WO2014000449A1 - 传输模式选择方法、天线收发组合确定方法、装置及系统 - Google Patents

传输模式选择方法、天线收发组合确定方法、装置及系统 Download PDF

Info

Publication number
WO2014000449A1
WO2014000449A1 PCT/CN2013/071160 CN2013071160W WO2014000449A1 WO 2014000449 A1 WO2014000449 A1 WO 2014000449A1 CN 2013071160 W CN2013071160 W CN 2013071160W WO 2014000449 A1 WO2014000449 A1 WO 2014000449A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
transmission mode
full
channel matrix
candidate
Prior art date
Application number
PCT/CN2013/071160
Other languages
English (en)
French (fr)
Inventor
程宏
王锐
杜颖钢
戎璐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13808975.0A priority Critical patent/EP2838293B1/en
Publication of WO2014000449A1 publication Critical patent/WO2014000449A1/zh
Priority to US14/539,718 priority patent/US9516545B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/44TPC being performed in particular situations in connection with interruption of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas

Definitions

  • Transmission mode selection method antenna transmission and reception combination determination method, device and system
  • the present invention relates to the field of communications technologies, and in particular, to a transmission mode selection method, an antenna transceiver combination determination method, apparatus, and system. Background technique
  • One way to increase spectrum utilization is to use multiple antennas to take advantage of spatial freedom, thereby increasing the number of data streams that can be transmitted over time-frequency resources.
  • multi-antenna systems mainly use half-duplex MIMO (multi-input multiple-output) space-division multiplexing technology, and now with the trend of transceiver antenna isolation technology on the same communication device Mature, full-duplex technology is also gradually being applied to multi-antenna wireless communications.
  • the transmit and receive channels can be flexibly switched, some of the antennas in the communication device are used for transmission, and the remaining antennas are used for reception. The transmission and reception are performed on the same time-frequency resource, which can also improve spectrum utilization. rate.
  • the current full-duplex technology is not good for the same antenna on the same time-frequency resource. Because the current circulator has only 20-30dB isolation, it can not meet the signal isolation requirements of full-duplex communication. Therefore, the existing full-duplex system uses different antennas for transmission and reception, and achieves 30-40dB isolation by position isolation of the antenna, and then further removes the self-interference signal by analog and digital signal processing.
  • space division multiplexing can be used in both the half-duplex transmission mode and the full-duplex transmission mode, both of which can improve the spectrum utilization of the system.
  • the industry urgently needs A transmission mode selection scheme to optimize system performance under current channel conditions of the system, and how to determine an antenna transmission/reception mode to obtain superior performance when a multi-antenna communication device uses a full-duplex transmission mode System performance. Summary of the invention
  • Embodiments of the present invention provide a transmission mode selection method, an antenna transceiver combination determination method, apparatus, and system in a full-duplex transmission mode, so as to achieve better or optimal system performance under current channel conditions of the system.
  • an embodiment of the present invention provides a transmission mode selection method, including:
  • the second system capacity value is a maximum value of a system capacity value in a full set of antenna transceiver candidate combinations in a full-duplex transmission mode, or a full double a maximum value of system capacity values in a first subset of antenna transceiver candidate combinations in a transmission mode, or a second system capacity value exceeding a system capacity threshold;
  • the target transmission mode is selected according to a comparison result of the first system capacity value and the second system capacity value, wherein the target transmission mode is a transmission mode corresponding to a larger one of the first system capacity value and the second system capacity value.
  • the embodiment of the invention provides a transmission mode selection device, including:
  • a first system capacity value acquiring unit configured to acquire a first system capacity value in a half duplex transmission mode
  • a second system capacity value acquiring unit configured to acquire a second system capacity value in a full duplex transmission mode, where the second system capacity value is a system in a full set of antenna transceiver candidate combinations in a full duplex transmission mode a maximum of the capacity values, or a maximum of the system capacity values under the first subset of the antenna transceiver candidate combinations in the full duplex transmission mode, or the second system capacity value is a system capacity exceeding the system capacity threshold Value
  • a first transmission mode selecting unit configured to select a target transmission according to a comparison result between the first system capacity value output by the first system capacity value acquiring unit and the second system capacity value output by the second system capacity value acquiring unit a mode, wherein the target transmission mode is a transmission mode corresponding to a larger one of the first system capacity value and the second system capacity value.
