1、1)は(I、Q)=(1×g、1×g)に、(b2、b3、b4、b5)=(0、1、0、0)は(I、Q)=(3×g、-3×g)に、・・・、(b2、b3、b4、b5)=(1、1、1、0)は(I、Q)=(-1×g、-3×g)に、(b2、b3、b4、b5)=(1、1、1、1)は(I、Q)=(-1×g、-1×g)にマッピングされる。なお、図80の右肩に示すb2からb5は、それぞれI-Q平面に示す数値のそれぞれのビットとの並びを示している。
 また、I-Q平面におけるQPSKの信号点配置の一例である図81では、(b0、b1)=(0、0)は(I、Q)=(1×h、1×h)に、(b0、b1)=(0、1)は(I、Q)=(1×h、-1×h)に、(b0、b1)=(1、0)は(I、Q)=(-1×h、1×h)に、(b0、b1)=(1、1)は(I、Q)=(-1×h、-1×h)に、マッピングされる。なお、図81の右肩に示すb0、b1は、それぞれI-Q平面に示す数値のそれぞれのビットとの並びを示している。
 ここで、s1の平均電力とs2の平均電力を等しくした場合、つまり、図81に示すhが下記式(78)であらわされ、図80に示すgが下記式(79)であらわされる場合を仮定する。
Figure JPOXMLDOC01-appb-M000078
Figure JPOXMLDOC01-appb-M000079
 この場合の受信装置が得る対数尤度比の関係を図82に示す。図82は、受信装置が対数尤度比を求めたとき、上記b0からb5の対数尤度比の絶対値を模式的に示した図である。図82において、8200はb0の対数尤度比の絶対値、8201はb1の対数尤度比の絶対値、8202はb2の対数尤度比の絶対値、8203はb3の対数尤度比の絶対値、8204はb4の対数尤度比の絶対値、8205はb5の対数尤度比の絶対値である。このとき、図82に示されるように、QPSKにより伝送されたb0およびb1の対数尤度比の絶対値と、16QAMにより伝送されたb2からb5の対数尤度比の絶対値とを比較すると、b0およびb1の対数尤度比の絶対値は、b2からb5の対数尤度比の絶対値より大きい。これは、即ち、b0およびb1の受信装置における信頼度がb2からb5の受信装置における信頼度よりも高いことになる。これは、図80においてgを式(79)のとおりとした場合、QPSKのI-Q平面における信号点の最小ユークリッド距離が、
Figure JPOXMLDOC01-appb-M000080
であるのに対し、図81において、hを式(78)のとおりとした場合、QPSKのI-Q平面における信号点の最少ユークリッド距離は、
Figure JPOXMLDOC01-appb-M000081
となるからである。
 受信装置がこの状況で誤り訂正復号(例えば、通信システムがLDPC符号を用いている場合、sum-product復号等の信頼度伝播復号)を行った場合、「b0およびb1の対数尤度比の絶対値が、b2からb5の対数尤度比の絶対値より大きい」という信頼度の差により、b2からb5の対数尤度比の絶対値の影響を受け、受信装置のデータの受信品質が劣化するという課題が発生する。
 この課題を克服するためには、図83に示すように、図82と比較して、「b0およびb1の対数尤度比の絶対値とb2からb5の対数尤度比の絶対値との差を小さく」すればよい。
 そこで、「s1の平均電力(平均値)とs2の平均電力(平均値)を異なるようにする」ことを考える。図84、図85に、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)、および、重み付け合成(プリコーディング)部に関連する信号処理部の構成の例を示している。なお、図84において、図3、図6と同様に動作するものについては同一符号を付した。また、図85において、図3、図6、図84と同様に動作するものについては同一符号を付した。
 以下、パワー変更部の動作について、いくつかの例を説明する。
(例1)
 まず、図84を用いて、動作の一例を説明する。なお、s1(t)は、変調方式QPSKのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図81のとおりであり、hは式(78)のとおりである。また、s2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
 パワー変更部(8401B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。なお、uは実数とし、u>1.0とする。プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまり、ejθ(t)と表すことができる)とすると、次式が成立する。
Figure JPOXMLDOC01-appb-M000082
 したがって、QPSKの平均電力と16QAMの平均電力の比は1:uと設定することになる。これにより、図83に示す対数尤度比の絶対値が得られる受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
 例えば、QPSKの平均電力と16QAMの平均電力の比1:uについてuを、
Figure JPOXMLDOC01-appb-M000083
と設定すれば、QPSKのI-Q平面における信号点の最小ユークリッド距離と、16QAMのI-Q平面における信号点の最小ユークリッド距離とを等しくすることができ、良好な受信品質を得られる可能性がある。
 ただし、2つの異なる変調方式のI-Q平面における信号点の最小ユークリッド距離を等しくするという条件は、あくまで、QPSKの平均電力と16QAMの平均電力との比を設定する方法の一例である。例えば、誤り訂正符号化に用いる誤り訂正符号の符号長や符号化率等のその他の条件によっては、パワー変更のための値uの値を2つの異なる変調方式のI-Q平面における信号点の最小ユークリッド距離が等しくなる値とは、異なる値(大きな値や小さな値)に設定する方が、良好な受信品質を得られる可能性がある。また、受信時に得られる候補信号点の最初距離を大きくすること、を考えると、例えば、
Figure JPOXMLDOC01-appb-M000084
と設定する方法が一例として考えられるが、システムとして求められる要求条件によって、適宜設定されることになる。詳細については後述する。
 従来、送信電力制御は、一般的に、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
 上述で、「制御信号(8400)により、パワー変更のための値uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値uの設定手法について詳しく説明する。
(例1-1)
 送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をuLXという形で記載することとする。
 例えば、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。このとき、例えば、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもある。重要なことは、(uL1000、uL1500、uL3000)の中に、2つ以上の値が存在することである。)
 上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例1-2)
 送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をurXという形で記載することとする。
 例えば、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。このとき、例えば、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、ur1=ur2であることもある。重要なことは、(ur1、ur2、ur3)の中に、2つ以上の値が存在することである。)
 なお、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
 上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例1-3)
 受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
 送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 ここでは、例として、s1の変調方式をQPSKに固定するものとし、制御信号により、s2の変調方式を16QAMから64QAMに変更する(または、16QAM、64QAMのいずれかの設定が可能な)場合について考える。なお、s2(t)の変調方式を64QAMとする場合、s2(t)のマッピング方法としては、図86のとおりであり、図86においてkは
Figure JPOXMLDOC01-appb-M000085
であるとする。このようなマッピングを行うと、QPSKのとき図81に対しhを式(78)としたとき、と、16QAMのとき図80に対しgを式(79)としたときと、平均電力は等しくなる。また、64QAMのマッピングは、6ビットの入力から、I,Qの値が決定することになり、この点については、QPSK、16QAMのマッピングの説明と同様に実施することができる。
 つまり、I-Q平面における64QAMの信号点配置の一例である図86では、(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)は(I、Q)=(7×k、7×k)に、(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、1)は(I、Q)=(7×k、5×k)に、(b0、b1、b2、b3、b4、b5)=(0、0、0、0、1、0)は(I、Q)=(5×k、7×k)に、(b0、b1、b2、b3、b4、b5)=(0、0、0、0、1、1)は(I、Q)=(5×k、5×k)に、(b0、b1、b2、b3、b4、b5)=(0、0、0、1、0、0)は(I、Q)=(7×k、1×k)に、・・・・、(b0、b1、b2、b3、b4、b5)=(1、1、1、1、1、0)は(I、Q)=(-3×k、-1×k)に、(b0、b1、b2、b3、b4、b5)=(1、1、1、1、1、1)は(I、Q)=(-3×k、-3×k)にマッピングされる。なお、図86の右肩に示すb0からb5は、それぞれI-Q平面に示す数値のそれぞれのビットとの並びを示している。
 図84において、s2の変調方式が16QAMのときパワー変更部8401Bは、u=u16と設定し、s2の変調方式が64QAMのときu=u64と設定するものとする。このとき、最小ユークリッド距離の関係から、u16<u64とすると、s2の変調方式が16QAM、64QAMのうちいずれの場合であっても、受信装置が高いデータの受信品質を得ることができる。
 なお、上述の説明において、「s1の変調方式をQPSKに固定」することとして説明したが、「s2の変調方式をQPSKに固定する」ことが考えられる。このとき、固定の変調方式(ここでは、QPSK)に対しては、パワー変更を行わず、複数の設定可能な変調方式(ここでは、16QAMと64QAM)に対しては、パワー変更を行うものとする。つまり、この場合、送信装置は、図84に示す構成ではなく、図84に示した構成からパワー変更部8401Bを除き、s1(t)側にパワー変更部を設ける構成となる。すると、固定の変調方式(ここでは、QPSK)をs2に設定したとき、以下の関係式(86)が成立する。
Figure JPOXMLDOC01-appb-M000086
 すると、「s2の変調方式をQPSKに固定し、s1の変調方式を16QAMから64QAMに変更(16QAM、64QAMいずれかに設定)」しても、u16<u64とするとよい。(なお、16QAMのときにパワー変更のために乗算された値がu16であり、64QAMのときにパワー変更のために乗算された値がu64であり、QPSKはパワー変更が行われないものとする。)
 また、(s1の変調方式、s2の変調方式)のセットを、(QPSK、16QAM)または(16QAM、QPSK)または(QPSK、64QAM)または(64QAM、QPSK)のいずれかの設定が可能な場合、u16<u64の関係を満たすとよい。
 以下、上述の内容を、一般化した場合について説明する。
 s1の変調方式を固定とし、I-Q平面における信号点の数がc個の変調方式Cとする。また、s2の変調方式として、I-Q平面における信号点の数がa個の変調方式AとI-Q平面における信号点の数がb個の変調方式B(a>b>c)のいずれかの設定が可能であるとする。(ただし、変調方式Aのs2時点の平均電力値(平均値)と変調方式Bのs2時点の平均電力値(平均値)とは等しいものとする。)
 このとき、s2の変調方式として、変調方式Aを設定したときに、設定するパワー変更のための値をuとする。また、s2の変調方式として、変調方式Bを設定したときに、設定するパワー変更のための値をuとする。このとき、u<uとすると、受信装置が高いデータの受信品質を得ることができる。
 固定の変調方式(ここでは、変調方式C)に対しては、パワー変更を行わず、複数の設定可能な変調方式(ここでは、変調方式Aと変調方式B)に対し、パワー変更を行うものと考える。すると、「s2の変調方式を変調方式Cと固定とし、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」する場合でも、u<uとするとよい。また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、u<uの関係を満たすとよい。
(例2)
 図84を用いて、例1とは異なる動作の例を説明する。なお、s1(t)は、変調方式64QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図86のとおりであり、kは式(85)のとおりである。また、s2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
 パワー変更部(8401B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。なお、uは実数とし、u<1.0とする。プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまり、ejθ(t)と表すことができる)とすると、式(82)が成立する。
 したがって、64QAMの平均電力と16QAMの平均電力の比は1:uと設定することになる。これにより、図83のような受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
 従来、送信電力制御は、一般的には、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
 上述で、「制御信号(8400)により、パワー変更のための値uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値uの設定手法について詳しく説明する。
(例2-1)
 送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をuLXという形で記載することとする。
 例えば、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。このとき、例えば、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもある。重要なことは、(uL1000、uL1500、uL3000)の中に、2つ以上の値が存在することである。)
 上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例2-2)
 送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をurxという形で記載することとする。
 例えば、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。このとき、例えば、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、ur1=ur2であることもある。重要なことは、(ur1、ur2、ur3)の中に、2つ以上の値が存在することである。)
 なお、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
 上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例2-3)
 受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
 送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 ここでは、例として、s1の変調方式を64QAMに固定するものとし、制御信号により、s2の変調方式を16QAMからQPSKに変更する(または、16QAM、QPSKのいずれかの設定が可能な)場合について考える。s1の変調方式を64QAMとする場合、s1(t)のマッピング方法としては、図86のとおりであり、図86においてkは式(85)である。s2の変調方式を16QAMとする場合、s2(t)のマッピング方法としては、図80のとおりであり、図80においてgは式(79)であり、また、s2(t)の変調方式をQPSKとする場合、s2(t)のマッピング方法としては、図81のとおりであり、図81においてhは式(78)であるとする。
 このようなマッピングを行うと、16QAMの場合とQPSKの場合とで平均電力(平均値)は等しくなる。
 図84において、s2の変調方式が16QAMのときパワー変更部8401Bは、u=u16と設定し、s2の変調方式がQPSKのときu=uと設定するものとする。このとき、最小ユークリッド距離の関係から、u<u16とすると、s2の変調方式が16QAM、QPSKのうちいずれの場合であっても、受信装置が高いデータの受信品質を得ることができる。
 なお、上述の説明において、「s1の変調方式を64QAMと固定」として説明したが、「s2の変調方式を64QAMと固定とし、s1の変調方式を16QAMからQPSKに変更(16QAM、QPSKいずれかに設定)」しても、u<u16とするとよい(例1-3での説明と同様に考えればよい。)。(なお、16QAMのときにパワー変更のために乗算された値がu16であり、QPSKのときにパワー変更のために乗算された値がuであり、64QAMはパワー変更が行われないものとする。)また、(s1の変調方式、s2の変調方式)のセットを、(64QAM、16QAM)または(16QAM、64QAM)または(64QAM、QPSK)または(QPSK、64QAM)のいずれかの設定が可能な場合、u<u16の関係を満たすとよい。
 以下、上述の内容を、一般化した場合について説明する。
 s1の変調方式を固定とし、I-Q平面における信号点の数がc個の変調方式Cとする。また、s2の変調方式として、I-Q平面における信号点の数がa個の変調方式AとI-Q平面における信号点の数がb個の変調方式B(c>b>a)のいずれかの設定が可能であるとする。(ただし、変調方式Aのs2時点の平均電力値(平均値)と変調方式Bのs2時点の平均電力値(平均値)とは等しいものとする。)
 このとき、s2の変調方式として、変調方式Aを設定したときに、設定するパワー変更のための値をuとする。また、s2の変調方式として、変調方式Bを設定したときに、設定するパワー変更のための値をuとする。このとき、u<uとすると、受信装置が高いデータの受信品質を得ることができる。
 固定の変調方式(ここでは、変調方式C)に対しては、パワー変更を行わず、複数の設定可能な変調方式(ここでは、変調方式Aと変調方式B)に対し、パワー変更を行うものと考える。すると、「s2の変調方式を変調方式Cに固定し、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」する場合でも、u<uとするとよい。また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、u<uの関係を満たすとよい。
(例3)
 図84を用いて、例1とは異なる動作の例を説明する。なお、s1(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。また、s2(t)は、変調方式64QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図86のとおりであり、kは式(85)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
 パワー変更部(8401B)は、変調方式64QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(追加400)に基づき、設定したパワー変更のための値をuとすると、変調方式64QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。なお、uは実数とし、u>1.0とする。プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまり、ejθ(t)と表すことができる)とすると、式(82)が成立する。
 したがって、16QAMの平均電力と64QAMの平均電力の比は1:uと設定することになる。これにより、図83のような受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
 従来、送信電力制御は、一般的には、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
 上述で、「制御信号(8400)により、パワー変更のための値uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値uの設定手法について詳しく説明する。
(例3-1)
 送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をuLXという形で記載することとする。
 例えば、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。このとき、例えば、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもある。重要なことは、(uL1000、uL1500、uL3000)の中に、2つ以上の値が存在することである。)
 上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例3-2)
 送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をurxという形で記載することとする。
 例えば、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。このとき、例えば、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、ur1=ur2であることもある。重要なことは、(ur1、ur2、ur3)の中に、2つ以上の値が存在することである。)
 なお、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
 上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例3-3)
 受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
 送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 ここでは、例として、s1の変調方式を16QAMに固定するものとし、制御信号により、s2の変調方式を64QAMからQPSKに変更する(または、64QAM、QPSKのいずれかの設定が可能な)場合について考える。s1の変調方式を16QAMとする場合、s2(t)のマッピング方法としては、図80のとおりであり、図80においてgは式(79)である。s2の変調方式を64QAMとする場合、s1(t)のマッピング方法としては、図86のとおりであり、図86においてkは式(85)であり、また、s2(t)の変調方式をQPSKとする場合、s2(t)のマッピング方法としては、図81のとおりであり、図81においてhは式(78)であるとする。
 このようなマッピングを行うと、16QAMの場合とQPSKの場合とで平均電力は等しくなる。
 図84において、s2の変調方式が64QAMのときu=u64設定し、s2の変調方式がQPSKのときu=uと設定するものとする。このとき、最小ユークリッド距離の関係から、u<u64とすると、s2の変調方式が16QAM、64QAMいずれのときも、受信装置が高いデータの受信品質を得ることができる。
 なお、上述の説明において、「s1の変調方式を16QAMに固定」するとして説明したが、「s2の変調方式を16QAMに固定し、s1の変調方式を64QAMからQPSKに変更(64QAM、QPSKいずれかに設定)」した場合であっても、u<u64とするとよい(例1-3での説明と同様に考えればよい。)。(なお、64QAMのときにパワー変更のために乗算された値がu64であり、QPSKのときにパワー変更のために乗算された値がuであり、16QAMはパワー変更が行われないものとする。)また、(s1の変調方式、s2の変調方式)のセットを、(16QAM、64QAM)または(64QAM、16QAM)または(16QAM、QPSK)または(QPSK、16QAM)のいずれかの設定が可能な場合、u<u64の関係を満たすとよい。
 以下、上述の内容を、一般化した場合について説明する。
 s1の変調方式を固定とし、I-Q平面における信号点の数がc個の変調方式Cとする。また、s2の変調方式として、I-Q平面における信号点の数がa個の変調方式AとI-Q平面における信号点の数がb個の変調方式B(c>b>a)のいずれかの設定が可能であるとする。(ただし、変調方式Aのs2時点の平均電力値(平均値)と変調方式Bのs2時点の平均電力値(平均値)とは等しいものとする。)
 このとき、s2の変調方式として、変調方式Aを設定したときに、設定するパワー変更のための値をuとする。また、s2の変調方式として、変調方式Bを設定したときに、設定するパワー変更のための値をuとする。このとき、u<uとすると、受信装置が高いデータの受信品質を得ることができる。
 固定の変調方式(ここでは、変調方式C)に対しては、パワー変更を行わず、複数の設定可能な変調方式(ここでは、変調方式Aと変調方式B)に対し、パワー変更を行うものと考える。すると、「s2の変調方式を変調方式Cに固定し、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」する場合でも、u<uとするとよい。また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、u<uの関係を満たすとよい。
(例4)
 上述では、s1、s2のうち、一方のパワーを変更する場合について述べたが、ここでは、s1、s2の両者のパワーを変更する場合について説明する。
 図85を用いて、動作の一例を説明する。なお、s1(t)は、変調方式QPSKのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図81のとおりであり、hは式(78)のとおりである。また、s2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
 パワー変更部(8401A)は、変調方式QPSKのベースバンド信号(マッピング後の信号)307A、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をvとすると、変調方式QPSKのベースバンド信号(マッピング後の信号)307Aをv倍した信号(8402A)を出力する。
 パワー変更部(8401B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。そして、u=v×w(w>1.0)とする。
 規則的に位相を変更する方法におけるプリコーディング行列をF[t]とすると、次式(87)が成立する。
 プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまりejθ(t)と表すことができる)とすると、次式(87)が成立する。
Figure JPOXMLDOC01-appb-M000087
 したがって、QPSKの平均電力と16QAMの平均電力の比はv:u=v:v×w=1:wと設定することになる。これにより、図83のような受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
 なお、式(83)、式(84)を考慮すると、QPSKの平均電力と16QAMの平均電力の比はv:u=v:v×w=1:w=1:5あるいはQPSKの平均電力と16QAMの平均電力の比はv:u=v:v×w=1:w=1:2が有効な例として考えられるが、システムとして求められる要求条件によって、適宜設定することが可能である。
 従来、送信電力制御は、一般的に、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
 上述で、「制御信号(8400)により、パワー変更のための値v、uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値v、uを設定について詳しく説明する。
(例4-1)
 送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。同様にパワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値v、uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をそれぞれ、vLX、uLXという形で記載することとする。
 例えば、ブロック長として1000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL3000を設定する。
 一方、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。
 このとき、例えば、vL1000、vL1500、vL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもあり、また、vL1000=vL1500であることもある。重要なことは、(vL1000、vL1500、vL3000)のセットの中に、2つ以上の値が存在することである。また、(uL1000、uL1500、uL3000)のセットの中に、2つ以上の値が存在することである。)なお、vLXとuLXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
 上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値uLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値uLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが一つの重要な点であり、また、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値vLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値vLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例4-2)
 送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。また、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値v、uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をそれぞれ、vrx、urxという形で記載することとする。
 例えば、符号化率としてr1が選択された場合、パワー変更部(8401A)はパワー変更のための値vr1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401A)はパワー変更のための値vr2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401A)はパワー変更のための値vr3を設定する。
 また、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。
 このとき、例えば、vr1、vr2、vr3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、vr1=vr2であることもあり、また、ur1=ur2であることもある。重要なことは、(vr1、vr2、vr3)のセットの中に、2つ以上の値が存在することである。また、(ur1、ur2、ur3)のセットの中に、2つ以上の値が存在することである。)なお、vrXとurXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
 また、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
 上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値urxが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値urxの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点であり、また、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値vrXが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値vrXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例4-3)
 受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
 送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 ここでは、例として、s1の変調方式をQPSKに固定とし、制御信号により、s2の変調方式を16QAMから64QAMに変更する(または、16QAM、64QAMのいずれかの設定が可能な)場合について考える。s1の変調方式をQPSKとする場合、s1(t)のマッピング方法としては、図81のとおりであり、図81においてhは式(78)である。s2の変調方式を16QAMとする場合、s2(t)のマッピング方法としては、図80のとおりであり、図80においてgは式(79)であり、また、s2(t)の変調方式を64QAMとする場合、s2(t)のマッピング方法としては、図86のとおりであり、図86においてkは式(85)であるとする。
 図85において、s1の変調方式をQPSKとし、s2の変調方式が16QAMとしたとき、v=αとし、u=α×w16設定するものとする。このとき、QPSKの平均電力と16QAMの平均電力の比はv:u=α:α×w16 =1:w16 となる。
 そして、図85において、s1の変調方式をQPSKとしs2の変調方式が64QAMとしたとき、v=βとし、u=β×w64設定するものとする。このとき、QPSKの平均電力と64QAMの平均電力の比はv:u=β:β×w64 =1:w64 となる。このとき、最小ユークリッド距離の関係から、1.0<w16<w64とすると、s2の変調方式が16QAM、64QAMいずれのときも、受信装置が高いデータの受信品質を得ることができる。
 なお、上述の説明において、「s1の変調方式をQPSKに固定」するとして説明したが、「s2の変調方式をQPSKに固定する」ことが考えられる。このとき、固定の変調方式(ここでは、QPSK)に対しては、パワー変更を行わず、複数の設定可能な変調方式(ここでは、16QAMと64QAM)に対し、パワー変更を行うものとする。すると、固定の変調方式(ここでは、QPSK)をs2に設定したとき、以下の関係式(88)が成立する。
Figure JPOXMLDOC01-appb-M000088
 すると、「s2の変調方式をQPSKに固定し、s1の変調方式を16QAMから64QAMに変更(16QAM、64QAMいずれかに設定)」しても、1.0<w16<w64とするとよい。(なお、16QAMのときにパワー変更のために乗算された値がu=α×w16であり、64QAMのときにパワー変更のために乗算された値がu=β×w64であり、QPSKのパワー変更のための値は、複数の設定可能な変調方式が16QAMのときv=αであり、複数の設定可能な変調方式が64QAMのときv=βとなる。)また、(s1の変調方式、s2の変調方式)のセットを、(QPSK、16QAM)または(16QAM、QPSK)または(QPSK、64QAM)または(64QAM、QPSK)のいずれかの設定が可能な場合、1.0<w16<w64の関係を満たすとよい。
 以下、上述の内容を、一般化した場合について説明する。
 一般化した場合、s1の変調方式を固定とし、I-Q平面における信号点の数がc個の変調方式Cとする。s2の変調方式として、I-Q平面における信号点の数がa個の変調方式AとI-Q平面における信号点の数がb個の変調方式B(a>b>c)のいずれかの設定が可能であるとする。このとき、s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Aを設定したときの、その平均電力の比を1:w とする。s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Bを設定したときの、その平均電力の比を1:w とする。このとき、w<wとすると、受信装置が高いデータの受信品質を得ることができる。
 したがって、上述の例では「s1の変調方式を変調方式Cに固定」するとして説明したが、「s2の変調方式を変調方式Cに固定し、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」した場合であっても、平均電力に関し、w<wとするとよい。(このとき、上述と同様に、変調方式Cの平均電力を1とした場合、変調方式Aの平均電力がw であり、変調方式Bの平均電力がw である。)また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、平均電力に関し、w<wの関係を満たすとよい。
(例5)
 図85を用いて、例4とは異なる動作の例を説明する。なお、s1(t)は、変調方式64QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図86のとおりであり、kは式(85)のとおりである。また、s2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
 パワー変更部(8401A)は、変調方式64QAMのベースバンド信号(マッピング後の信号)307A、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をvとすると、変調方式64QAMのベースバンド信号(マッピング後の信号)307Aをv倍した信号(8402A)を出力する。
 パワー変更部(8401B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。そして、u=v×w(w<1.0)とする。
 プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまりejθ(t)と表すことができる)とすると、上述の式(87)が成立する。
 したがって、64QAMの平均電力と16QAMの平均電力の比はv:u=v:v×w=1:wと設定することになる。これにより、図83のような受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
 従来、送信電力制御は、一般的に、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
 上述で、「制御信号(8400)により、パワー変更のための値v、uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値v、uを設定について詳しく説明する。
(例5-1)
 送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。同様にパワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値v、uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をそれぞれ、vLX、uLXという形で記載することとする。
 例えば、ブロック長として1000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL3000を設定する。
 一方、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。
 このとき、例えば、vL1000、vL1500、vL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもあり、また、vL1000=vL1500であることもある。重要なことは、(vL1000、vL1500、vL3000)のセットの中に、2つ以上の値が存在することである。また、(uL1000、uL1500、uL3000)のセットの中に、2つ以上の値が存在することである。)なお、vLXとuLXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
 上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値uLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値uLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが一つの重要な点であり、また、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値vLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値vLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例5-2)
 送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。また、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値v、uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をそれぞれ、vrx、urxという形で記載することとする。
 例えば、符号化率としてr1が選択された場合、パワー変更部(8401A)はパワー変更のための値vr1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401A)はパワー変更のための値vr2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401A)はパワー変更のための値vr3を設定する。
 また、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。
 このとき、例えば、vr1、vr2、vr3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、vr1=vr2であることもあり、また、ur1=ur2であることもある。重要なことは、(vr1、vr2、vr3)のセットの中に、2つ以上の値が存在することである。また、(ur1、ur2、ur3)のセットの中に、2つ以上の値が存在することである。)なお、vrXとurXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
 また、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
 上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値urxが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値urxの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点であり、また、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値vrXが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値vrXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例5-3)
 受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
 送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 ここでは、例として、s1の変調方式を64QAMに固定とし、制御信号により、s2の変調方式を16QAMからQPSKに変更する(または、16QAM、QPSKのいずれかの設定が可能な)場合について考える。s1の変調方式を64QAMとする場合、s1(t)のマッピング方法としては、図86のとおりであり、図86においてkは式(85)である。s2の変調方式を16QAMとする場合、s2(t)のマッピング方法としては、図80のとおりであり、図80においてgは式(79)であり、また、s2(t)の変調方式をQPSKとする場合、s2(t)のマッピング方法としては、図81のとおりであり、図81においてhは式(78)であるとする。
 図85において、s1の変調方式を64QAMとし、s2の変調方式が16QAMとしたとき、v=αとし、u=α×w16設定するものとする。このとき、64QAMの平均電力と16QAMの平均電力の比はv:u=α:α×w16 =1:w16 となる。
 そして、図85において、s1の変調方式を64QAMとしs2の変調方式がQPSKとしたとき、v=βとし、u=β×w設定するものとする。このとき、64QAMの平均電力とQPSKの平均電力の比はv:u=β:β×w =1:w となる。このとき、最小ユークリッド距離の関係から、w<w16<1.0とすると、s2の変調方式が16QAM、QPSKいずれのときも、受信装置が高いデータの受信品質を得ることができる。
 なお、上述の説明において、「s1の変調方式を64QAMに固定」するとして説明したが、「s2の変調方式を64QAMに固定し、s1の変調方式を16QAMからQPSKに変更(16QAM、QPSKいずれかに設定)」しても、w<w16<1.0とするとよい。(例4-3での説明と同様に考えればよい。)。(なお、16QAMのときにパワー変更のために乗算された値がu=α×w16であり、QPSKのときにパワー変更のために乗算された値がu=β×wであり、64QAMのパワー変更のための値は、複数の設定可能な変調方式が16QAMのときv=αであり、複数の設定可能な変調方式がQPSKのときv=βとなる。)また、(s1の変調方式、s2の変調方式)のセットを、(64QAM、16QAM)または(16QAM、64QAM)または(64QAM、QPSK)または(QPSK、64QAM)のいずれかの設定が可能な場合、w<w16<1.0の関係を満たすとよい。
 以下、上述の内容を、一般化した場合について説明する。
 一般化した場合、s1の変調方式を固定とし、I-Q平面における信号点の数がc個の変調方式Cとする。s2の変調方式として、I-Q平面における信号点の数がa個の変調方式AとI-Q平面における信号点の数がb個の変調方式B(c>b>a)のいずれかの設定が可能であるとする。このとき、s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Aを設定したときの、その平均電力の比を1:w とする。s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Bを設定したときの、その平均電力の比を1:w とする。このとき、w<wとすると、受信装置が高いデータの受信品質を得ることができる。
 したがって、「s1の変調方式を変調方式Cに固定」するとして説明したが、「s2の変調方式を変調方式Cに固定し、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」した場合であっても、平均電力に関し、w<wとするとよい。(このとき、上述と同様に、変調方式Cの平均電力を1とした場合、変調方式Aの平均電力がw であり、変調方式Bの平均電力がw である。)また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、平均電力に関し、w<wの関係を満たすとよい。
(例6)
 図85を用いて、例4とは異なる動作の例を説明する。なお、s1(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図86のとおりであり、gは式(79)のとおりである。また、s2(t)は、変調方式64QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図86のとおりであり、kは式(85)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
 パワー変更部(8401A)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307A、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をvとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Aをv倍した信号(8402A)を出力する。
 パワー変更部(8401B)は、変調方式64QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をuとすると、変調方式64QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。そして、u=v×w(w<1.0)とする。
 プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまりejθ(t)と表すことができる)とすると、上述の式(87)が成立する。
 したがって、64QAMの平均電力と16QAMの平均電力の比はv:u=v:v×w=1:wと設定することになる。これにより、図83のような受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
 従来、送信電力制御は、一般的に、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
 上述で、「制御信号(8400)により、パワー変更のための値v、uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値v、uを設定について詳しく説明する。
(例6-1)
 送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。同様にパワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値v、uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をそれぞれ、vLX、uLXという形で記載することとする。
 例えば、ブロック長として1000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL3000を設定する。
 一方、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。
 このとき、例えば、vL1000、vL1500、vL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもあり、また、vL1000=vL1500であることもある。重要なことは、(vL1000、vL1500、vL3000)のセットの中に、2つ以上の値が存在することである。また、(uL1000、uL1500、uL3000)のセットの中に、2つ以上の値が存在することである。)なお、vLXとuLXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
 上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値uLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値uLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが一つの重要な点であり、また、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値vLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値vLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例6-2)
 送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力を設定する方法について説明する。
 誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
 制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。また、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
 本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値v、uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をそれぞれ、vrx、urxという形で記載することとする。
 例えば、符号化率としてr1が選択された場合、パワー変更部(8401A)はパワー変更のための値vr1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401A)はパワー変更のための値vr2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401A)はパワー変更のための値vr3を設定する。
 また、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。
 このとき、例えば、vr1、vr2、vr3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、vr1=vr2であることもあり、また、ur1=ur2であることもある。重要なことは、(vr1、vr2、vr3)のセットの中に、2つ以上の値が存在することである。また、(ur1、ur2、ur3)のセットの中に、2つ以上の値が存在することである。)なお、vrXとurXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
 また、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
 上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値urxが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値urxの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点であり、また、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値vrXが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値vrXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例6-3)
 受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
 送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
 ここでは、例として、s1の変調方式を16QAMに固定とし、制御信号により、s2の変調方式を64QAMからQPSKに変更する(または、16QAM、QPSKのいずれかの設定が可能な)場合について考える。s1の変調方式を16QAMとする場合、s1(t)のマッピング方法としては、図80のとおりであり、図80においてgは式(79)である。s2の変調方式を64QAMとする場合、s2(t)のマッピング方法としては、図86のとおりであり、図86においてkは式(85)であり、また、s2(t)の変調方式をQPSKとする場合、s2(t)のマッピング方法としては、図81のとおりであり、図81においてhは式(78)であるとする。
 図85において、s1の変調方式を16QAMとし、s2の変調方式が64QAMとしたとき、v=αとし、u=α×w64設定するものとする。このとき、64QAMの平均電力と16QAMの平均電力の比はv:u=α:α×w64 =1:w64 となる。
 そして、図85において、s1の変調方式を16QAMとしs2の変調方式がQPSKとしたとき、v=βとし、u=β×w設定するものとする。このとき、64QAMの平均電力とQPSKの平均電力の比はv:u=β:β×w =1:w となる。このとき、最小ユークリッド距離の関係から、w<w64とすると、s2の変調方式が64QAM、QPSKのいずれのときも、受信装置が高いデータの受信品質を得ることができる。
 なお、上述の説明において、「s1の変調方式を16QAMに固定」するとして説明したが、「s2の変調方式を16QAMに固定し、s1の変調方式を64QAMからQPSKに変更(16QAM、QPSKいずれかに設定)」しても、w<w64とするとよい。(例4-3での説明と同様に考えればよい。)。(なお、16QAMのときにパワー変更のために乗算された値がu=α×w16であり、QPSKのときにパワー変更のために乗算された値がu=β×wであり、64QAMのパワー変更のための値は、複数の設定可能な変調方式が16QAMのときv=αであり、複数の設定可能な変調方式がQPSKのときv=βとなる。)また、(s1の変調方式、s2の変調方式)のセットを、(16QAM、64QAM)または(64QAM、16QAM)または(16QAM、QPSK)または(QPSK、16QAM)のいずれかの設定が可能な場合、w<w64の関係を満たすとよい。
 以下、上述の内容を、一般化した場合について説明する。
 一般化した場合、s1の変調方式を固定とし、I-Q平面における信号点の数がc個の変調方式Cとする。s2の変調方式として、I-Q平面における信号点の数がa個の変調方式AとI-Q平面における信号点の数がb個の変調方式B(c>b>a)のいずれかの設定が可能であるとする。このとき、s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Aを設定したときの、その平均電力の比を1:w とする。s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Bを設定したときの、その平均電力の比を1:w とする。このとき、w<wとすると、受信装置が高いデータの受信品質を得ることができる。
 したがって、「s1の変調方式を変調方式Cに固定」するとして説明したが、「s2の変調方式を変調方式Cに固定し、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」した場合であっても、平均電力に関し、w<wとするとよい。(このとき、上述と同様に、変調方式Cの平均電力を1とした場合、変調方式Aの平均電力がw であり、変調方式Bの平均電力がw である。)また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、平均電力に関し、w<wの関係を満たすとよい。
 上記「実施の形態1」等に示した本明細書において、規則的に位相を変更する方法に用いるプリコーディング行列の式(36)において、α=1と設定すると、上記のように、「s1の変調方式とs2の変調方式が異なるとき、s1の平均電力とs2の平均電力を異なるようにする」としても、z1の平均電力とz2平均電力は等しくなり、送信装置が具備する送信電力増幅器のPAPR(Peak-to-Average Power Ratio)(ピーク電力対平均電力比)を大きくすることにつながらないため、送信装置の消費電力を少なくすることができるという効果を得ることができる。
 ただし、α≠1でも、PAPRへの影響が少ない規則的に位相を変更する方法に用いるプリコーディング行列は存在する。例えば、実施の形態1における式(36)であらわされるプリコーディング行列を用い、規則的に位相を変更する方法を実現したとき、α≠1でも、PAPRの影響は少ない。
 