  • the embodiment of the present invention provides a communication device, where the communication device includes: a plurality of antennas, and a first transmission mode selection module coupled to the plurality of antennas, where the first transmission mode selection module is the foregoing Transmission mode selection device.
  • the embodiment of the invention provides a wireless communication system, including a first communication device and a second communication device, where:
  • the first communication device is configured to: when a data transmission with the second communication device is required, obtain a first system capacity value in a half-duplex transmission mode; and obtain a second system capacity value in a full-duplex transmission mode, where The second system capacity value is the maximum value of the system capacity values in the full set of antenna transceiver candidate combinations in the full duplex transmission mode, or the first subset of the antenna transceiver candidate combinations in the full duplex transmission mode.
  • a maximum value of the system capacity values, or the second system capacity value is a system capacity value exceeding a system capacity threshold; selecting a target transmission mode according to a comparison result of the first system capacity value and the second system capacity value, wherein the The target transmission mode is a transmission mode corresponding to a larger one of the first system capacity value and the second system capacity value; and, configured to perform data transmission with the second communication device based on the target transmission mode;
  • the second communication device is configured to: receive data transmitted by the first communication device based on the target transmission mode, and/or transmit data to the first communication device.
  • the first system capacity value in the half duplex transmission mode is obtained for the communication device that can flexibly switch the transceiver channel at the antenna; and the second system in the full duplex transmission mode is obtained.
  • a capacity value, the second system capacity value being a maximum value of system capacity values in a full set of antenna transceiver candidate combinations in a full duplex transmission mode, or a first antenna answering candidate combination in a full duplex transmission mode
  • the maximum value of the system capacity values under the subset, or the second system capacity value is a system capacity value exceeding a system capacity threshold; selecting a target transmission mode according to a comparison result between the first system capacity value and the second system capacity value
  • the target transmission mode is a transmission mode corresponding to a larger one of the first system capacity value and the second system capacity value; in other words, under the current channel condition of the multi-antenna system operation, according to the system capacity is larger or larger
  • the embodiment of the present invention provides another transmission mode selection method, including: acquiring a first system transmit power value in a half duplex transmission mode;
  • the second system transmit power value is a minimum value of a system transmit power value in a full set of antenna transmit and receive candidate combinations in a full duplex transmission mode, Or the system in the second subset of the antenna transceiver candidate combination in the full-duplex transmission mode a minimum value of the transmit power values, or the second system transmit power value is a system transmit power value that is less than a system transmit power threshold;
  • Target transmission mode is a first system transmit power value corresponding to a smaller one of the second system transmit power values Transfer mode.
  • the embodiment of the present invention provides another transmission mode selection apparatus, including:
  • a first system transmit power value acquiring unit configured to acquire a first system transmit power value in a half duplex transmission mode
  • a second system transmit power value obtaining unit configured to obtain a second system transmit power value in a full duplex transmission mode, where the second system transmit power value is a complete set of antenna transmit and receive candidate combinations in a full duplex transmission mode a minimum of the system transmit power values, or a minimum of the system transmit power values under the second subset of the antenna transmit and receive candidate combinations in the full duplex transmission mode, or the second system transmit power value is less than The system transmit power value of the system transmit power threshold;
  • a second transmission mode selection unit configured to compare a first system transmit power value output by the first system transmit power value acquisition unit with a second system transmit power output by the second system transmit power value acquisition unit, The target transmission mode is selected, wherein the target transmission mode is a transmission mode corresponding to a smaller one of the first system transmission power value and the second system transmission power value.
  • the embodiment of the present invention provides a communication device, where the communication device includes: a plurality of antennas, and a second transmission mode selection module coupled to the plurality of antennas, where the second transmission mode selection module is the foregoing Transmission mode selection device.