(受信装置の動作)
 次に、受信装置の動作について、説明する。受信装置の動作については、実施の形態1等で説明したとおりであり、例えば、受信装置の構成は、図7、図8、図9に示されている。
 図5の関係から、受信信号r1(t)、r2(t)は、チャネル変動値、h11(t)、h12(t)、h21(t)、h22(t)を用いると、図84、図85のように送信装置が変調信号を送信した場合、以下の2つの式のいずれかの関係が成立する。
 例1、例2、例3の場合、図5から、以下の式(89)に示す関係を導くことができる。
Figure JPOXMLDOC01-appb-M000089
 また、例1、例2、例3で説明したように、以下の式(90)のような関係となる場合もある。
Figure JPOXMLDOC01-appb-M000090
 上記の関係を用いて、受信装置は、復調(検波)を行う(送信装置が送信したビットの推定を行う)ことになる(実施の形態1等で説明した場合と同様に実施すればよいことになる)。
 一方、例4、例5、例6の場合、図5から、以下の式(91)に示す関係を導くことができる。
Figure JPOXMLDOC01-appb-M000091
 また、例3、例4、例5で説明したように、以下の式(92)のような関係となる場合もある。
Figure JPOXMLDOC01-appb-M000092
 上記の関係を用いて、受信装置は、復調(検波)を行う(送信装置が送信したビットの推定を行う)ことになる(実施の形態1等で説明した場合と同様に実施すればよいことになる)。
 なお、例1~例6では、パワー変更部を送信装置に追加する構成を示したが、マッピングの段階において、パワー変更を行ってもよい。
 また、例1、例2、例3で説明したように、特に、式(89)に示したように図3、図4のマッピング部306Bが、u×s2(t)を出力する場合もあり、パワー変更部を省略してもよい。この場合、マッピング後の信号s1(t)およびマッピング後の信号u×s2(t)に対し、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を適用していることになる。
 そして、例1、例2、例3で説明したように、特に、式(90)に示したように図3、図4のマッピング部306Aが、u×s1(t)を出力する場合もあり、パワー変更部を省略してもよい。この場合、マッピング後の信号u×s1(t)およびマッピング後の信号s2(t)に対し、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を適用していることになる。
 また、例4、例5、例6の場合、特に、式(91)に示したように図3、図4のマッピング部306Aが、v×s1(t)、マッピング部306Bが、u×s2(t)を出力する場合もあり、いずれもパワー変更部を省略してもよい。この場合、マッピング後の信号v×s1(t)およびマッピング後の信号u×s2(t)に対し、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を適用していることになる。
 そして、例4、例5、例6の場合、特に、式(92)に示したように図3、図4のマッピング部306Aが、u×s1(t)、マッピング部306Bが、v×s2(t)を出力する場合もあり、いずれもパワー変更部を省略してもよい。この場合、マッピング後の信号u×s1(t)およびマッピング後の信号v×s2(t)に対し、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を適用していることになる。
 なお、式(89)~(92)に示すFは、時間tに用いたプリコーディング行列であり、y(t)は位相変更値ある。受信装置は、上述で示した、r1(t)、r2(t)とs1(t)、s2(t)の関係を利用して、復調(検波)を行うことになる(実施の形態1等で説明した場合と同様に実施すればよいことになる)。ただし、上述で示した式には、雑音成分、周波数オフセット、チャネル推定誤差等の歪み成分は、式にあらわされておらず、これらを含んだ形で、復調(検波)が行われることになる。なお、送信装置がパワー変更を行うために使用するu、vの値については、送信装置が、これらに関する情報を送信するか、または、使用する送信モード(送信方法、変調方式、誤り訂正方式等)の情報を送信し、受信装置は、その情報を得ることで、送信装置が用いたu、vの値を知ることができ、これにより、上述で示した関係式を導き、復調(検波)を行うことになる。
 本実施の形態では、時間軸方向にプリコーディング後の変調信号に対し、位相変更値を切り替える場合を例として説明したが、他の実施の形態の説明と同様に、OFDM方式のようなマルチキャリア伝送を用いている場合、周波数軸方向にプリコーディング後の変調信号に対し、位相変更値を切り替える場合についても、同様に実施することができる。このとき、本実施の形態で用いているtをf(周波数((サブ)キャリア))に置き換えることになる。
 よって、時間軸方向にプリコーディング後の変調信号に対し、位相変更値を切り替える場合、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。そして、周波数軸方向にプリコーディング後の変調信号に対し、位相変更値を切り替える場合、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。
 また、時間―周波数軸方向で、プリコーディング後の変調信号に対し、位相変更方法を切り替える場合についても他の実施の形態で述べたように同様に実施することが可能である。なお、本実施の形態におけるプリコーディング後の変調信号に対し、位相変更方法を切り替える方法は、本明細書で説明したプリコーディング後の変調信号に対し、位相変更方法を切り替える方法に限定されるものではない。
 また、2ストリームのベースバンド信号s1(i)、s2(i)(ただし、iは、(時間、または、周波数(キャリア)の)順番をあらわす)に対し、規則的な位相変更およびプリコーディングを行い(順番はどちらが先であってもよい)生成された、両者の信号処理後のベースバンド信号z1(i)、z2(i)において、両者の信号処理後のベースバンド信号z1(i)の同相I成分をI(i)、直交成分をQ(i)とし、両者の信号処理後のベースバンド信号z2(i)の同相I成分をI(i)、直交成分をQ(i)とする。このとき、ベースバンド成分の入れ替えを行い、
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)
とし、入れ替え後のベースバンド信号r1(i)に相当する変調信号を送信アンテナ1、入れ替え後のベースバンド信号r2(i)に相当する変調信号を送信アンテナ2から、同一時刻に同一周波数を用いて送信する、というように、入れ替え後のベースバンド信号r1(i)に相当する変調信号と入れ替え後のベースバンド信号r2(i)を異なるアンテナから、同一時刻に同一周波数を用いて送信するとしてもよい。また、
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)
としてもよい。また、上述では、2ストリームの信号に対し両者の信号処理を行い、両者の信号処理後の信号の同相成分と直交成分の入れ替えについて説明したが、これに限ったものではなく、2ストリームより多い信号に対し両者の信号処理後を行い、両者の信号処理後の信号の同相成分と直交成分の入れ替えを行うことも可能である。
 加えて、以下のような信号の入れ替えを行ってもよい。例えば、
 
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)
 
 なお、この入れ替えについては、図55の構成により、実現することができる。
 また、上記の例では、同一時刻(同一周波数((サブ)キャリア))のベースバンド信号の入れ替えを説明しているが、同一時刻のベースバンド信号の入れ替えでなくてもよい。例として、以下のように記述することができる
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をI(i+w)
 
 加えて、以下のような信号の入れ替えを行ってもよい。例えば、
 
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+w)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r(i)の同相成分をI(i+v)、直交成分をQ(i+v)
 
 なお、これについても、図55の構成により、実現することができる。
 図55は、上記の記載を説明するためのベースバンド信号入れ替え部5502を示す図である。図面1に示すように、両者の信号処理後のベースバンド信号z1(i)5501_1、z2(i)5501_2において、両者の信号処理後のベースバンド信号z1(i)5501_1の同相I成分をI(i)、直交成分をQ(i)とし、両者の信号処理後のベースバンド信号z2(i)5501_2の同相I成分をI(i)、直交成分をQ(i)とする。そして、入れ替え後のベースバンド信号r1(i)5503_1の同相成分をIr1(i)、直交成分をQr1(i)、入れ替え後のベースバンド信号r2(i)5503_2の同相成分をIr2(i)、直交成分をQr2(i)とすると、入れ替え後のベースバンド信号r1(i)5503_1の同相成分Ir1(i)、直交成分Qr1(i)、入れ替え後のベースバンド信号r2(i)5503_2の同相成分Ir2(i)、直交成分をQr2(i)は上述で説明したいずれかであらわされるものとする。なお、この例では、同一時刻(同一周波数((サブ)キャリア))の両者の信号処理後のベースバンド信号の入れ替えについて説明したが、上述のように、異なる時刻(異なる周波数((サブ)キャリア))の両者の信号処理後のベースバンド信号の入れ替えであってもよい。
 また、上述の入れ替えは、規則的に入れ替え方法を切り替えてもよい。
例えば、
時間0において、
入れ替え後のベースバンド信号r1(0)の同相成分をI(0)、直交成分をQ(0)、入れ替え後のベースバンド信号r2(0)の同相成分をI(0)、直交成分をQ(0)
時間1において、
入れ替え後のベースバンド信号r1(1)の同相成分をI(1)、直交成分をQ(1)、入れ替え後のベースバンド信号r2(1)の同相成分をI(1)、直交成分をQ(1)
・・・
としてもよい、つまり、
時間2kのとき(kは整数)
入れ替え後のベースバンド信号r1(2k)の同相成分をI(2k)、直交成分をQ(2k)、入れ替え後のベースバンド信号r2(2k)の同相成分をI(2k)、直交成分をQ(2k)
とし、
時間2k+1のとき(kは整数)
入れ替え後のベースバンド信号r1(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)、入れ替え後のベースバンド信号r2(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)
としてもよい。
また、
時間2kのとき(kは整数)
入れ替え後のベースバンド信号r1(2k)の同相成分をI(2k)、直交成分をQ(2k)、入れ替え後のベースバンド信号r2(2k)の同相成分をI(2k)、直交成分をQ(2k)
とし、
時間2k+1のとき(kは整数)
入れ替え後のベースバンド信号r1(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)、入れ替え後のベースバンド信号r2(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)
としてもよい。
 同様に、周波数軸方向で切り替えてもよい。つまり、
周波数((サブ)キャリア)2kのとき(kは整数)
入れ替え後のベースバンド信号r1(2k)の同相成分をI(2k)、直交成分をQ(2k)、入れ替え後のベースバンド信号r2(2k)の同相成分をI(2k)、直交成分をQ(2k)
とし、
周波数((サブ)キャリア)2k+1のとき(kは整数)
入れ替え後のベースバンド信号r1(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)、入れ替え後のベースバンド信号r2(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)
としてもよい。
また、
周波数((サブ)キャリア)2kのとき(kは整数)
入れ替え後のベースバンド信号r1(2k)の同相成分をI(2k)、直交成分をQ(2k)、入れ替え後のベースバンド信号r2(2k)の同相成分をI(2k)、直交成分をQ(2k)
とし、
周波数((サブ)キャリア)2k+1のとき(kは整数)
入れ替え後のベースバンド信号r1(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)、入れ替え後のベースバンド信号r2(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)
としてもよい。
 