  • the embodiment of the invention provides a wireless communication system, including a third communication device and a fourth communication device, wherein:
  • the third communication device is configured to: acquire a first system transmit power value in a half-duplex transmission mode when acquiring data transmission with the second communication device; and acquire a second system transmit power value in a full-duplex transmission mode
  • the second system transmit power value is a minimum value of system transmit power values in a full set of antenna transmit/receive candidate combinations in a full duplex transmission mode, or a second transmit/receive candidate combination in a full duplex transmission mode a minimum of the system transmit power values under the subset, or the second system transmit power value being a system transmit power value less than a system transmit power threshold; a comparison result of the first system transmit power value and the second system transmit power Selecting a target transmission mode, wherein the target transmission mode And a transmission mode corresponding to a smaller one of the first system transmit power value and the second system transmit power value; and, for performing data transmission with the fourth communication device based on the target transmission mode;
  • the fourth communication device is configured to: receive data transmitted by the third communication device based on the target transmission mode, and/or transmit data to the third communication device.
  • the communication device that can flexibly switch between the transceiver channel and the antenna can obtain the first system transmit power value in the half-duplex transmission mode; and obtain the second in the full-duplex transmission mode.
  • a system transmit power value where the second system transmit power value is a minimum value of a system transmit power value in a full set of antenna transmit/receive candidate combinations in a full duplex transmission mode, or an antenna transmit and receive candidate in a full duplex transmission mode a minimum of the system transmit power values under the second subset of the combination, or the second system transmit power value being a system transmit power value less than a system transmit power threshold; transmitting according to the first system transmit power value and the second system As a result of the comparison of the powers, the target transmission mode is selected, wherein the target transmission mode is a transmission mode corresponding to a smaller one of the first system transmission power value and the second system transmission power value; in other words, the current channel operating in the multi-antenna system Under the condition, according
  • the embodiment of the present invention provides another method for determining an antenna transceiver combination in a full-duplex transmission mode, including:
  • the antenna transceiver candidate combination corresponding to the optimal performance evaluation value or the target performance evaluation value is determined to be the adopted antenna transmission and reception combination mode.
  • the embodiment of the present invention provides an antenna transceiver combination determining device in a full duplex transmission mode, including:
  • a system performance evaluation value acquisition unit for acquiring a full duplex transmission mode corresponding to a plurality of days a system performance evaluation value of the line transceiver candidate combination, wherein the plurality of antenna transceiver candidate combinations are a complete set of antenna transceiver candidate combinations in a full-duplex transmission mode, or an antenna transceiver candidate combination in a full-duplex transmission mode The third subset of the complete set;
  • a selecting unit configured to select an optimal performance evaluation value from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations acquired by the system performance evaluation value acquiring unit, or obtain the unit from the system performance evaluation value Selecting, among the obtained system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations, a target performance evaluation value that is superior to the system performance threshold;
  • a determining unit configured to determine an antenna receiving candidate combination corresponding to the optimal performance evaluation value or the target performance evaluation value as the adopted antenna transceiver combination manner.
  • the embodiment of the present invention provides a communication device, where the communication device includes: a plurality of antennas, and an antenna transceiver combination determining module coupled to the plurality of antennas, wherein the antenna transceiver combination determining module is the aforementioned full double The antenna transceiver combination determining device in the transmission mode of the worker.
  • the system performance evaluation value wherein the plurality of antenna transceiver candidate combinations are a complete set of antenna transceiver candidate combinations in a full-duplex transmission mode, or a third of a complete set of antenna transceiver candidate combinations in a full-duplex transmission mode a subset; selecting an optimal performance evaluation value from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations, or selecting a system superiority value from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations a target performance evaluation value of the performance threshold; determining an antenna transmission/reception candidate combination corresponding to the optimal performance evaluation value or the target performance evaluation value as a adopted antenna transmission and reception combination manner; in other words, operating in a multi-antenna system in a full-duplex transmission mode Under the current channel conditions, determine full duplex based on criteria for better or better performance evaluation values. The best or better antenna combination in the mode, so that the system performance is better or better under the current channel conditions of the system.
  • FIG. 1A is a schematic diagram of self-interference in a full duplex transmission mode
  • FIG. 1B is a schematic flowchart of a transmission mode selection method according to an embodiment of the present invention
  • FIG. 1C is a schematic flowchart of another transmission mode selection method according to an embodiment of the present invention
  • FIG. 2B is a schematic flowchart of another transmission mode selection method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of antenna transmission and reception in a full duplex transmission mode according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of two transmission modes between a local communication device having two antennas and a peer communication device having two antennas;
  • FIG. 5 is a schematic diagram of different antenna transceiving combinations between a local communication device having two antennas and a peer communication device having two antennas; a peer communication device of the line as an example to introduce all of the full duplex transmission modes Schematic diagram of a matrix block of a combination of transmit and receive antenna candidates;
  • FIG. 7 is a system diagram showing a system capacity value of a half-duplex MIMO system and an optimal transceiver antenna in a full-duplex transmission mode, using a local communication device having four antennas and a peer communication device having four antennas as an example. a comparison diagram of capacity values;
  • FIG. 8 is a schematic structural diagram of a system architecture for selecting a transmission mode between a local communication device A and a peer communication device B according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of another system architecture of a local communication device A and a plurality of communication devices Bl, B2...Bn for bidirectional transmission on overlapping time-frequency resources according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a scenario applied to a cellular network according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a scenario applied to a wireless local area network according to an embodiment of the present invention.
  • FIG. 12A is a schematic structural diagram of a transmission mode selection apparatus according to an embodiment of the present invention
  • FIG. 12B is a schematic structural diagram of a transmission mode selection apparatus according to an embodiment of the present invention
  • FIG. 13B is a schematic structural diagram of another transmission mode selection apparatus according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of an antenna transmission and reception combination in a full duplex transmission mode according to an embodiment of the present invention; Indeed Schematic diagram of the structure of the device;
  • FIG. 15 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • 16 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a virtualization processing method, a related device, and a computer system, in order to optimize performance and compatibility of the virtualization system.
  • MIMO can be used in both full-duplex and half-duplex systems.
  • For half-duplex transmission In full-duplex output mode, some of the antennas on the communication device are used for transmission, and another part of the antenna on the communication device is used for reception. It should be understood that the number of unidirectional transmit and receive antennas in the full duplex transmission mode is smaller than the number of unidirectional transmit and receive antennas in the half duplex transmission mode due to the need to determine the transmit and receive combination of the antennas in the full duplex transmission mode.
  • MIMO introduces the effect of spatial multiplexing by introducing multiple antennas at both ends of the transceiver, thereby introducing the degree of freedom in the spatial dimension. If the channel information is known to the transceiver, the optimal MIMO system is a precoding scheme based on singular value decomposition.
  • Perform a ⁇ transform on the transmit vector with V (Precoding) Then, power scaling is performed through k parallel channels, and complex Gaussian noise is added to reach the receiving end.
  • the receiving end obtains k independent signals through another ⁇ change IT, and finally performs demodulation separately.
  • Full duplex technology :
  • the duplex mode refers to the way in which the two-way communication link is distinguished, for example, the manner in which the uplink communication link and the downlink communication link in the operator mobile network are distinguished.
  • a base station BS
  • UEs user equipments
  • the communication between the base station and the terminal is bidirectional.
  • the process of the base station transmitting a signal to the terminal is called downlink communication
  • the process of the terminal transmitting a signal to the base station is called uplink communication.
  • the current communication methods can be divided into simplex, half-duplex, and full-duplex.
  • Simplex means that the communication is unidirectional.
  • the transmitter can only be used to transmit signals.
  • the receiver can only be used to receive signals.
  • the signals can only be sent to the receiver by the transmitter.
  • Half-duplex means that communication is bidirectional, but only uplink and downlink transmissions are performed on the same transmission resource; both sides of the transmission can transmit and receive signals, but the transmission and reception of the same transceiver device are in different transmission resources (time, Frequency, orthogonal code).
  • Full duplex refers to bidirectional transmission on the same transmission resource at the transceiver device.
  • the communication between the base station and the terminal is two-way, and the existing cellular communication systems are all half-duplex.
  • the cellular network can be divided into two categories: a Frequency Division Duplexing (FDD) system and a Time Division Duplexing (TDD) system.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the time-division duplex system refers to that the uplink and downlink are distinguished by using different time slots. For example, in a Long Term Evolution (LTE) system, one frame is divided into an uplink subframe and a downlink subframe for uplink and downlink transmission, respectively.
  • LTE Long Term Evolution
  • the protection sub-frame needs to be added to the uplink sub-frame in the time-division duplex system.
  • the uplink sub-frame to the downlink sub-frame may not be added to the protection sub-frame, because the base station can control the conversion. Time), and keep the whole network in sync.