(実施の形態G1)
 本実施の形態では、一例として、QPSKのマッピングを施した変調信号と16QAMのマッピングを施した変調信号を送信する場合に、QPSKのマッピングを施した変調信号の平均電力と16QAMのマッピングを施した変調信号の平均電力を異なるように設定する方法の実施の形態F1と異なる方法について説明する。
 実施の形態F1で説明したように、s1の変調信号の変調方式をQPSK、s2の変調信号の変調方式を16QAM(または、s1の変調信号の変調方式を16QAM、s2の変調信号の変調方式をQPSK)とし、QPSKのマッピングを施した変調信号の平均電力と16QAMのマッピングを施した変調信号の平均電力を異なるように設定した場合、送信装置が使用するプリコーディング行列によっては、送信装置が具備する送信電力増幅器のPAPR(Peak-to-Average Power Ratio)(ピーク電力対平均電力比)が大きくなり、送信装置の消費電力が大きくなるという課題が発生することがある。
 本実施の形態では、「実施の形態1」等に示した本明細書において、規則的に位相を変更する方法に用いるプリコーディング行列の式(36)において、α≠1としても、PAPRへの影響が少ないプリコーディング後に規則的に位相変更を行う方法について述べる。
 本実施の形態では、一例として、s1、s2の変調方式がQPSK、16QAMのいずれかであるときに関して説明を行う。
 まず、QPSKのマッピング、および、16QAMのマッピング方法について説明を行う。なお、本実施の形態におけるs1、s2は、以下で述べるQPSKのマッピング、または、16QAMのマッピングいずれかに基づく信号であるものとする。
 まず、16QAMのマッピングについて、図80を用いて説明する。図80は、同相I-直交Q平面における16QAMの信号点配置の例を示している。図80の信号点8000は、送信するビット(入力ビット)をb0~b3とすると、例えば、送信するビットが(b0、b1、b2、b3)=(1、0、0、0)(この値は、図80に記載されている値である。)のとき、同相I-直交Q平面における座標は、(I,Q)=(-3×g、3×g)であり、このI,Qの値が、マッピング後の信号となる。なお、送信するビット(b0、b1、b2、b3)が他の値のときも、(b0、b1、b2、b3)にもとづき、図80から、(I,Q)のセットが決定し、I,Qの値が、マッピング後の信号(s1およびs2)となる。
 次に、QPSKのマッピングについて、図81を用いて説明する。図81は、同相I-直交Q平面におけるQPSKの信号点配置の例を示している。図81の信号点8100は、送信するビット(入力ビット)をb0、b1とすると、例えば、送信するビットが(b0、b1)=(1、0)(この値は、図81に記載されている値である。)のとき、同相I-直交Q平面における座標は、(I,Q)=(-1×h、1×h)であり、このI,Qの値が、マッピング後の信号となる。なお、送信するビット(b0、b1)が他の値のときも、(b0、b1)にもとづき、図81から、(I,Q)のセットが決定し、I,Qの値が、マッピング後の信号(s1およびs2)となる。
 なお、s1、s2の変調方式がQPSK、16QAMのいずれかであるとき、QPSKの平均電力と16QAMの平均電力を等しくするために、hは式(78)となり、gは式(79)となる。
 図85に示したプリコーディング関連の信号処理部を用いた時、変調方式、パワー変更値、位相変更値の、時間軸(または、周波数軸、時間および周波数軸)における変更方法の例を図87、図88に示す。
 図87の例では、時間t=0からt=11における、各時間の、設定する変調方式、パワー変更値(u、v)、位相変更値(y[t])を表として示している。なお、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。(図87では、時間軸で記載しているが、OFDM方式のようなマルチキャリア伝送方式を用いているとき、時間軸方向で、各種方法(変調方式、パワー変更値、位相変更値)を切り替えるのではなく、周波数(サブキャリア)軸方向で、各種方法を切り替えることも可能である。したがって、図87に示しているように、t=0をf=f0、t=1をf=f1、・・・と置き換えて考えればよい。(fは周波数(サブキャリア)を示しており、f0、f1、・・・は使用する周波数(サブキャリア)を示している。)このとき、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。)
 図87に示すように、変調方式がQPSKのとき、QPSKの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、aを乗算することになる(aは実数)。そして、変調方式が16QAMのとき、16QAMの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、bを乗算することになる(bは実数)。
 図87では、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として、y[0],y[1],y[2]の3種類を用意し、プリコーディング後に規則的に位相変更を行う方法としての切り替え周期は3となる。(t0~t2、t3~t5、・・・で周期を形成している。)なお、本実施の形態では、図85の例のように、プリコーディング後に、一方のプリコーディング後の信号に対し、位相変更を行うため、y[i]は絶対値が1の複素数(したがって、y[i]はejθとあらわすことができる)を扱う。しかし、本明細書に示したように、複数のプリコーディング後の信号に位相変更をすることも可能である。このとき、位相変更値は、複数のプリコーディング後の信号に対し、それぞれ存在することになる。
 そして、s1(t)の変調方式は、t0~t2ではQPSK、t3~t5では16QAM、・・・となっており、s2(t)の変調方式は、t0~t2では16QAM、t3~t5ではQPSK、・・・となっている。したがって、(s1(t)の変調方式、s2(t)の変調方式)のセットは、(QPSK、16QAM)または(16QAM、QPSK)となっている。
 このとき、重要となる点は、
「y[0]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在している点であり、同様に、y[1]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在しており、また、同様に、y[2]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する。」
ことである。
 また、パワー変更部(8501A)は、s1(t)の変調方式がQPSKのとき、s1(t)にaを乗算し、a×s1(t)を出力することになり、s1(t)の変調方式が16QAMのとき、s1(t)にbを乗算し、b×s1(t)を出力することになる。
 パワー変更部(8501B)は、s2(t)の変調方式がQPSKのとき、s2(t)にaを乗算し、a×s2(t)を出力することになり、s2(t)の変調方式が16QAMのとき、s2(t)にbを乗算し、b×s2(t)を出力することになる。
 なお、QPSKのマッピングを施した変調信号の平均電力と16QAMのマッピングを施した変調信号の平均電力を異なるように設定する場合の方法については、実施の形態F1で説明したとおりである。
 したがって、(s1(t)の変調方式、s2(t)の変調方式)のセットを考慮すると、図87に示すように、位相変更と変調方式切り替えを考慮したときの周期は6=3×2、(3:プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の数、2:各位相変更値において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する)となる。
 以上のように、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在するようにすることで、QPSKの平均電力と16QAMの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
 なお、上述の説明において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の場合で説明したが、これに限ったものではなく、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、64QAM)、(64QAM、QPSK)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(16QAM、64QAM)、(64QAM、16QAM)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(128QAM、64QAM)、(64QAM、128QAM)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(256QAM、64QAM)、(64QAM、256QAM)等であってもよく、つまり、異なる2つの変調方式を用意し、s1(t)の変調方式とs2(t)の変調方式を異なるように設定すれば、同様に実施することができる。
 図88は、時間t=0からt=11における、各時間の、設定する変調方式、パワー変更値、位相変更値を表として示している。なお、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。(図88では、時間軸で記載しているが、OFDM方式のようなマルチキャリア伝送方式を用いているとき、時間軸方向で、各種方法を切り替えるのではなく、周波数(サブキャリア)軸方向で、各種方法を切り替えることも可能である。したがって、図88に示しているように、t=0をf=f0、t=1をf=f1、・・・と置き換えて考えればよい。(fは周波数(サブキャリア)を示しており、f0、f1、・・・は使用する周波数(サブキャリア)を示している。)このとき、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。)なお、図88は、図87で説明した要件を満たす、図87とは異なる例である。
 図88に示すように、変調方式がQPSKのとき、QPSKの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、aを乗算することになる(aは実数)。そして、変調方式が16QAMのとき、16QAMの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、bを乗算することになる(bは実数)。
 図88では、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として、y[0],y[1],y[2]の3種類を用意し、プリコーディング後に規則的に位相変更を行う方法としての切り替え周期は3となる。(t0~t2、t3~t5、・・・で周期を形成している。)
 そして、s1(t)の変調方式は、時間軸において、QPSKと16QAMが交互に設定されるようになっており、また、この点については、s2(t)についても同様である。そして、(s1(t)の変調方式、s2(t)の変調方式)のセットは、(QPSK、16QAM)または(16QAM、QPSK)となっている。
 このとき、重要となる点は、
「y[0]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在している点であり、同様に、y[1]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在しており、また、同様に、y[2]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する。」
である。
 また、パワー変更部(8501A)は、s1(t)の変調方式がQPSKのとき、s1(t)にaを乗算し、a×s1(t)を出力することになり、s1(t)の変調方式が16QAMのとき、s1(t)にbを乗算し、b×s1(t)を出力することになる。
 パワー変更部(8501B)は、s2(t)の変調方式がQPSKのとき、s2(t)にaを乗算し、a×s2(t)を出力することになり、s2(t)の変調方式が16QAMのとき、s2(t)にbを乗算し、b×s2(t)を出力することになる。
 したがって、(s1(t)の変調方式、s2(t)の変調方式)のセットを考慮すると、図88に示すように、位相変更と変調方式切り替えを考慮したときの周期は6=3×2、(3:プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の数、2:各位相変更値において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する)となる。
 以上のように、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更値において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在するようにすることで、QPSKの平均電力と16QAMの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
 なお、上述の説明において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の場合で説明したが、これに限ったものではなく、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、64QAM)、(64QAM、QPSK)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(16QAM、64QAM)、(64QAM、16QAM)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(128QAM、64QAM)、(64QAM、128QAM)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(256QAM、64QAM)、(64QAM、256QAM)等であってもよく、つまり、異なる2つの変調方式を用意し、s1(t)の変調方式とs2(t)の変調方式を異なるように設定すれば、同様に実施することができる。
 また、各時間(各周波数)の、設定する変調方式、パワー変更値、位相変更値の関係は、図87、図88に限ったものではない。
 以上をまとめると、以下の点が重要となる。
 (s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)が存在するようにし、変調方式Aの平均電力と変調方式Bの平均電力が異なるように設定する。
そして、パワー変更部(8501A)は、s1(t)の変調方式が変調方式Aのとき、s1(t)にaを乗算し、a×s1(t)を出力することになり、s1(t)の変調方式が変調方式Bのとき、s1(t)にbを乗算し、b×s1(t)を出力する。同様に、パワー変更部(8501B)は、s2(t)の変調方式が変調方式Aのとき、s2(t)にaを乗算し、a×s2(t)を出力することになり、s2(t)の変調方式が変調方式Bのとき、s2(t)にbを乗算し、b×s2(t)を出力する。
 また、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値として、y[0]、y[1]、・・・、y[N-2]、y[N-1](つまり、y[k]において、kは0以上N-1以下)が存在するものとする。そして、y[k]において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在するものとする。(このとき、「すべてのkで、y[k]において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在する」としてもよいし、また、「y[k]において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在する、kが存在する」としてもよい。)
 以上のように、(s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更値において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在するようにすることで、変調方式Aの平均電力と変調方式Bの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
 上記に関連し、以下では、s1(t)、s2(t)の生成方法について説明する。図3、図4に示したように、s1(t)はマッピング部306A、s2(t)はマッピング部306Bにより、生成される。したがって、上記の例では、図87、図88にしたがって、マッピング部306A、306Bは、QPSKのマッピングを行う場合と、16QAMのマッピングを行う場合の切り替えを行うことになる。
 なお、図3、図4では、s1(t)を生成するためのマッピング部とs2(t)を生成するためのマッピング部を別々に設けているが、必ずしもこれに限ったものではなく、例えば、図89のように、マッピング部(8902)は、デジタルデータ(8901)を入力とし、例えば、図87、図88にしたがって、s1(t)、s2(t)を生成し、s1(t)をマッピング後の信号307Aとして出力し、また、s2(t)をマッピング後の信号307Bとして出力する。
 図90は、図85、図89とは異なる重み付け合成部(プリコーディング部)周辺の構成の一例を示している。図90において、図3、図85と同様に動作するものについては、同一符号を付している。そして、図91は、図90に対し、時間t=0からt=11における、各時間の、設定する変調方式、パワー変更値、位相変更値を表として示している。なお、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。(図91では、時間軸で記載しているが、OFDM方式のようなマルチキャリア伝送方式を用いているとき、時間軸方向で、各種方法を切り替えるのではなく、周波数(サブキャリア)軸方向で、各種方法を切り替えることも可能である。したがって、図91に示しているように、t=0をf=f0、t=1をf=f1、・・・と置き換えて考えればよい。(fは周波数(サブキャリア)を示しており、f0、f1、・・・は使用する周波数(サブキャリア)を示している。)このとき、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。)
 図91に示すように、変調方式がQPSKのとき、QPSKの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、aを乗算することになる(aは実数)。そして、変調方式が16QAMのとき、16QAMの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、bを乗算することになる(bは実数)。
 図91では、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として、y[0],y[1],y[2]の3種類を用意し、プリコーディング後に規則的に位相変更を行う方法としての切り替え周期は3となる。(t0~t2、t3~t5、・・・で周期を形成している。)
 そして、s1(t)の変調方式は、QPSKで固定となっており、s2(t)の変調方式は、16QAMで固定となっている。そして、図90の信号入れ替え部(9001)は、マッピング後の信号307A、307B、および、制御信号(8500)を入力とし、制御信号(8500)に基づき、マッピング後の信号307A、307Bに対し、入れ替え(入れ替えを行わない場合もある)を行い、入れ替え後の信号(9002A:Ω1(t))、および、入れ替え後の信号(9002B:Ω2(t))を出力する。
 このとき、重要となる点は、
「y[0]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在している点であり、同様に、y[1]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在しており、また、同様に、y[2]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する。」
ことである。
 また、パワー変更部(8501A)は、Ω1(t)の変調方式がQPSKのとき、Ω1(t)にaを乗算し、a×Ω1(t)を出力することになり、Ω1(t)の変調方式が16QAMのとき、Ω1(t)にbを乗算し、b×Ω1(t)を出力することになる。
 パワー変更部(8501B)は、Ω2(t)の変調方式がQPSKのとき、Ω2(t)にaを乗算し、a×Ω2(t)を出力することになり、Ω2(t)の変調方式が16QAMのとき、Ω2(t)にbを乗算し、b×Ω2(t)を出力することになる。
 なお、QPSKのマッピングを施した変調信号の平均電力と16QAMのマッピングを施した変調信号の平均電力を異なるように設定する場合の方法については、実施の形態F1で説明したとおりである。
 したがって、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットを考慮すると、図91に示すように、位相変更と変調方式切り替えを考慮したときの周期は6=3×2、(3:プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の数、2:各位相変更値において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する)となる。
 以上のように、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更値において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在するようにすることで、QPSKの平均電力と16QAMの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
 なお、上述の説明において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の場合で説明したが、これに限ったものではなく、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、64QAM)、(64QAM、QPSK)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(16QAM、64QAM)、(64QAM、16QAM)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(128QAM、64QAM)、(64QAM、128QAM)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(256QAM、64QAM)、(64QAM、256QAM)等であってもよく、つまり、異なる2つの変調方式を用意し、Ω1(t)の変調方式とΩ2(t)の変調方式を異なるように設定すれば、同様に実施することができる。
 図92は、図90に対し、時間t=0からt=11における、各時間の、設定する変調方式、パワー変更値、位相変更値を表として示しており、図91と異なる表である。なお、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。(図92では、時間軸で記載しているが、OFDM方式のようなマルチキャリア伝送方式を用いているとき、時間軸方向で、各種方法を切り替えるのではなく、周波数(サブキャリア)軸方向で、各種方法を切り替えることも可能である。したがって、図92に示しているように、t=0をf=f0、t=1をf=f1、・・・と置き換えて考えればよい。(fは周波数(サブキャリア)を示しており、f0、f1、・・・は使用する周波数(サブキャリア)を示している。)このとき、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。)
 図92に示すように、変調方式がQPSKのとき、QPSKの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、aを乗算することになる(aは実数)。そして、変調方式が16QAMのとき、16QAMの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、bを乗算することになる(bは実数)。
 図92では、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として、y[0],y[1],y[2]の3種類を用意し、プリコーディング後に規則的に位相変更を行う方法としての切り替え周期は3となる。(t0~t2、t3~t5、・・・で周期を形成している。)
 そして、s1(t)の変調方式は、QPSKで固定となっており、s2(t)の変調方式は、16QAMで固定となっている。そして、図90の信号入れ替え部(9001)は、マッピング後の信号307A、307B、および、制御信号(8500)を入力とし、制御信号(8500)に基づき、マッピング後の信号307A、307Bに対し、入れ替え(入れ替えを行わない場合もある)を行い、入れ替え後の信号(9002A:Ω1(t))、および、入れ替え後の信号(9002B:Ω2(t))を出力する。
 このとき、重要となる点は、
「y[0]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在している点であり、同様に、y[1]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在しており、また、同様に、y[2]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する。」
ことである。
 また、パワー変更部(8501A)は、Ω1(t)の変調方式がQPSKのとき、Ω1(t)にaを乗算し、a×Ω1(t)を出力することになり、Ω1(t)の変調方式が16QAMのとき、Ω1(t)にbを乗算し、b×Ω1(t)を出力することになる。
 パワー変更部(8501B)は、Ω2(t)の変調方式がQPSKのとき、Ω2(t)にaを乗算し、a×Ω2(t)を出力することになり、Ω2(t)の変調方式が16QAMのとき、Ω2(t)にbを乗算し、b×Ω2(t)を出力することになる。
 なお、QPSKのマッピングを施した変調信号の平均電力と16QAMのマッピングを施した変調信号の平均電力を異なるように設定する場合の方法については、実施の形態F1で説明したとおりである。
 したがって、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットを考慮すると、図92に示すように、位相変更と変調方式切り替えを考慮したときの周期は6=3×2、(3:プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の数、2:各位相変更値において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する)となる。
 以上のように、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更値において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在するようにすることで、QPSKの平均電力と16QAMの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
 なお、上述の説明において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の場合で説明したが、これに限ったものではなく、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、64QAM)、(64QAM、QPSK)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(16QAM、64QAM)、(64QAM、16QAM)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(128QAM、64QAM)、(64QAM、128QAM)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(256QAM、64QAM)、(64QAM、256QAM)等であってもよく、つまり、異なる2つの変調方式を用意し、Ω1(t)の変調方式とΩ2(t)の変調方式を異なるように設定すれば、同様に実施することができる。
 また、各時間(各周波数)の、設定する変調方式、パワー変更値、位相変更値の関係は、図91、図92に限ったものではない。
 以上をまとめると、以下の点が重要となる。
 (Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)が存在するようにし、変調方式Aの平均電力と変調方式Bの平均電力が異なるように設定する。
 そして、パワー変更部(8501A)は、Ω1(t)の変調方式が変調方式Aのとき、Ω1(t)にaを乗算し、a×Ω1(t)を出力することになり、Ω1(t)の変調方式が変調方式Bのとき、Ω1(t)にbを乗算し、b×Ω1(t)を出力する。同様に、パワー変更部(8501B)は、Ω2(t)の変調方式が変調方式Aのとき、Ω2(t)にaを乗算し、a×Ω2(t)を出力することになり、Ω2(t)の変調方式が変調方式Bのとき、Ω2(t)にbを乗算し、b×Ω2(t)を出力する。
 また、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値として、y[0]、y[1]、・・・、y[N-2]、y[N-1](つまり、y[k]において、kは0以上N-1以下)が存在するものとする。そして、y[k]において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在するものとする。(このとき、「すべてのkで、y[k]において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在する」としてもよいし、また、「y[k]において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在する、kが存在する」としてもよい。)
 以上のように、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更値において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在するようにすることで、変調方式Aの平均電力と変調方式Bの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
 次に、受信装置の動作について、説明する。受信装置の動作については、実施の形態1等で説明したとおりであり、例えば、受信装置の構成は、図7、図8、図9に示されている。
 図5の関係から、受信信号r1(t)、r2(t)は、チャネル変動値、h11(t)、h12(t)、h21(t)、h22(t)を用いると、図87、図88、図91、図92のように送信装置が変調信号を送信した場合、以下の2つの式のいずれかの関係が成立する。
Figure JPOXMLDOC01-appb-M000093
Figure JPOXMLDOC01-appb-M000094
 ただし、式(G1)、式(G2)に示すFは、時間tに用いたプリコーディング行列であり、y(t)は位相変更値ある。受信装置は、上記2つの式の関係を利用して、復調(検波)を行うことになる(実施の形態1の説明と同様に実施すればよいことになる)。ただし、上記2つの式には、雑音成分、周波数オフセット、チャネル推定誤差等の歪み成分は、式にあらわされておらず、これらを含んだ形で、復調(検波)が行われることになる。なお、送信装置がパワー変更を行うために使用するu、vの値については、送信装置が、これらに関する情報を送信するか、または、使用する送信モード(送信方法、変調方式、誤り訂正方式等)の情報を送信し、受信装置は、その情報を得ることで、送信装置が用いたu、vの値を知ることができ、これにより、上記2つの関係式を導き、復調(検波)を行うことになる。
 本実施の形態では、時間軸方向に位相変更値を切り替える場合を例として説明するが、他の実施の形態の説明と同様に、OFDM方式のようなマルチキャリア伝送を用いている場合、周波数軸方向に位相変更値を切り替える場合についても、同様に実施することができる。このとき、本実施の形態で用いているtをf(周波数((サブ)キャリア))に置き換えることになる。また、時間―周波数軸方向で、位相変更値を切り替える場合についても同様に実施することが可能である。なお、本実施の形態におけるプリコーディング後に規則的に位相変更を行う方法は、本明細書で説明したプリコーディング後に規則的に位相変更を行う方法に限定されるものではなく、また、位相変更を行わず、プリコーディングを行う方式に対して、本実施の形態を適用しても、PAPRへの影響が少ない、という効果を得ることができる。
 
(実施の形態G2)
 本実施の形態では、放送(または、通信)システムが、s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合、回路規模を削減することができる、プリコーディング後に規則的に位相変更を行う方法について説明する。
 まず、s1の変調方式が16QAM、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法について述べる。
 s1の変調方式が16QAM、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法に用いるプリコーディング行列の例を実施の形態1で示している。プリコーディング行列Fは次式であれわされる。
Figure JPOXMLDOC01-appb-M000095
 以下では、s1の変調方式が16QAM、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法のプリコーディング行列として、式(G3)を用いる場合を例に説明する。
 本実施の形態における、s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合の重み付け合成(プリコーディング)部周辺の構成を図93に示す。図93において、図3、図6、図85と同様に動作するものについては、同一符号を付し、ここでは説明を省略する。
 図93のベースバンド信号入れ替え部9301は、プリコーディング後の信号309A(z1(t))およびプリコーディング・位相変更後の信号309B(z2(t))、制御信号8500を入力とし、制御信号8500が、「信号の入れ替えを行わない」ということを示している場合、信号9302A(r1(t))としてプリコーディング後の信号309A(z1(t))を出力し、信号9302B(r2(t))としてプリコーディング・位相変更後の信号309B(z2(t))を出力する。
 そして、制御信号8500が、「信号の入れ替えを行う」ということを示している場合、ベースバンド信号入れ替え部8501は、
時間2kのとき(kは整数)
信号9302A(r1(2k))として、プリコーディング後の信号309A(z1(2k))を出力し、信号9302B(r2(2k))としてプリコーディング・位相変更後の信号309B(z2(2k))を出力する
とし、
時間2k+1のとき(kは整数)
信号9302A(r1(2k+1))としてプリコーディング・位相変更後の信号309B(z2(2k+1))を出力し、信号9302B(r2(2k+1))としてプリコーディング後の信号309A(z1(2k+1))を出力する。
また、
時間2kのとき(kは整数)
信号9302A(r1(2k))としてプリコーディング・位相変更後の信号309B(z2(2k))を出力し、信号9302B(r2(2k))としてプリコーディング後の信号309A(z1(2k))を出力する
とし、
時間2k+1のとき(kは整数)
信号9302A(r1(2k+1))として、プリコーディング後の信号309A(z1(2k+1))を出力し、信号9302B(r2(2k+1))としてプリコーディング・位相変更後の信号309B(z2(2k+1))を出力する。(ただし、上述の信号の入れ替えは、一つの例であり、これに限ったものではなく、「信号の入れ替えを行う」となった場合、信号の入れ替えを行うことがある、ということが重要となる。)
 そして、図3、図4、図5、図12、図13等で説明したように、信号9302A(r1(t))は、z1(t)のかわりに、アンテナから送信される(ただし、図3、図4、図5、図12、図13等で示したように、所定の処理が行われる。)。また、信号9302B(r2(t))は、z2(t)のかわりに、アンテナから送信される(ただし、図3、図4、図5、図12、図13等で示したように、所定の処理が行われる。)。このとき、信号9302A(r1(t))と信号9302B(r2(t))は異なるアンテナから送信されることになる。
 なお、この信号入れ替えは、プリコーディングを行っているシンボルに対して行われるのであって、他の挿入されているシンボル、例えば、パイロットシンボルやプリコーディングを行わない情報を伝送するためのシンボル(例えば、制御情報シンボル)には適用されないものとする。また、上述では、時間軸方向で、プリコーディング後に規則的に位相変更を行う方法を適用する場合について、説明しているが、これに限ったものではなく、周波数軸において、または、時間―周波数軸において、プリコーディング後に規則的に位相変更を行う方法を適用する場合でも同様に本実施の形態を適用することができ、また、信号入れ替えについても、上述では、時間軸方法で説明を行っているが、周波数軸において、または、時間―周波数軸において、信号入れ替えを行ってもよい。
 次に、s1の変調方式が16QAM、s2の変調方式が16QAMの場合の図93の各部の動作について説明する。
 s1(t)およびs2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)であるため、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。
 パワー変更部(8501A)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307A、制御信号(8500)を入力とし、制御信号(8500)に基づき、設定したパワー変更のための値をvとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Aをv倍した信号(パワー変更後の信号:8502A)を出力する。
 パワー変更部(8501B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8500)を入力とし、制御信号(8500)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(パワー変更後の信号:8502B)を出力する。
 このとき、v=u=Ωであり、v:u=1:1とする。これにより、受信装置は、高いデータの受信品質を得ることができることになる。
 重み付け合成部600は、パワー変更後の信号8502A(変調方式16QAMのベースバンド信号(マッピング後の信号)307Aをv倍した信号)およびパワー変更後の信号8502B(変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号)、信号処理方法に関する情報315を入力とし、重み付け合成方法に関する情報315の情報に基づいて、プリコーディング行列を決定し、プリコーディングが行われ、プリコーディング後の信号309A(z1(t))および、プリコーディング後の信号316B(z2’(t))を出力する。
 位相変更部317Bは、プリコーディング後の信号316B(z2’(t))、信号処理方法に関する情報315を入力とし、プリコーディング後の信号316B(z2’(t))に対し、信号処理方法に関する情報315に基づく位相変更方法を施し、プリコーディング・位相変更後の信号309B(z2(t))を出力する。
 このとき、プリコーディング後に規則的に位相変更を行う方法におけるプリコーディング行列をF、位相変更値をy(t)とすると、以下の関係式が成立する。
Figure JPOXMLDOC01-appb-M000096
 ただし、y(t)は絶対値が1の複素数(したがって、y(t)はejθとあらわすことができる)である。
 s1の変調方式が16QAM、s2の変調方式が16QAMのとき、プリコーディング後に規則的に位相変更を行う方法を適用したときのプリコーディング行列Fが、式(G3)であらわされたとき、実施の形態1で示したように、αとして、式(37)が適した値となる。αが式(37)であらわされたとき、z1(t)、z2(t)いずれも、図94のように、I-Q平面において、256点のいずれかの信号点に相当するベースバンド信号となる。なお、図94は一例であり、原点を中心に、位相を回転させた形の256点の信号点配置となることもある。
 s1の変調方式が16QAM、s2の変調方式が16QAMであるので、重み付け合成、および、位相変更された信号であるz1(t)、z2(t)はいずれも、16QAMで4ビット、16QAMで4ビットの計8ビットが伝送されているので、図94のように256点の信号点となるが、このとき、信号点の最小ユークリッド距離が大きいため、受信装置において、よりよいデータの受信品質が得られることになる。
 ベースバンド信号入れ替え部9301は、プリコーディング後の信号309A(z1(t))およびプリコーディング・位相変更後の信号309B(z2(t))、制御信号8500を入力とし、s1の変調方式が16QAM、s2の変調方式が16QAMであるので、制御信号8500が、「信号の入れ替えを行わない」ということを示しており、したがって、信号9302A(r1(t))としてプリコーディング後の信号309A(z1(t))を出力し、信号9302B(r2(t))としてプリコーディング・位相変更後の信号309B(z2(t))を出力する。
 次に、s1の変調方式がQPSK、s2の変調方式が16QAMの場合の図116の各部の動作について説明する。
 s1(t)は、変調方式QPSKのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図81のとおりであり、hは式(78)のとおりである。s2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)であるため、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。
 パワー変更部(8501A)は、変調方式QPSKのベースバンド信号(マッピング後の信号)307A、制御信号(8500)を入力とし、制御信号(8500)に基づき、設定したパワー変更のための値をvとすると、変調方式QPSKのベースバンド信号(マッピング後の信号)307Aをv倍した信号(パワー変更後の信号:8502A)を出力する。
 パワー変更部(8501B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8500)を入力とし、制御信号(8500)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(パワー変更後の信号:8502B)を出力する。
 このとき、実施の形態F1において、「QPSKの平均電力と16QAMの平均電力の比はv:u=1:5」にすると一つの良い例であることを示した。(これにより、受信装置は、高いデータの受信品質を得ることができることになる。)このときのプリコーディング後に規則的に位相変更を行う方法について以下で説明する。
 重み付け合成部600は、パワー変更後の信号8502A(変調方式QPSKのベースバンド信号(マッピング後の信号)307Aをv倍した信号)およびパワー変更後の信号8502B(変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号)、信号処理方法に関する情報315を入力とし、信号処理方法に関する情報315の情報に基づいて、プリコーディングが行われ、プリコーディング後の信号309A(z1(t))および、プリコーディング後の信号316B(z2’(t))を出力する。
 このとき、プリコーディング後に規則的に位相変更を行う方法におけるプリコーディング行列をF、位相変更値をy(t)とすると、以下の関係式が成立する。
Figure JPOXMLDOC01-appb-M000097
 ただし、y(t)は絶対値が1の複素数(したがって、y(t)はejθとあらわすことができる)である。
 s1の変調方式がQPSK、s2の変調方式が16QAMのとき、プリコーディング後に規則的に位相変更を行う方法を適用したときのプリコーディング行列Fが、式(G3)であらわさたとき、s1の変調方式が16QAM、s2の変調方式が16QAMのときと同様、αとして、式(37)が適した値となる。その理由について説明する。
 図95は、上述の送信状態における16QAMのI-Q平面における16点の信号点とQPSKのI-Q平面における4点の信号点の位置の関係を示しており、○は16QAMの信号点、●はQPSKの信号点である。図95からわかるように、16QAMの16個の信号点の内の4つとQPSKの4つの信号点とは重なる状態となる。このような状況で、プリコーディング後に規則的に位相変更を行う方法を適用したときのプリコーディング行列Fが、式(G3)であらわされ、αとして、式(37)とした場合、z1(t)及びz2(t)はいずれも、s1の変調方式が16QAM、s2の変調方式が16QAMである時の図94の256点の信号点に対し、64点抽出した信号点に相当するベースバンド信号となる。なお、図94は一例であり、原点を中心に、位相を回転させた形の256点の信号点配置となることもある。
 s1の変調方式がQPSK、s2の変調方式が16QAMであるので、重み付け合成・位相変更された信号であるz1(t)、z2(t)はQPSK2ビット、16QAMで4ビットの計6ビットが伝送されているので、64点の信号点となるが、このとき、上述で説明したような64点の信号点となるので、信号点の最小ユークリッド距離が大きいため、受信装置において、よりよいデータの受信品質が得られることになる。
 ベースバンド信号入れ替え部9301は、プリコーディング後の信号309A(z1(t))およびプリコーディング・位相変更後の信号309B(z2(t))、制御信号8500を入力とし、s1の変調方式がQPSK、s2の変調方式が16QAMであるので、制御信号8500が、「信号の入れ替えを行う」ということを示しているので、ベースバンド信号入れ替え部9301は、例えば、
時間2kのとき(kは整数)
信号9302A(r1(2k))として、プリコーディング後の信号309A(z1(2k))を出力し、信号9302B(r2(2k))としてプリコーディング・位相変更後の信号309B(z2(2k))を出力する
とし、
時間2k+1のとき(kは整数)
信号9302A(r1(2k+1))としてプリコーディング・位相変更後の信号309B(z2(2k+1))を出力し、信号9302B(r2(2k+1))としてプリコーディング後の信号309A(z1(2k+1))を出力する。
また、
時間2kのとき(kは整数)
信号9302A(r1(2k))としてプリコーディング・位相変更後の信号309B(z2(2k))を出力し、信号9302B(r2(2k))としてプリコーディング後の信号309A(z1(2k))を出力する
とし、
時間2k+1のとき(kは整数)
信号9302A(r1(2k+1))として、プリコーディング後の信号309A(z1(2k+1))を出力し、信号9302B(r2(2k+1))としてプリコーディング・位相変更後の信号309B(z2(2k+1))を出力する。
 なお、上述では、s1の変調方式がQPSK、s2の変調方式が16QAMのとき、信号入れ替えを行うものとしている。このようにすることで、実施の形態F1で記載したように、PAPRの削減が可能なため、送信装置の消費電力を抑えることができるという効果を得ることができる。ただし、送信装置の消費電力を問題としない場合、s1の変調方式が16QAM、s2の変調方式が16QAMのときと同様に、信号の入れ替えを行わない、としてもよい。
 また、s1の変調方式がQPSK、s2の変調方式が16QAMのとき、v:u=1:5とした場合がよい例であるので、このときを例に説明したが、v<uという条件で、s1の変調方式がQPSK、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法とs1の変調方式が16QAM、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法を同一として、両者の場合で、良好な受信品質を得ることができる場合は存在する。したがって、v:u=1:5に限ったものではない。
 以上のように、s1の変調方式がQPSK、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法とs1の変調方式が16QAM、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法を同一の方法とすることで、送信装置の回路規模を削減することができるとともに、式(G4)および式(G5)、信号入れ替え方法、に基づいて、受信装置は、復調を行うことになるが、上記のように、信号点を共有しているため、受信候補信号点を求める演算部の共有が可能となるため、受信装置において、回路規模を削減することができるという効果を得ることができる。
 なお、本実施の形態では、式(G3)を用いたプリコーディング後に規則的に位相変更を行う方法を例に説明したが、プリコーディング後に規則的に位相変更を行う方法はこれに限ったものではない。
 本発明とポイントとなる点は、以下のようになる。
・s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合、両者の場合で使用するプリコーディング後に規則的に位相変更を行う方法を同一とする。
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合v=uであり、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、v<uの条件を満たす
ということになる。
 なお、受信装置において、良好な受信品質を得ることができるよい例としては、
例1(以下の2つの項目を満たす。):
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合v=uであり、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、v:u=1:5の条件を満たす。
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、いずれの場合も、同一のプリコーディング後に規則的に位相変更を行う方法を用いる。
例2(以下の2つの項目を満たす。):
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合v=uであり、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、v<uの条件を満たす。
・s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合、両者の場合で使用するプリコーディング後に規則的に位相変更を行う方法は同一であり、プリコーディング行列は式(G3)であらわされる。
例3(以下の2つの項目を満たす。):
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合v=uであり、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、v<uの条件を満たす。
・s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合、両者の場合で使用するプリコーディング後に規則的に位相変更を行う方法は同一であり、プリコーディング行列は式(G3)であらわされ、αは式(37)であらわされる。
例4(以下の2つの項目を満たす。):
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合v=uであり、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、v:u=1:5の条件を満たす。
・s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合、両者の場合で使用するプリコーディング後に規則的に位相変更を行う方法は同一であり、プリコーディング行列は式(G3)であらわされ、αは式(37)であらわされる。
 なお、本実施の形態は、変調方式をQPSKおよび16QAMのときを例に説明したがこれに限ったものではない。したがって、本実施の形態を拡張すると、以下のように考えることができる。変調方式Aと変調方式Bがあり、変調方式AのI-Q平面における信号点数をa、変調方式BのI-Q平面における信号点の数をbとし、a<bとする。すると、本発明のポイントは以下のように与えることができる。
 以下の2つの項目を満たす。
・s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合とs1の変調方式が変調方式B、s2の変調方式が変調方式Bの場合をサポートしている場合、両者の場合で使用するプリコーディング後に規則的に位相変更を行う方法を同一とする。
・s1の変調方式が変調方式B、s2の変調方式が変調方式Bの場合v=uであり、s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合、v<uの条件を満たす。
 このとき、図93を用いて説明したベースバンド信号入れ替えは、実施してもよいし、実施しなくてもよい。ただし、s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合、PAPRの影響を考慮すると、上記で述べたベースバンド信号入れ替えを実施するとよい。
 または、以下の2つの項目を満たす。
・s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合とs1の変調方式が変調方式B、s2の変調方式が変調方式Bの場合をサポートしている場合、両者の場合でプリコーディング後に規則的に位相変更を行う方法は同一であり、プリコーディング行列は式(G3)であらわされる。
・s1の変調方式が変調方式B、s2の変調方式が変調方式Bの場合v=uであり、s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合、v<uの条件を満たす。
 このとき、図93を用いて説明したベースバンド信号入れ替えは、実施してもよいし、実施しなくてもよい。ただし、s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合、PAPRの影響を考慮すると、上記で述べたベースバンド信号入れ替えを実施するとよい。
 変調方式Aと変調方式Bのセットとしては、(変調方式A、変調方式B)が(QPSK、16QAM)、(16QAM、64QAM)、(64QAM、128QAM)、(64QAM、256QAM)等がある。
 上述の説明では、一方のプリコーディング後の信号に対し、位相変更を行う場合を例に説明しているが、これに限ったものではなく、本明細書に示したように、複数のプリコーディング後の信号に位相変更をする場合についても、本実施の形態を実施することができ、上述で述べた、変調信号のセットとプリコーディング行列の関係(本発明とポイントとなる点)を満たすとよい。
 また、本実施の形態では、プリコーディング行列Fを式(G3)として説明したがこれに限ったものではなく、例えば、
Figure JPOXMLDOC01-appb-M000098
Figure JPOXMLDOC01-appb-M000099
Figure JPOXMLDOC01-appb-M000100
Figure JPOXMLDOC01-appb-M000101
Figure JPOXMLDOC01-appb-M000102
のいずれかに設定しもよい。ただし、式(G9)、式(G10)において、θ11、θ21、λは固定値である(単位はラジアン)。
 本実施の形態では、時間軸方向に位相変更値を切り替える場合を例として説明するが、他の実施の形態の説明と同様に、OFDM方式のようなマルチキャリア伝送を用いている場合、周波数軸方向に位相変更値を切り替える場合についても、同様に実施することができる。このとき、本実施の形態で用いているtをf(周波数((サブ)キャリア))に置き換えることになる。また、時間―周波数軸方向で、位相変更値を切り替える場合についても同様に実施することが可能である。なお、本実施の形態におけるプリコーディング後に規則的に位相変更を行う方法は、本明細書で説明したプリコーディング後に規則的に位相変更を行う方法に限定されるものではない。
 また、受信装置は、本実施の形態における2つの変調方式の設定パターンいずれにおいても、実施の形態F1で述べた受信方法を用いて、復調、検波が行われることになる。
 本発明は、複数のアンテナからそれぞれ異なる変調信号を送信する無線システムに広く適用でき、例えばOFDM-MIMO通信システムに適用して好適である。また、複数の送信箇所を持つ有線通信システム(例えば、PLC(Power Line Communication)システム、光通信システム、DSL(Digital Subscriber Line:デジタル加入者線)システム)において、MIMO伝送を行う場合についても適用することができ、このとき、複数の送信箇所を用いて、本発明で説明したような複数の変調信号を送信することになる。また、変調信号は、複数の送信箇所から送信されてもよい。
302A,302B 符号化器
304A,304B インタリーバ
306A,306B マッピング部
314 信号処理方法情報生成部
308A,308B 重み付け合成部
310A,310B 無線部
312A,312B アンテナ
317A,317B 位相変更部
402 符号化器
404 分配部
504#1,504#2 送信アンテナ
505#1,505#2 受信アンテナ
600 重み付け合成部
701_X,701_Y アンテナ
703_X,703_Y 無線部
705_1 チャネル変動推定部
705_2 チャネル変動推定部
707_1 チャネル変動推定部
707_2 チャネル変動推定部
709 制御情報復号部
711 信号処理部
803 INNER MIMO検波部
805A,805B 対数尤度算出部
807A,807B デインタリーバ
809A,809B 対数尤度比算出部
811A,811B Soft-in/soft-outデコーダ
813A,813B インタリーバ
815 記憶部
819 係数生成部
901 Soft-in/soft-outデコーダ
903 分配部
1201A,1201B OFDM方式関連処理部
1302A,1302A シリアルパラレル変換部
1304A,1304B 並び換え部
1306A,1306B 逆高速フーリエ変換部
1308A,1308B 無線部