  • Frequency division duplex refers to the use of different spectrums for distinguishing between uplink and downlink.
  • a guard band is left between the uplink spectrum and the downlink spectrum of the frequency division duplex system.
  • Full-duplex technology enables simultaneous uplink and downlink transmission on the same time-frequency resource, which can greatly improve spectrum efficiency.
  • the full-duplex technology transceivers transmit and receive using different antennas and RF channels, because it is unclear whether the same antenna or RF channel can be used to achieve the required transmission and reception isolation.
  • the problem that the full-duplex technology needs to solve is how to deal with the interference of the transmitted signal of the same transceiver device to the received signal, and the interference of the transmitted signal of the local communication device to the received signal can be called self-interference.
  • the transmitted signal is close to the received signal (generally no more than 10cm)
  • the received signal receives a large amount of power from its own transmitted signal. This strong self-interference must be operated at the analog front end, otherwise it will cause the analog front end. Blocking (beyond the linear range of the receiving amplifier and making the received signal smaller than the quantization accuracy of the Analog-to-Digital Convenor (ADC)). Self-interference in full-duplex transmission mode is shown in Figure 1A.
  • the path loss between the transmitted signal and the received signal is typically 40 dB. It can be seen that even when the transmission power of the terminal and the base station system are the same, the self-interference of the base station is 62 dB stronger than the uplink received signal.
  • Current methods for removing self-interference include antennas, analog and digital.
  • Antenna-based interference cancellation includes antenna interference cancellation and vector space based interference avoidance.
  • the most troublesome model of antenna interference cancellation is that there are two transmit signals and one receive signal on a transceiver communication device. The same waveform of the transmitted signal is transmitted on two transmitting antennas. The distance difference between the two transmitting antennas and the receiving antenna is half wavelength (calculated according to the carrier frequency), then the phase difference between the signals of the two transmitting antennas reaching the receiving antenna is ⁇ , so the signal is inverted in reverse.
  • the amplitude of the two transmit signals needs to be adjusted to ensure that the amplitudes of the two transmit signals arrive at the receive antenna are equal.
  • Antenna interference cancellation is only applicable to narrowband signals.
  • the interference avoidance based on vector space is such that at the receiving antenna (array), the interference signal space and the received signal space are mutually null space.
  • the number of required transmit antennas is not less than the sum of the number of receive antennas of the local communication device and the number of receive antennas of another communication device (also referred to as Transceiver), for example, assuming that the number of transmit antennas is 2M, local and peer communication
  • the number of receiving antennas of the device is M.
  • Local transmit antenna The channel matrix to the local receiving antenna is H i , then according to the nature of the zero-space mapping, the pre-coding matrix of the local transmission is Pu, which needs to meet the condition: HuPu CL
  • the analog interference cancellation method is used to subtract the local self-interference signal in the received signal in the analog domain before the analog signal formed by the transmit channel is coupled back to the analog front end of the local receiving module through a device such as a coil.
  • a device such as a coil.
  • it is required to estimate the channel coefficients and delays of the local transmitted signal to the received signal because the analog signal coupled from the transmitting front end needs to pass through an attenuator and a channel delay consistent with the channel coefficients.
  • the digital interference cancellation method is to remove the residual self-interference signal by using a digital filter after the received signal passes through an analog-to-digital converter (ADC). Pure digital domain
  • ADC analog-to-digital converter
  • FIG. 1B is a transmission mode selection method according to an embodiment of the present invention.
  • the execution entity of the method in the embodiment of the present invention is a communication device, which may also be referred to as a transceiver communication device. It should be understood that the following is as follows.
  • the system capacity mentioned in the embodiment refers to the sum of the bidirectional capacities of the communication device, and the method may include:
  • a second system capacity value in a full-duplex transmission mode where the second system capacity value is a maximum value of a system capacity value in a full set of antenna transceiver candidate combinations in a full-duplex transmission mode, or The maximum value of the system capacity values in the first subset of the antenna transceiver candidate combinations in the full duplex transmission mode, or the second system capacity value is the system capacity value exceeding the system capacity threshold;
  • the system capacity threshold is a first system capacity value, or the system capacity threshold is a sum of a first system capacity value and an adjustment value, or the system capacity threshold is a calendar
  • the average system capacity value or the highest system capacity value in the full-duplex transmission mode under the clock cycle, or the system capacity threshold is the average system capacity value in the half-duplex transmission mode under the historical clock cycle. Or the highest system capacity value. It should be understood that the system capacity threshold herein may be flexibly set according to an actual application scenario.