Claims (2)

  1.  複数のベースバンド信号から同一の周波数帯域かつ同一の時刻に送信される複数の信号を生成する信号生成方法であって、
     第1の複数ビットから生成された第1のベースバンド信号s1をu倍し、第2の複数ビットから生成された第2のベースバンド信号s2をv倍し、前記uと前記vとは互いに異なる実数であり、
     前記u倍された第1のベースバンド信号s1及び前記v倍された第2のベースバンド信号s2の両方に対して位相変更を行い、位相変更後の信号u×s1’及び位相変更後の信号v×s2’を生成し、
     前記位相変更後の信号u×s1’と、前記位相変更後の信号v×s2’とに対して、所定の行列Fに応じた重み付け合成を行い、第1の重み付け合成信号z1と第2の重み付け合成信号z2を、前記同一の周波数帯域かつ同一の時刻に送信される複数の信号として生成し、
     前記第1の重み付け合成信号z1及び前記第2の重み付け合成信号z2は、(z1、z2)=F(u×s1’、v×s2’)を満たし、
     前記u倍された第1のベースバンド信号s1及び前記v倍された第2のベースバンド信号s2に対して施される位相変更量は、それぞれN個の位相変更量の候補を切り替えながら選択された一つの位相変更量であり、前記N個の位相変更量のそれぞれは、所定の期間内で少なくとも一回選択される、信号生成方法。
  2.  複数のベースバンド信号から同一の周波数帯域かつ同一の時刻に送信される複数の信号を生成する信号生成装置であって、
     第1の複数ビットから生成された第1のベースバンド信号s1をu倍し、第2の複数ビットから生成された第2のベースバンド信号s2をv倍し、前記uと前記vとは互いに異なる実数であるパワー変更部と、
     前記u倍された第1のベースバンド信号s1及び前記v倍された第2のベースバンド信号s2の両方に対して位相変更を行い、位相変更後の信号u×s1’及び位相変更後の信号v×s2’を生成する位相変更部と、
     前記位相変更後の信号u×s1’と、前記位相変更後の信号v×s2’とに対して、所定の行列Fに応じた重み付け合成を行い、第1の重み付け合成信号z1と第2の重み付け合成信号z2を、前記同一の周波数帯域かつ同一の時刻に送信される複数の信号として生成する重み付け合成部とを備え、
     前記第1の重み付け合成信号z1及び前記第2の重み付け合成信号z2は、(z1、z2)=F(u×s1’、v×s2’)を満たし、
     前記u倍された第1のベースバンド信号s1及び前記v倍された第2のベースバンド信号s2に対して施される位相変更量は、それぞれN個の位相変更量の候補を切り替えながら選択された一つの位相変更量であり、前記N個の位相変更量の候補のそれぞれは、所定の期間内で少なくとも一回選択される、信号生成装置。
PCT/JP2012/000352 2011-02-18 2012-01-20 信号生成方法及び信号生成装置 WO2012111256A1 (ja)

Priority Applications (34)

Application Number Priority Date Filing Date Title
MX2013000953A MX2013000953A (es) 2011-02-18 2012-01-20 Metodo de generacion de señales y dispositivo de generacion de señales.
MX2015003256A MX336169B (es) 2011-02-18 2012-01-20 Metodo de generacion de señales y dispositivo de generacion de señales.
EP12747257.9A EP2677676A4 (en) 2011-02-18 2012-01-20 Method of signal generation and signal generating device
AU2012218953A AU2012218953B2 (en) 2011-02-18 2012-01-20 Method of signal generation and signal generating device
SG2013002217A SG187030A1 (en) 2011-02-18 2012-01-20 Method of signal generation and signal generating device
RU2013104166/07A RU2593381C2 (ru) 2011-02-18 2012-01-20 Способ формирования сигналов и устройство формирования сигналов
KR1020227025902A KR102534519B1 (ko) 2011-02-18 2012-01-20 신호생성방법 및 신호생성장치
JP2012557809A JP5984062B2 (ja) 2011-02-18 2012-01-20 信号生成方法及び信号生成装置
CN2012800020663A CN103109482A (zh) 2011-02-18 2012-01-20 信号生成方法及信号生成装置
KR1020197027755A KR102133354B1 (ko) 2011-02-18 2012-01-20 신호생성방법 및 신호생성장치
KR1020227010732A KR102427003B1 (ko) 2011-02-18 2012-01-20 신호생성방법 및 신호생성장치
KR1020217008224A KR102382798B1 (ko) 2011-02-18 2012-01-20 신호생성방법 및 신호생성장치
MX2016012433A MX368299B (es) 2011-02-18 2012-01-20 Metodo de generacion de señales y dispositivo de generacion de señales.
US13/811,064 US8885596B2 (en) 2011-02-18 2012-01-20 Method of signal generation and signal generating device
CA2802654A CA2802654C (en) 2011-02-18 2012-01-20 Method of signal generation and signal generating device
MX2016000042A MX342312B (es) 2011-02-18 2012-01-20 Metodo de generacion de señales y dispositivo de generacion de señales.
BR112013002605-7A BR112013002605B1 (pt) 2011-02-18 2012-01-20 Método de transmissão, aparelho de transmissão, método de recepção e aparelho de recepção
KR1020137001013A KR102026652B1 (ko) 2011-02-18 2012-01-20 신호생성방법 및 신호생성장치
KR1020237016525A KR20230074299A (ko) 2011-02-18 2012-01-20 신호생성방법 및 신호생성장치
KR1020207019572A KR20200085931A (ko) 2011-02-18 2012-01-20 신호생성방법 및 신호생성장치
IL223918A IL223918A (en) 2011-02-18 2012-12-27 A method for generating a signal and a device for generating a signal
US14/501,780 US9667333B2 (en) 2011-02-18 2014-09-30 Method of signal generation and signal generating device
AU2017200598A AU2017200598B2 (en) 2011-02-18 2017-01-30 Method of signal generation and signal generating device
US15/496,406 US10009207B2 (en) 2011-02-18 2017-04-25 Method of signal generation and signal generating device
PH12017501410A PH12017501410A1 (en) 2011-02-18 2017-08-07 Method of signal generation and signal generation device
US15/987,016 US10225123B2 (en) 2011-02-18 2018-05-23 Method of signal generation and signal generating device
US16/239,145 US10476720B2 (en) 2011-02-18 2019-01-03 Method of signal generation and signal generating device
AU2019201897A AU2019201897A1 (en) 2011-02-18 2019-03-19 Method of signal generation and signal generating device
US16/582,644 US11063805B2 (en) 2011-02-18 2019-09-25 Method of signal generation and signal generating device
AU2021200843A AU2021200843B2 (en) 2011-02-18 2021-02-10 Method of signal generation and signal generating device
US17/338,092 US11240084B2 (en) 2011-02-18 2021-06-03 Method of signal generation and signal generating device
US17/551,984 US20220109599A1 (en) 2011-02-18 2021-12-15 Method of signal generation and signal generating device
AU2022252818A AU2022252818A1 (en) 2011-02-18 2022-10-14 Method of signal generation and signal generating device
US18/102,338 US11943032B2 (en) 2011-02-18 2023-01-27 Method of signal generation and signal generating device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-033771 2011-02-18
JP2011033771 2011-02-18
JP2011-051842 2011-03-09
JP2011051842 2011-03-09
JP2011-093544 2011-04-19
JP2011093544 2011-04-19
JP2011102101 2011-04-28
JP2011-102101 2011-04-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/811,064 A-371-Of-International US8885596B2 (en) 2011-02-18 2012-01-20 Method of signal generation and signal generating device
US14/501,780 Continuation US9667333B2 (en) 2011-02-18 2014-09-30 Method of signal generation and signal generating device

Publications (1)

Publication Number Publication Date
WO2012111256A1 true WO2012111256A1 (ja) 2012-08-23

Family

ID=46672205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000352 WO2012111256A1 (ja) 2011-02-18 2012-01-20 信号生成方法及び信号生成装置

Country Status (19)

Country Link
US (9) US8885596B2 (ja)
EP (1) EP2677676A4 (ja)
JP (5) JP5984062B2 (ja)
KR (7) KR102534519B1 (ja)
CN (5) CN107566023B (ja)
AR (1) AR090008A1 (ja)
AU (5) AU2012218953B2 (ja)
BR (1) BR112013002605B1 (ja)
CA (3) CA3168049A1 (ja)
CL (1) CL2013000508A1 (ja)
IL (1) IL223918A (ja)
MX (5) MX2013000953A (ja)
MY (1) MY168825A (ja)
PE (1) PE20131092A1 (ja)
PH (1) PH12017501410A1 (ja)
RU (1) RU2593381C2 (ja)
SG (1) SG187030A1 (ja)
TW (1) TWI578732B (ja)
WO (1) WO2012111256A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916923A (zh) * 2012-10-11 2013-02-06 华中科技大学 一种降低多载波系统峰均功率比的信息传输方法
WO2015064081A1 (ja) * 2013-10-31 2015-05-07 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法
JP2017229080A (ja) * 2011-04-19 2017-12-28 サン パテント トラスト 信号生成方法及び信号生成装置
WO2018110442A1 (ja) * 2016-12-12 2018-06-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および送信方法
JP2022141788A (ja) * 2013-01-11 2022-09-29 サン パテント トラスト 受信方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578619B2 (ja) 2010-12-10 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および受信装置
US9374141B2 (en) 2012-12-07 2016-06-21 Sun Patent Trust Signal generation method, transmission device, reception method, and reception device
US20150020143A1 (en) * 2013-07-10 2015-01-15 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
KR102121947B1 (ko) * 2013-09-27 2020-06-11 삼성전자주식회사 신호 처리 장치 및 그의 신호 처리 방법
CN105634696B (zh) * 2014-10-31 2019-02-22 富士通株式会社 多载波调制信号的比特分配方法、装置和系统
JP6643626B2 (ja) * 2015-02-09 2020-02-12 サン パテント トラスト 送信装置および受信装置
JP7002185B2 (ja) * 2015-07-30 2022-01-20 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法、受信装置
CN105450273B (zh) * 2015-08-24 2016-11-23 电信科学技术研究院 一种传输编码指示信息和确定预编码矩阵的方法和装置
WO2018012520A1 (ja) * 2016-07-14 2018-01-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法、および受信装置
EP3537623B1 (en) * 2016-11-04 2021-12-22 Panasonic Intellectual Property Corporation of America Transmitting device, transmitting method, receiving device and receiving method
CN108023632B (zh) * 2016-11-04 2022-06-28 华为技术有限公司 数据处理方法和发送设备
RU178755U1 (ru) * 2017-07-04 2018-04-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Устройство декодирования ldpc-кодов
WO2021181278A1 (en) * 2020-03-10 2021-09-16 Ntwine, Llc Bandwidth constrained communication systems with frequency domain information processing
CN111970027B (zh) * 2020-07-09 2021-06-08 珠海中慧微电子有限公司 一种宽带载波通信网络的信标信号的发送方法
CN112468423B (zh) * 2021-02-04 2021-05-18 北京紫光青藤微系统有限公司 信号解码方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050885A1 (ja) 2003-11-21 2005-06-02 Matsushita Electric Industrial Co., Ltd. マルチアンテナ受信装置、マルチアンテナ受信方法、マルチアンテナ送信装置及びマルチアンテナ通信システム
WO2005099211A1 (en) * 2004-03-31 2005-10-20 Intel Corporation Ofdm system with per subcarrier phase rotation
JP2005354665A (ja) * 2004-05-10 2005-12-22 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
WO2010016183A1 (ja) * 2008-08-05 2010-02-11 パナソニック株式会社 無線通信装置及び無線通信方法

Family Cites Families (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750175A (en) * 1967-12-14 1973-07-31 Texas Instruments Inc Modular electronics communication system
US3647945A (en) * 1969-09-30 1972-03-07 Rca Corp Color encoding system utilizing two filters alternately for minimizing effects of image misregistration and image pickup device lag
US3747098A (en) * 1970-07-23 1973-07-17 Univ Syracuse Res Corp Phased array antenna
US4227194A (en) * 1971-01-04 1980-10-07 Hughes Aircraft Company Synthetic array processor
US4217587A (en) * 1978-08-14 1980-08-12 Westinghouse Electric Corp. Antenna beam steering controller
NL7901865A (nl) * 1979-03-08 1980-09-10 Philips Nv Systeem voor multiniveau datatransmissie met behulp van een hoekgemoduleerde draaggolf van constante amplitude.
US4521779A (en) * 1980-04-24 1985-06-04 The United States Of America As Represented By The Secretary Of The Navy Pulse compression system
JPS6212814A (ja) * 1985-07-10 1987-01-21 Canon Inc ロ−タリ−エンコ−ダ−
JP2554511B2 (ja) * 1987-11-30 1996-11-13 日本ヒューレット・パッカード株式会社 ベクトル電流計
US5149255A (en) * 1990-02-20 1992-09-22 Arthur D. Little, Inc. Gearing system having interdigital concave-convex teeth formed as invalutes or multi-faceted polygons
JPH0677737A (ja) * 1992-07-08 1994-03-18 Toshiba Corp 位相検波器及びこれに用いる位相検波方式
JP2734955B2 (ja) * 1993-12-24 1998-04-02 日本電気株式会社 無線データ通信装置
JPH07234382A (ja) * 1994-02-24 1995-09-05 Matsushita Electric Ind Co Ltd 超解像走査光学装置
KR100195458B1 (ko) * 1994-12-05 1999-06-15 오보시 고지 신호다중화장치 및 방법
JP3444001B2 (ja) * 1995-02-10 2003-09-08 ソニー株式会社 符号検出回路
US6034987A (en) * 1996-12-17 2000-03-07 Ericsson Inc. System for improving the quality of a received radio signal
US6359923B1 (en) * 1997-12-18 2002-03-19 At&T Wireless Services, Inc. Highly bandwidth efficient communications
US6175550B1 (en) * 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
US6026117A (en) * 1997-10-23 2000-02-15 Interdigital Technology Corporation Method and apparatus for generating complex four-phase sequences for a CDMA communication system
US20030138058A1 (en) * 1998-02-06 2003-07-24 Dakshi Agrawal Diversity coded OFDM for high data-rate communication
US6463096B1 (en) * 1998-06-12 2002-10-08 Cisco Systems, Inc MAC protocol employing multiple data rates
US7110444B1 (en) * 1999-08-04 2006-09-19 Parkervision, Inc. Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations
JP3552622B2 (ja) * 1999-12-24 2004-08-11 日本電気株式会社 Pldを用いた無限移相器およびその調整方法
US7106821B2 (en) * 2000-03-15 2006-09-12 Sony Corporation Data modulation method, data modulation device and communication device
US6967993B1 (en) * 2000-05-26 2005-11-22 Freescale Semiconductor, Inc. Ultrawide bandwidth system and method for fast synchronization using sub-code spins
JP4326673B2 (ja) * 2000-06-06 2009-09-09 富士通株式会社 非線形歪補償装置を有する通信装置の起動方法
DE10039666B4 (de) * 2000-08-14 2011-08-11 Rohde & Schwarz GmbH & Co. KG, 81671 Verfahren und Vorrichtung zur Abschätzung der Frequenz und/oder der Phase eines digitalen Signals
US6928120B1 (en) * 2000-09-25 2005-08-09 Cingular Wireless Ii, Llc Methods and apparatus for use in reducing residual phase error in OFDM communication signals
US6996418B2 (en) * 2000-12-29 2006-02-07 Nortel Networks Limited Apparatus and method for OFDM data communications
JP3714910B2 (ja) * 2001-02-20 2005-11-09 株式会社エヌ・ティ・ティ・ドコモ ターボ受信方法及びその受信機
US6859503B2 (en) * 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
KR100510434B1 (ko) * 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 Ofdm신호전달 시스템, ofdm신호 송신장치 및ofdm신호 수신장치
FR2824206A1 (fr) * 2001-04-27 2002-10-31 Thomson Csf Procede de generation de modulation par division de frequence suivi de mulitplication de frequence
JP2003087218A (ja) * 2001-06-29 2003-03-20 Matsushita Electric Ind Co Ltd マルチキャリア送信装置、マルチキャリア受信装置およびマルチキャリア無線通信方法
US7409012B2 (en) * 2001-07-06 2008-08-05 Motorola, Inc. Modulator and signaling method
US20050201473A1 (en) * 2001-12-06 2005-09-15 Ismail Lakkis Systems and methods for receiving data in a wireless communication network
US7224742B2 (en) * 2001-12-14 2007-05-29 Samsung Electronics Co., Ltd. Apparatus and method for reducing the peak-to-average power ratio of OFDM/OFDMA signals
US6693589B2 (en) * 2002-01-30 2004-02-17 Raytheon Company Digital beam stabilization techniques for wide-bandwidth electronically scanned antennas
JP3407254B1 (ja) * 2002-01-31 2003-05-19 富士通株式会社 データ伝送システム及びデータ伝送制御方法
US8325590B2 (en) * 2002-02-27 2012-12-04 Apple Inc. OFDM communications system
WO2003085869A1 (fr) * 2002-04-09 2003-10-16 Panasonic Mobile Communications Co., Ltd. Procede et dispositif de communication par multiplexage par repartition orthogonale de la frequence (ofdm)
FI20021013A0 (fi) * 2002-05-29 2002-05-29 Nokia Corp Tiedonsiirtomenetelmä ja -järjestelmä
US8457230B2 (en) * 2002-08-21 2013-06-04 Broadcom Corporation Reconfigurable orthogonal frequency division multiplexing (OFDM) chip supporting single weight diversity
US7263385B2 (en) * 2002-08-23 2007-08-28 Qualcomm Incorporated System and method for beamforming with data rate control feedback
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7986742B2 (en) * 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US7308063B2 (en) * 2002-12-20 2007-12-11 Nokia Corporation Apparatus, and associated method, for effectuating post-FFT correction of fine frequency offset
JP4091854B2 (ja) * 2003-01-31 2008-05-28 富士通株式会社 アレーアンテナの制御方法及びその装置、並びにアレーアンテナの制御プログラム
US8422380B2 (en) * 2003-03-26 2013-04-16 Sharp Laboratories Of America, Inc. Dynamically reconfigurable wired network
JP2004336564A (ja) * 2003-05-09 2004-11-25 Matsushita Electric Ind Co Ltd マルチキャリア送信装置、基地局装置及び移動体通信端末装置
US7761059B2 (en) * 2003-05-28 2010-07-20 Alcatel-Lucent Usa Inc. Method of transmitting or receiving with constrained feedback information
KR100689382B1 (ko) * 2003-06-20 2007-03-02 삼성전자주식회사 직교분할다중화방식을 기반으로 하는이동통신시스템에서의 송신장치 및 방법
US7031678B2 (en) * 2003-07-15 2006-04-18 Qualcomm Inc. Wireless speech and data transmission
JP4436323B2 (ja) * 2003-07-16 2010-03-24 日本電信電話株式会社 光周波数符号を用いる光通信システム、その光送信装置及び光受信装置、反射型光通信装置
JP2005050885A (ja) 2003-07-29 2005-02-24 Kyocera Corp 配線基板及びその製造方法
KR100640461B1 (ko) * 2003-07-30 2006-10-30 삼성전자주식회사 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 서브 채널 할당 장치 및 방법
US7356089B2 (en) * 2003-09-05 2008-04-08 Nortel Networks Limited Phase offset spatial multiplexing
JP2005086781A (ja) * 2003-09-11 2005-03-31 Regents Of The Univ Of Minnesota 部分的チャネル認識を伴うマルチアンテナ送信のための適応変調
KR20060093332A (ko) * 2003-10-21 2006-08-24 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 송신기, 수신기, 트랜시버, 무선 장치 및 원격통신 시스템
US7616698B2 (en) * 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
KR100584439B1 (ko) * 2003-11-05 2006-05-26 삼성전자주식회사 다중 안테나를 사용하는 직교주파수분할다중 시스템에서간섭신호 제거 장치 및 방법
JP2005184730A (ja) * 2003-12-24 2005-07-07 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US7308047B2 (en) * 2003-12-31 2007-12-11 Intel Corporation Symbol de-mapping methods in multiple-input multiple-output systems
US7995667B2 (en) * 2004-02-13 2011-08-09 Broadcom Corporation Reduced latency concatenated reed solomon-convolutional coding for MIMO wireless LAN
US7668227B2 (en) * 2004-03-05 2010-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for reducing interference in spread spectrum signals using spreading code cross-correlations
US7633994B2 (en) * 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
JP4513400B2 (ja) * 2004-04-27 2010-07-28 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US8233555B2 (en) * 2004-05-17 2012-07-31 Qualcomm Incorporated Time varying delay diversity of OFDM
JP4256301B2 (ja) * 2004-05-28 2009-04-22 株式会社東芝 無線通信装置
US7327983B2 (en) * 2004-06-25 2008-02-05 Mitsubishi Electric Research Laboratories, Inc. RF-based antenna selection in MIMO systems
US7324794B2 (en) * 2004-09-29 2008-01-29 Tzero Technologies, Inc. Phase combining diversity
US7522562B2 (en) * 2004-10-06 2009-04-21 Broadcom Corporation Method and system for channel estimation in a spatial multiplexing MIMO system
US8098776B2 (en) * 2004-10-06 2012-01-17 Broadcom Corporation Method and system for pre-equalization in a single weight spatial multiplexing MIMO system
US7366465B2 (en) * 2004-11-19 2008-04-29 Sirit Technologies Inc. Homodyne RFID receiver and method
US7643444B2 (en) * 2005-03-10 2010-01-05 Broadcom Corporation Method and system for parsing bits in an interleaver for adaptive modulations in a multiple input multiple output (MIMO) wireless local area network (WLAN) system
US7787843B2 (en) * 2005-03-29 2010-08-31 Broadcom Corporation Multiple band direct conversion radio frequency transceiver integrated circuit
US20060227891A1 (en) * 2005-04-07 2006-10-12 Samsung Electronics Co., Ltd. Method of channel estimation for MIMO-OFDM using phase rotated low overhead preamble
KR20060124090A (ko) * 2005-05-30 2006-12-05 삼성전자주식회사 3대역 단일 인테나 공유장치
WO2007022630A1 (en) * 2005-08-23 2007-03-01 Nortel Networks Limited Methods and systems for ofdm multiple zone partitioning
CN102546512B (zh) 2005-08-24 2017-04-26 无线局域网一有限责任公司 正交频分复用发送装置和正交频分复用接收装置
EP1929735B1 (en) * 2005-09-27 2019-01-16 Nokia Technologies Oy Pilot structure for multicarrier transmissions
JP4528236B2 (ja) * 2005-09-29 2010-08-18 株式会社日立製作所 無線基地局装置および通信方法
JP4079964B2 (ja) 2005-09-30 2008-04-23 Necエレクトロニクス株式会社 無線受信装置及びアンテナ・ベリフィケーション方法
JP4939888B2 (ja) * 2005-10-05 2012-05-30 パナソニック株式会社 無線通信装置
CN1953361B (zh) * 2005-10-18 2010-05-05 大唐移动通信设备有限公司 发送多载频信号的方法及系统
US7817641B1 (en) * 2005-10-20 2010-10-19 Amir Keyvan Khandani Methods for spatial multiplexing of wireless two-way channels
WO2007052576A1 (ja) * 2005-10-31 2007-05-10 Sharp Kabushiki Kaisha 端末装置、基地局装置および通信システム
US7917176B2 (en) 2006-02-14 2011-03-29 Nec Laboratories America, Inc. Structured codebook and successive beamforming for multiple-antenna systems
JP4748311B2 (ja) * 2005-10-31 2011-08-17 日本電気株式会社 微弱光の光パワー測定方法および装置、それを用いた光通信システム
KR101165629B1 (ko) * 2005-11-03 2012-07-17 엘지전자 주식회사 Ofdm 신호 생성/복원 방법 및 그 장치
JP4680036B2 (ja) * 2005-11-09 2011-05-11 独立行政法人情報通信研究機構 受信装置および受信方法
US8072943B2 (en) * 2005-12-09 2011-12-06 Samsung Electronics Co., Ltd. Wireless communication system and methodology for communicating via multiple information streams
ES2382933T3 (es) 2005-12-20 2012-06-14 Sharp Kabushiki Kaisha Método de control de transmisión, estación base, unidad móvil y sistema de comunicación con diversidad de retardo
GB2433681B (en) * 2005-12-21 2009-05-06 Iti Scotland Ltd Communication system and method
US20070153934A1 (en) 2005-12-29 2007-07-05 Samsung Electronics Co., Ltd. Constant uneven power loading in beamforming systems for high throughput wireless communications
US8014415B2 (en) * 2005-12-30 2011-09-06 Meshnetworks, Inc. Apparatus, system and method for communicating information in a wireless communication network
JP4958565B2 (ja) * 2006-01-06 2012-06-20 パナソニック株式会社 無線通信装置
JP4758781B2 (ja) * 2006-01-31 2011-08-31 富士通株式会社 Dcオフセット補正装置及びその方法
US7710319B2 (en) * 2006-02-14 2010-05-04 Sibeam, Inc. Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas
KR100817497B1 (ko) * 2006-03-10 2008-03-27 한국전자통신연구원 다중 안테나를 위한 심볼 생성 장치 및 방법
CN101039136B (zh) * 2006-03-15 2011-09-14 华为技术有限公司 基于空频编码的多天线发射分集方法及其系统
CN101043298B (zh) * 2006-03-20 2011-07-27 华为技术有限公司 一种多天线通信中发射信号的方法及系统
JP2007259445A (ja) * 2006-03-20 2007-10-04 Fujitsu Ltd Ofdm通信システムにおける送信装置及び方法
US7672388B2 (en) * 2006-03-23 2010-03-02 Motorola, Inc. Method of providing signal diversity in an OFDM system
US7787547B2 (en) * 2006-03-24 2010-08-31 Broadcom Corporation Hybrid radio frequency transmitter
CN101501927B (zh) * 2006-04-27 2013-09-04 泰科电子服务有限责任公司 基于异向材料结构的天线、设备和系统
KR100894992B1 (ko) * 2006-05-09 2009-04-24 삼성전자주식회사 다중 안테나 시스템에서 검출 복잡도 감소 장치 및 방법
KR20070113967A (ko) * 2006-05-26 2007-11-29 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
EP2044711A4 (en) * 2006-07-06 2013-01-23 Lg Electronics Inc METHOD AND DEVICE FOR CORRECTING ERRORS IN A COMMUNICATION SYSTEM WITH MULTIPLE AUXILIARY CARRIERS USING SEVERAL ANTENNAS
US8737361B2 (en) * 2006-07-07 2014-05-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting signal in communication system
JP2008048092A (ja) * 2006-08-14 2008-02-28 Toshiba Corp Ofdmを用いる無線送信方法、送信機及び受信機
JP4740065B2 (ja) * 2006-08-22 2011-08-03 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動局及びパイロットチャネル生成方法
KR20080022033A (ko) * 2006-09-05 2008-03-10 엘지전자 주식회사 프리코딩 정보 피드백 방법 및 프리코딩 방법
KR20080026010A (ko) * 2006-09-19 2008-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩을 이용한 데이터 전송 방법 및이를 구현하는 송수신 장치
KR20080026019A (ko) 2006-09-19 2008-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
US7746766B2 (en) * 2006-09-21 2010-06-29 Sharp Laboratories Of America, Inc. Systems and methods for obtaining an optimum transmission format of reference signals to maximize capacity and minimize peak to average power ratio
KR101356508B1 (ko) * 2006-11-06 2014-01-29 엘지전자 주식회사 무선 통신 시스템에서의 데이터 전송 방법
KR100939738B1 (ko) * 2006-12-21 2010-01-29 삼성전자주식회사 다중안테나 무선통신 시스템에서 순환 지연 다이버시티장치 및 방법
JP5182884B2 (ja) * 2006-12-28 2013-04-17 パナソニック株式会社 無線通信装置及び再送制御方法
US8422581B2 (en) * 2007-01-19 2013-04-16 Panasonic Corporation Multi-antenna transmission device, multi-antenna reception device, multi-antenna transmission method, multi-antenna reception method, terminal device, and base station device
JP5213469B2 (ja) * 2007-01-30 2013-06-19 パナソニック株式会社 変調装置及び復調装置
FI20075083A0 (fi) * 2007-02-06 2007-02-06 Nokia Corp Ilmaisumenetelmä ja -laite monivuo-MIMOa varten
US8780771B2 (en) * 2007-02-06 2014-07-15 Qualcomm Incorporated Cyclic delay diversity and precoding for wireless communication
US7995671B2 (en) * 2007-02-09 2011-08-09 Qualcomm Incorporated Multiple-input multiple-output (MIMO) transmission with rank-dependent precoding
ATE539499T1 (de) * 2007-02-14 2012-01-15 Lg Electronics Inc Datensende- und empfangsverfahren mit auf phasenverschiebung basierender vorcodierung und dieses unterstützender sender/empfänger
WO2008103317A2 (en) * 2007-02-16 2008-08-28 Interdigital Technology Corporation Precoded pilot transmission for multi-user and single user mimo communications
WO2008115508A1 (en) * 2007-03-19 2008-09-25 Interdigital Technology Corporation Combined precoding vector switch and frequency switch transmit diversity for secondary synchronization channel in evolved utra
WO2008118474A2 (en) * 2007-03-26 2008-10-02 Sibeam, Inc. Extensions to adaptive beam-steering method
KR20080101023A (ko) * 2007-05-15 2008-11-21 삼성전자주식회사 광대역 무선통신 시스템에서 타일 구조 기반의 최대전력 대평균전력 감소 장치 및 방법
US8107544B2 (en) * 2007-05-16 2012-01-31 Motorola Mobility, Inc. Method and apparatus for feedback in closed loop transmitting
WO2008139630A1 (ja) * 2007-05-16 2008-11-20 Fujitsu Limited 無線通信装置および無線通信方法
US8160177B2 (en) * 2007-06-25 2012-04-17 Samsung Electronics Co., Ltd. Transmit methods with delay diversity and space-frequency diversity
US8238836B2 (en) * 2007-07-09 2012-08-07 Qualcomm Incorporated Methods for sending small packets in a peer-to-peer (P2P) network
KR101421251B1 (ko) * 2007-08-14 2014-07-18 한국과학기술원 중계기를 기반으로 하는 다중안테나 무선통신 시스템에서협력 중계를 위한 장치 및 방법
KR20090030200A (ko) * 2007-09-19 2009-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩을 이용한 데이터 송수신 방법 및이를 지원하는 송수신기
JP2009077023A (ja) * 2007-09-19 2009-04-09 Sharp Corp チューナおよびそれを備えたダイバーシティ受信システム
US9137806B2 (en) * 2007-09-21 2015-09-15 Qualcomm Incorporated Interference management employing fractional time reuse
JP2009088649A (ja) 2007-09-27 2009-04-23 Toshiba Corp 無線通信装置、無線通信装置の制御方法および無線通信装置の制御プログラム
KR101413309B1 (ko) * 2007-10-08 2014-06-27 엘지전자 주식회사 채널 선택성을 감소시키는 전송기 및 데이터 전송 방법
US8130847B2 (en) * 2007-11-09 2012-03-06 Motorola Mobility, Inc. Closed-loop transmission feedback in wireless communication systems
CN101437007A (zh) * 2007-11-12 2009-05-20 华为技术有限公司 Mimo系统的数据发送/接收方法、装置及设备
KR101048437B1 (ko) * 2007-11-30 2011-07-11 삼성전자주식회사 무선 통신 시스템에서 시변 순환 지연 다이버시티 방법 및 장치
US8626079B2 (en) * 2007-12-12 2014-01-07 Electronics And Telecommunications Research Institute Link adaptation method and apparatus in wireless communication system
JP2009152688A (ja) * 2007-12-18 2009-07-09 Toshiba Corp 端末装置、基地局、無線通信方法および通信プログラム
JP5244381B2 (ja) * 2007-12-26 2013-07-24 株式会社東芝 無線通信装置、無線通信方法および通信プログラム
PL2232726T3 (pl) * 2008-01-14 2017-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Cykliczne przełączanie kodera wstępnego z otwartą pętlą w komunikacjach MIMO
CN101978616B (zh) * 2008-01-17 2013-06-12 上海贝尔股份有限公司 多天线发射机中对信号进行循环延迟映射的方法和装置
US20090185630A1 (en) * 2008-01-23 2009-07-23 Mediatek Inc. Method and apparatus for estimating the channel impulse response of multi-carrier communicating systems
US8009685B2 (en) * 2008-02-01 2011-08-30 Nokia Corporation Signalling the presence of extension frames
KR100937429B1 (ko) * 2008-02-04 2010-01-18 엘지전자 주식회사 신호 송수신 방법 및 신호 송수신 장치
JP5047834B2 (ja) * 2008-02-15 2012-10-10 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法
JP2009193905A (ja) * 2008-02-18 2009-08-27 Panasonic Corp パネルスイッチ
WO2009104927A2 (en) * 2008-02-21 2009-08-27 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving a frame including control information in a broadcasting system
WO2009106090A1 (en) * 2008-02-25 2009-09-03 Telefonaktiebolaget Lm Ericsson (Publ) A method of and a device for precoding transmit data signals in a wireless mimo communication system
KR101455393B1 (ko) * 2008-03-03 2014-10-27 삼성전자주식회사 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치
US20090231196A1 (en) * 2008-03-11 2009-09-17 Huaning Niu Mmwave wpan communication system with fast adaptive beam tracking
US8014686B2 (en) * 2008-03-20 2011-09-06 Infinera Corporation Polarization demultiplexing optical receiver using polarization oversampling and electronic polarization tracking
EP2290890A1 (en) * 2008-06-17 2011-03-02 Panasonic Corporation Radio transmission device and radio transmission method
EP2304914B1 (en) * 2008-06-30 2011-12-07 Telefonaktiebolaget L M Ericsson (PUBL) IQ-imbalance compensation in presence of carrier offset
KR20100017039A (ko) * 2008-08-05 2010-02-16 엘지전자 주식회사 다중 안테나 시스템에서 데이터 전송 방법
KR101268687B1 (ko) * 2008-08-18 2013-05-29 한국전자통신연구원 다중-셀 협력 통신을 위한 기지국들 및 단말을 포함하는 통신 시스템
US8331310B2 (en) * 2008-08-22 2012-12-11 Qualcomm Incorporated Systems and methods employing multiple input multiple output (MIMO) techniques
JP5149111B2 (ja) * 2008-09-09 2013-02-20 株式会社エヌ・ティ・ティ・ドコモ 無線中継装置及び無線中継方法
JP2010074417A (ja) * 2008-09-17 2010-04-02 Fujitsu Ltd 無線送信機、受信機および無線送信方法
KR101497928B1 (ko) * 2008-09-25 2015-03-03 삼성전자주식회사 다중입력 다중출력 시스템에서 신호 송수신 장치 및 그 방법
WO2010043750A1 (en) * 2008-10-13 2010-04-22 Elektrobit Wireless Communications Oy Antenna beam
US8699609B2 (en) * 2008-11-27 2014-04-15 Optis Cellular Technology, Llc Methods and arrangements for peak to average power ratio reduction
GB0823593D0 (en) * 2008-12-30 2009-01-28 Astrium Ltd Calibration apparatus and method
US8116819B2 (en) * 2008-12-31 2012-02-14 Intel Corporation Arrangements for beam refinement in a wireless network
KR101268699B1 (ko) 2009-01-05 2013-05-29 후지쯔 가부시끼가이샤 통신 장치, 이동국 및 통신 제어 방법
CN101771648B (zh) * 2009-01-06 2018-03-23 中兴通讯股份有限公司 一种多天线信号处理系统及方法
JP4587004B2 (ja) * 2009-01-07 2010-11-24 岩崎通信機株式会社 マルチアンテナを用いた無線通信方法、無線通信システムおよび無線通信装置
US8588193B1 (en) * 2009-02-03 2013-11-19 Sibeam, Inc. Enhanced wireless data rates using multiple beams
JP5420275B2 (ja) * 2009-03-03 2014-02-19 株式会社Nttドコモ 符号多重伝送方法、送信装置及び受信装置
US8537785B2 (en) * 2009-03-05 2013-09-17 Huawei Technologies Co., Ltd Method and apparatus for cell/sector coverage of a public channel through multiple antennas
US8358718B2 (en) * 2009-04-02 2013-01-22 Samsung Electronics Co., Ltd. Apparatus and method for determining optimum integer perturbation vector of low complexity in multiple antenna system
KR101527110B1 (ko) * 2009-04-13 2015-06-16 삼성전자주식회사 분산 다중 입출력 무선통신 시스템에서 전력 제어 장치 및 방법
US8208434B2 (en) * 2009-04-28 2012-06-26 Motorola Mobility, Inc. Method of signaling particular types of resource elements in a wireless communication system
CN101540751B (zh) * 2009-04-30 2013-01-02 北京邮电大学 用于多流数据的解调方法和系统
US8730111B2 (en) * 2009-05-11 2014-05-20 Panasonic Corporation Antenna evaluation apparatus for evaluating multiple wave of radio waves transmitted from scatterer antennas with function of calibration for the same apparatus
CN102461036A (zh) * 2009-06-12 2012-05-16 三菱电机株式会社 通信装置
US8520753B2 (en) * 2009-06-19 2013-08-27 Acer Incorporated Systems and methods for code sequence extension over transmission in wireless communication environments
US8433008B2 (en) * 2009-08-07 2013-04-30 The Aerospace Corporation Receiver for detecting signals in the presence of high power interference
JP5446671B2 (ja) * 2009-09-29 2014-03-19 ソニー株式会社 無線伝送システム及び無線通信方法
US8923905B2 (en) * 2009-09-30 2014-12-30 Qualcomm Incorporated Scrambling sequence initialization for coordinated multi-point transmissions
JP5039110B2 (ja) * 2009-10-05 2012-10-03 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動局装置及び送信電力制御方法
US8902873B2 (en) * 2009-10-08 2014-12-02 Qualcomm Incorporated Efficient signaling for closed-loop transmit diversity
US8873650B2 (en) * 2009-10-12 2014-10-28 Motorola Mobility Llc Configurable spatial channel information feedback in wireless communication system
US8599777B2 (en) * 2009-11-17 2013-12-03 Qualcomm Incorporated Channel quality indicator design for multiple-user multiple-input and multiple-output in high-speed packet access systems
JP5280991B2 (ja) * 2009-11-30 2013-09-04 株式会社エヌ・ティ・ティ・ドコモ 移動局装置、基地局装置、mimoシステム及びデータ伝送方法
JP5540733B2 (ja) * 2010-01-29 2014-07-02 富士通セミコンダクター株式会社 信号処理装置,信号処理方法とそれを有する受信装置
US9191966B2 (en) * 2010-03-30 2015-11-17 Intel Mobile Communications GmbH Communication device and method for communicating in a communication mode using a frequency range according to a frame structure
US9444577B1 (en) * 2010-04-05 2016-09-13 Marvell International Ltd. Calibration correction for implicit beamformer using an explicit beamforming technique in a wireless MIMO communication system
US8520572B2 (en) * 2010-05-05 2013-08-27 Motorola Mobility Llc Multiplexing control and data on multilayer uplink transmissions
ES2651485T3 (es) 2010-06-17 2018-01-26 Sun Patent Trust Método y transmisor de precodificación
US8472399B2 (en) * 2010-07-06 2013-06-25 Apple Inc. Ranging channel structures and methods
US8948305B2 (en) * 2010-11-16 2015-02-03 Panasonic Intellectual Property Corporation Of America Transmission method, transmission apparatus, reception method and reception apparatus
US9161366B2 (en) * 2010-11-18 2015-10-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for configuring antenna mode for uplink communication
US20120127034A1 (en) * 2010-11-19 2012-05-24 Raysat Antenna Systems, L.L.C. Phased Array Antenna with Reduced Component Count
JP5886207B2 (ja) 2010-12-10 2016-03-16 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 信号生成方法及び信号生成装置
JP5578619B2 (ja) * 2010-12-10 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および受信装置
US9484993B2 (en) * 2010-12-14 2016-11-01 Lg Electronics Inc. Broadcast signal transmitter/receiver and broadcast signal transmitting/receiving method
US20120224651A1 (en) * 2011-03-03 2012-09-06 Yutaka Murakami Signal generation method and signal generation apparatus
JP5784740B2 (ja) * 2011-09-08 2015-09-24 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 信号生成方法及び信号生成装置
US8576951B2 (en) * 2011-10-24 2013-11-05 Sigear Europe Sarl Mixed-signal radio frequency receiver implementing multi-mode spur avoidance
KR101880990B1 (ko) * 2011-11-16 2018-08-24 삼성전자주식회사 다중 안테나 통신 시스템에서 신호 송수신 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050885A1 (ja) 2003-11-21 2005-06-02 Matsushita Electric Industrial Co., Ltd. マルチアンテナ受信装置、マルチアンテナ受信方法、マルチアンテナ送信装置及びマルチアンテナ通信システム
WO2005099211A1 (en) * 2004-03-31 2005-10-20 Intel Corporation Ofdm system with per subcarrier phase rotation
JP2005354665A (ja) * 2004-05-10 2005-12-22 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
WO2010016183A1 (ja) * 2008-08-05 2010-02-11 パナソニック株式会社 無線通信装置及び無線通信方法