  • the antenna transmission and reception candidate combination in the embodiment of the present invention means: in the local communication device having multiple antennas and in the multi-antenna communication device, which antennas of the local communication device are used to transmit signals and Which antennas are used to receive signals, and which antennas of the peer communication device are used to transmit signals and which antennas are used to receive signals;
  • 103 Select a target transmission mode according to a comparison result between the first system capacity value and the second system capacity value, where the target transmission mode is a transmission mode corresponding to a larger one of the first system capacity value and the second system capacity value.
  • step 103 may include:
  • the full-duplex transmission mode is selected; if the second system capacity value is less than the first system capacity value, the half-duplex transmission mode is selected. It should be understood that if the second system capacity value is equal to the first system capacity value, then one of the transmission modes may be randomly selected, or other factors may be further considered to determine which transmission mode to select.
  • the method is applied to a wireless communication system including a first communication device including M antennas and a second communication device including N antennas, wherein M and N are integers greater than 1, and if the second system capacity value is large, the target transmission
  • the mode is a full-duplex transmission mode.
  • the method further includes: 104.
  • the antenna receiving and receiving combination corresponding to the value indicates the transmission mode of each of the M antennas on the first communication device when transmitting in the full duplex transmission mode, and the transmission mode of each of the N antennas on the second communication device, Wherein the transmission mode of the antenna is selectively a received signal or a transmitted signal, wherein the second communication device including the N antennas is a single communication device or a collection of a plurality of communication devices.
  • the target transmission mode is a half-duplex transmission mode, as shown in FIG. 1C, the method further includes:
  • the method further includes: calculating a system capacity value corresponding to the plurality of antenna transceiver candidate combinations in the full duplex transmission mode within the first calculation time threshold ;
  • the plurality of antenna transmission and reception candidate combinations in the full-duplex transmission mode in which the system capacity value is calculated in the first calculation time threshold constitutes the first subset.
  • the method further includes: calculating a system capacity value corresponding to all antenna transceiving candidate combinations in the full duplex transmission mode.
  • the system capacity value of an antenna transceiver combination in the full duplex transmission mode is calculated by the following method:
  • S is a complete set of all matrix partitioning modes of the channel matrix of the system or a channel matrix obtained by channel matrix transformation of the system, or is a channel matrix of the system or transformed by a channel matrix of the system The first subset of the complete set of all matrix partitioning modes of the channel matrix;
  • Each of the matrix partitioning modes of the channel matrix of the system corresponds to one antenna receiving and receiving candidate combination, or each of the S matrix partitioning modes of the channel matrix obtained by the channel matrix transformation of the system.
  • the matrix division mode corresponds to one antenna transmission and reception candidate combination
  • the S type matrix division manner corresponds to S different antenna transmission and reception candidate combinations.
  • the matrix for the matrix may be the original channel matrix or the changed channel matrix; Where S is an integer greater than or equal to 1.
  • the matrix transformation method may be in the matrix, in the order of the row vectors and/or in the exchange matrix in the matrix. The order of the column vectors.
  • the method is applied to a wireless communication system of a second communication device and a first communication device including M antennas,
  • the channel matrix representation of the system is: each of the first communication devices including the M antennas and the second communication device including the N antennas
  • the channel response between each antenna constitutes a channel matrix of the MN, wherein the elements of the i-th row and the j-th column represent the channel response between the ith antenna in the first communication device and the j-th antenna of the second communication device ;
  • the channel matrix of the system represents: each of the first communication devices including the M antennas a channel matrix of the MN formed by a channel response between the root antenna and each of the N antennas included in the set of the plurality of communication devices, wherein the element of the i-th row and the j-th column represents the first in the first communication device a channel response between the i-antenna and the j-th antenna in the set of the plurality of communication devices; wherein M and N are positive integers greater than one.
  • the channel matrix of the system considers the antennas in all devices 2 as an overall corresponding channel matrix, that is, a joint channel matrix.
  • the channel matrix is a channel matrix between the two devices; when considering a single multi-antenna communication device to select from among a plurality of communication devices
  • the device matrix is a joint channel matrix between the single communication device and the plurality of communication devices.
  • the joint channel matrix is to treat an antenna of the plurality of communication devices as an overall communication device, and each of the plurality of communication devices may have one antenna or multiple antennas.
  • the second system capacity value is an antenna transceiver in a full duplex transmission mode Selecting the maximum of the system capacity values under the ensemble of the combination, or the maximum of the system capacity values under the first subset of the antenna transceiver candidate combinations in the full-duplex transmission mode, or the second system capacity value a system capacity value exceeding a system capacity threshold; selecting a target transmission mode according to a comparison result between the first system capacity value and the second system capacity value, wherein the target transmission mode is in the first system capacity value and the second system capacity value a transmission mode corresponding to a larger value; in other words, under the current channel condition in which the multi-antenna system operates, a transmission mode that maximizes or maximizes the system capacity is selected according to a criterion that the system capacity is increased or maximized, thereby realizing Under the current channel conditions of the system, the system performance is better or optimal.
  • a communication device which may also be referred to as a transceiver communication device.
  • the system transmit power refers to the following Is the sum of the transmit powers of the communication devices; the method can include:
  • a second system transmit power value in a full-duplex transmission mode where the second system transmit power value is a minimum of a system transmit power value in a full set of antenna transmit/receive candidate combinations in a full-duplex transmission mode. a value, or a minimum value of system transmit power values in a second subset of antenna transmit and receive candidate combinations in full-duplex transmission mode, or a system transmit power value in which the second system transmit power value is less than a system transmit power threshold ;
  • the system transmit power threshold is a first system transmit power value, or the system transmit power threshold is a difference between a first system transmit power value and an adjusted value, or the system transmit power threshold
  • the average system transmit power value or the lowest system transmit power value in the full-duplex transmission mode under the historical clock cycle, or the system transmit power threshold is the historical clock cycle, in the half-duplex transmission mode. Average system transmit power value or lowest system transmit power value.
  • the antenna transmission and reception candidate combination in the embodiment of the present invention means: in the local communication device having multiple antennas and in the multi-antenna communication device, which antennas of the local communication device are used to transmit signals and Which antennas are used to receive signals and which antennas of the peer communication equipment Used to transmit signals and which antennas are used to receive signals;
  • step 203 can include:
  • the half duplex transmission mode is selected.
  • the second system transmit power value is equal to the first system transmit power value, then one of the transmission modes can be randomly selected, or other factors can be further considered to determine which transmission mode to select.
  • the method further includes:
  • the antenna transmit/receive combination corresponding to the second system transmit power value indicates: when using the full-duplex transmission mode for transmission a transmission mode of each of the M antennas on a communication device, and a transmission mode of each of the N antennas on the second communication device, wherein the transmission mode of the antenna is selectively a received signal or a transmitted signal, wherein
  • the second communication device comprising N antennas is a single communication device or a collection of multiple communication devices.
  • the target transmission mode is a half-duplex transmission mode, and the method further includes:
  • the method further includes: calculating a system transmit power corresponding to the plurality of antenna transceiver candidate combinations in the full duplex transmission mode within the second calculation time threshold Value
  • the full-duplex transmission for calculating the system transmit power value in the second calculation time threshold A plurality of antenna transceiving candidate combinations in the mode constitute the second subset.
  • the method further includes: calculating a system transmit power value corresponding to all antenna transmit and receive candidate combinations in the full duplex transmission mode.
  • the system transmit power value of an antenna transceiver combination in the full duplex transmission mode is calculated by the following method:
  • S is a complete set of all matrix partitioning modes of the channel matrix of the system or a channel matrix obtained by channel matrix transformation of the system, or is a channel matrix of the system or transformed by a channel matrix of the system The second subset of the complete set of all matrix partitioning modes of the channel matrix;
  • Each of the matrix partitioning modes of the channel matrix of the system corresponds to one antenna receiving and receiving candidate combination, or each of the S matrix partitioning modes of the channel matrix obtained by the channel matrix transformation of the system.