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
"A tutorial on 'Parallel concatenated (Turbo) coding', 'Turbo (iterative) decoding' and related topics", IEICE, TECHNICAL REPORT IT98-51
"Achieving near-capacity on a multiple-antenna channel", IEEE TRANSACTION ON COMMUNICATIONS, vol. 51, no. 3, March 2003 (2003-03-01), pages 389 - 399
"Advanced signal processing for PLCs: Wavelet-OFDM", PROC. OF IEEE INTERNATIONAL SYMPOSIUM ON ISPLC 2008, pages 187 - 192
"BER performance evaluation in 2x2 MIMO spatial multiplexing systems under Rician fading channels", IEICE TRANS. FUNDAMENTALS, vol. E91-A, no. 10, October 2008 (2008-10-01), pages 2798 - 2807
"Likelihood function for QR-MLD suitable for soft-decision turbo decoding and its performance", IEICE TRANS. COMMUN., vol. E88-B, no. 1, January 2004 (2004-01-01), pages 47 - 57
"Performance analysis and design optimization of LDPC-coded MIMO OFDM systems", IEEE TRANS. SIGNAL PROCESSING, vol. 52, no. 2, February 2004 (2004-02-01), pages 348 - 361
"Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications", ETSI EN 302 307, vol. 1.1.2, June 2006 (2006-06-01)
"Turbo space-time codes with time varying linear transformations", IEEE TRANS. WIRELESS COMMUNICATIONS, vol. 6, no. 2, February 2007 (2007-02-01), pages 486 - 493
AL-NAFFOURI, T.Y. ET AL.: "Opportunistic beamforming with precoding for spatially correlated channels", INFORMATION THEORY, 2009. CWIT 2009. 11TH CANADIAN WORKSHOP ON, 15 May 2009 (2009-05-15), pages 63 - 66, XP031471464 *
D. J. C. MACKAY: "Good error-correcting codes based on very sparse matrices", IEEE TRANS. INFORM. THEORY, vol. 45, no. 2, March 1999 (1999-03-01), pages 399 - 431
D. J. LOVE; R. W. HEATH JR.: "Limited feedback unitary precoding for spatial multiplexing systems", IEEE TRANS. INF. THEORY, vol. 51, no. 8, August 2005 (2005-08-01), pages 2967 - 1976
DVB DOCUMENT A122, FRAMING STRUCTURE, CHANNEL CODING AND MODULATION FOR A SECOND GENERATION DIGITAL TERRESTRIAL TELEVISION BROADCASTING SYSTEM (DVB-T2, June 2008 (2008-06-01)
L. VANGELISTA; N. BENVENUTO; S. TOMASIN: "Key technologies for next-generation terrestrial digital television standard DVB-T2", IEEE COMMUN. MAGAZINE, vol. 47, no. 10, October 2009 (2009-10-01), pages 146 - 153
R. G. GALLAGER: "Low-density parity-check codes", IRE TRANS. INFORM. THEORY, vol. IT-8, 1962, pages 21 - 28
S. M. ALAMOUTI: "A simple transmit diversity technique for wireless communications", IEEE J. SELECT. AREAS COMMUN., vol. 16, no. 8, October 1998 (1998-10-01), pages 1451 - 1458
T. OHGANE; T. NISHIMURA; Y. OGAWA: "Application of space division multiplexing and those performance in a MIMO channel", IEICE TRANS. COMMUN., vol. 88-B, no. 5, May 2005 (2005-05-01), pages 1843 - 1851
V. TAROKH; H. JAFRKHANI; A. R. CALDERBANK: "Space-time block coding for wireless communications: Performance results", IEEE J. SELECT. AREAS COMMUN., vol. 17, no. 3, March 1999 (1999-03-01), pages 451 - 460
Y.-L. UENG; C.-C. CHENG: "A fast-convergence decoding method and memory-efficient VLSI decoder architecture for irregular LDPC codes in the IEEE 802.16e standards", IEEE VTC-2007 FALL, pages 1255 - 1259

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017229080A (ja) * 2011-04-19 2017-12-28 サン パテント トラスト 信号生成方法及び信号生成装置
JP2019198083A (ja) * 2011-04-19 2019-11-14 サン パテント トラスト 信号生成方法及び信号生成装置
CN102916923B (zh) * 2012-10-11 2015-07-22 华中科技大学 一种降低多载波系统峰均功率比的信息传输方法
CN102916923A (zh) * 2012-10-11 2013-02-06 华中科技大学 一种降低多载波系统峰均功率比的信息传输方法
JP2022141788A (ja) * 2013-01-11 2022-09-29 サン パテント トラスト 受信方法
US10498575B2 (en) 2013-10-31 2019-12-03 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
JP2019193278A (ja) * 2013-10-31 2019-10-31 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 送信方法及び送信システム
US9998312B2 (en) 2013-10-31 2018-06-12 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
CN105637788B (zh) * 2013-10-31 2018-06-12 松下电器(美国)知识产权公司 发送方法、发送装置、接收方法及接收装置
US11902067B2 (en) 2013-10-31 2024-02-13 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
US10129062B2 (en) 2013-10-31 2018-11-13 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
US10355898B2 (en) 2013-10-31 2019-07-16 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
US9667326B2 (en) 2013-10-31 2017-05-30 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
JP7411045B2 (ja) 2013-10-31 2024-01-10 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法及び送信システム
WO2015064081A1 (ja) * 2013-10-31 2015-05-07 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法
JPWO2015064081A1 (ja) * 2013-10-31 2017-03-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信方法
US9520934B2 (en) 2013-10-31 2016-12-13 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
US10608855B2 (en) 2013-10-31 2020-03-31 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
US10791011B2 (en) 2013-10-31 2020-09-29 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
US10911278B2 (en) 2013-10-31 2021-02-02 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
JP2021036731A (ja) * 2013-10-31 2021-03-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信方法及び送信システム
US11575553B2 (en) 2013-10-31 2023-02-07 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
US11177991B2 (en) 2013-10-31 2021-11-16 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method and reception device
JP7159266B2 (ja) 2013-10-31 2022-10-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法及び送信システム
CN110326226A (zh) * 2016-12-12 2019-10-11 松下电器(美国)知识产权公司 发送装置以及发送方法
JP2022113868A (ja) * 2016-12-12 2022-08-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および送信方法
JP7092682B2 (ja) 2016-12-12 2022-06-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および送信方法
CN110326226B (zh) * 2016-12-12 2022-04-01 松下电器(美国)知识产权公司 发送装置以及发送方法
US11044131B2 (en) 2016-12-12 2021-06-22 Panasonic Intellectual Property Corporation Of America Transmission device and transmission method
JP7309975B2 (ja) 2016-12-12 2023-07-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および送信方法
US11716182B2 (en) 2016-12-12 2023-08-01 Panansonic Intellectual Property Corporation Of America Transmission device and transmission method
JPWO2018110442A1 (ja) * 2016-12-12 2019-10-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および送信方法
WO2018110442A1 (ja) * 2016-12-12 2018-06-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および送信方法

Also Published As

Publication number Publication date
MY168825A (en) 2018-12-04
US20230179280A1 (en) 2023-06-08
US10476720B2 (en) 2019-11-12
AU2019201897A1 (en) 2019-04-11
MX336169B (es) 2016-01-11
CA3168049A1 (en) 2012-08-23
AU2012218953B2 (en) 2017-02-23
AU2022252818A1 (en) 2022-11-10
JP2019092204A (ja) 2019-06-13
MX2013000953A (es) 2013-02-15
CA3020241A1 (en) 2012-08-23
PH12017501410A1 (en) 2017-10-30
US20130121307A1 (en) 2013-05-16
US8885596B2 (en) 2014-11-11
KR20210033557A (ko) 2021-03-26
US20180270096A1 (en) 2018-09-20
CN107566023A (zh) 2018-01-09
JP2021121105A (ja) 2021-08-19
US10225123B2 (en) 2019-03-05
JP6331160B2 (ja) 2018-05-30
CN107070522B (zh) 2021-06-01
US11063805B2 (en) 2021-07-13
JP7117506B2 (ja) 2022-08-15
EP2677676A1 (en) 2013-12-25
KR102534519B1 (ko) 2023-05-18
EP2677676A4 (en) 2018-01-24
AU2017200598A1 (en) 2017-02-23
KR20220112304A (ko) 2022-08-10
US20210306195A1 (en) 2021-09-30
CN107612597B (zh) 2021-01-05
SG187030A1 (en) 2013-02-28
CN107659351B (zh) 2021-07-06
JP2016213873A (ja) 2016-12-15
TW201246826A (en) 2012-11-16
MX368299B (es) 2019-09-27
US20190158330A1 (en) 2019-05-23
JPWO2012111256A1 (ja) 2014-07-03
MX2019011372A (es) 2019-12-05
US20220109599A1 (en) 2022-04-07
CN107612597A (zh) 2018-01-19
US11943032B2 (en) 2024-03-26
KR102133354B1 (ko) 2020-07-13
US11240084B2 (en) 2022-02-01
KR20230074299A (ko) 2023-05-26
RU2593381C2 (ru) 2016-08-10
KR20130142985A (ko) 2013-12-30
CN107659351A (zh) 2018-02-02
KR20190110649A (ko) 2019-09-30
KR20220045249A (ko) 2022-04-12
AR090008A1 (es) 2014-10-15
BR112013002605B1 (pt) 2022-08-23
KR102382798B1 (ko) 2022-04-04
BR112013002605A2 (pt) 2020-09-08
RU2013104166A (ru) 2015-04-10
CA2802654C (en) 2018-12-18
TWI578732B (zh) 2017-04-11
JP6883789B2 (ja) 2021-06-09
JP2018152858A (ja) 2018-09-27
US20170230224A1 (en) 2017-08-10
IL223918A (en) 2017-02-28
CL2013000508A1 (es) 2013-08-09
CA3020241C (en) 2023-08-22
CN103109482A (zh) 2013-05-15
AU2017200598B2 (en) 2019-04-04
AU2021200843B2 (en) 2022-07-14
KR102026652B1 (ko) 2019-09-30
US9667333B2 (en) 2017-05-30
US20150016570A1 (en) 2015-01-15
PE20131092A1 (es) 2013-10-16
CN107070522A (zh) 2017-08-18
US20200021475A1 (en) 2020-01-16
KR20200085931A (ko) 2020-07-15
JP6489454B2 (ja) 2019-03-27
US10009207B2 (en) 2018-06-26
MX342312B (es) 2016-09-26
JP5984062B2 (ja) 2016-09-06
AU2021200843A1 (en) 2021-03-04
CN107566023B (zh) 2020-10-16
CA2802654A1 (en) 2012-08-23
KR102427003B1 (ko) 2022-07-28

Similar Documents

Publication Publication Date Title
JP6598093B2 (ja) 信号生成方法及び信号生成装置
JP7117506B2 (ja) 信号生成方法及び信号生成装置
JP6350926B2 (ja) 信号生成方法及び信号生成装置
JP6593612B2 (ja) 送信装置、送信方法、受信装置および受信方法
JP6447911B2 (ja) 送信方法、受信方法、送信装置及び受信装置
JP6115844B2 (ja) 送信装置、送信方法、受信装置および受信方法
JP5866357B2 (ja) 送信装置、送信方法、受信装置および受信方法
JP6176543B2 (ja) 送信装置、送信方法、受信装置および受信方法
JP2013247654A (ja) 送信装置および受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002066.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2802654

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 223918

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2012218953

Country of ref document: AU

Date of ref document: 20120120

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137001013

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012557809

Country of ref document: JP

Ref document number: 13811064

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012747257

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/000953

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 000177-2013

Country of ref document: PE

Ref document number: 12013500212

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013104166

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013002605

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 12017501410

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 112013002605

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130201