  • the matrix division mode corresponds to one antenna transmission and reception candidate combination, and the S type matrix division manner corresponds to S different antenna transmission and reception candidate combinations.
  • the matrix for the matrix may be the original channel matrix or the changed channel matrix;
  • S is an integer greater than or equal to 1.
  • the communication device that can flexibly switch between the transceiver channel and the antenna can obtain the first system transmit power value in the half-duplex transmission mode; and obtain the second in the full-duplex transmission mode.
  • a system transmit power value where the second system transmit power value is a minimum value of a system transmit power value in a full set of antenna transmit/receive candidate combinations in a full duplex transmission mode, or an antenna transmit and receive candidate in a full duplex transmission mode
  • the second system transmit power value is a system transmit power value that is less than a system transmit power threshold; and the target transmission mode is selected according to a comparison result between the first system transmit power value and the second system transmit power, where the target transmission mode is a transmission mode in which a system transmit power value corresponds to a smaller one of the second system transmit power values; in other words, under the current channel condition of the multi-antenna system operation, the selection is made according to criteria
  • system performance evaluation indicator may be system capacity or system transmission power or other indicators, correspondingly, it should be understood that the system performance evaluation value herein may be system capacity value, system transmission Various indicators such as power values that can evaluate system performance.
  • the "excellent" in step 302 may be the maximum or greater or greater than the target performance evaluation value (such as system capacity), or the minimum or smaller or smaller than the target performance evaluation value (for example, for different performance evaluation indicators). System transmit power).
  • step 301 may include: calculating a system capacity value corresponding to all antenna transceiver candidate combinations in a full-duplex transmission mode; wherein, all antenna transceiver candidate combinations in the full-duplex transmission mode constitute the complete set Or calculating, in a first computing time threshold, a system capacity value corresponding to a plurality of antenna transceiver candidate combinations in a full duplex transmission mode; wherein, the calculating the system capacity value in the first computing time threshold Multiple Antenna Transceiver Candidate Combinations in Duplex Transmission Mode Into the third subset;
  • step 302 may include: selecting a maximum system capacity value from the system capacity values corresponding to the plurality of antenna transceiver candidate combinations, or selecting more than the system capacity values corresponding to the plurality of antenna transceiver candidate combinations The target system capacity value of the system capacity threshold;
  • the step 303 may include: determining, according to the maximum system capacity value or the target system capacity value, an antenna transceiver candidate combination as the adopted antenna transceiver combination mode.
  • the calculating a system capacity value of an antenna transceiver combination in a full-duplex transmission mode includes:
  • S is a complete set of all matrix partitioning modes of the channel matrix of the system or a channel matrix obtained by channel matrix transformation of the system, or is a channel matrix of the system or transformed by a channel matrix of the system
  • Each of the matrix partitioning modes of the channel matrix of the system corresponds to one antenna receiving and receiving candidate combination, or each of the S matrix partitioning modes of the channel matrix obtained by the channel matrix transformation of the system.
  • the matrix division mode corresponds to one antenna transmission and reception candidate combination, and the S type matrix division manner corresponds to S different antenna transmission and reception candidate combinations.
  • the matrix for the matrix may be the original channel matrix or the changed channel matrix;
  • S is an integer greater than or equal to 1.
  • step 301 may include: calculating a system transmit power value corresponding to all antenna transceiver candidate combinations in a full duplex transmission mode; wherein, all in full duplex transmission mode The antenna transceiver candidate combination constitutes the ensemble; or, within a second calculation time threshold, calculating a system transmit power value corresponding to the plurality of antenna transceiver candidate combinations in the full duplex transmission mode; wherein the second calculation time threshold
  • the plurality of antenna transceiver candidate combinations in the full-duplex transmission mode for performing the system transmission power value calculation constitute the third subset; it should be understood that the second calculation time threshold can be flexibly set according to the actual application scenario.
  • the step 302 may include: selecting a minimum system transmit power value from the system transmit power values corresponding to the multiple antenna transmit and receive candidate combinations, or transmitting the power values from the system corresponding to the multiple antenna transmit and receive candidate combinations. Select a target system transmit power value that is less than the system transmit power threshold. It should be understood that the system transmit power threshold can be flexibly set according to the actual application scenario.
  • the step 303 may include: determining, according to the minimum system transmit power value or the target system transmit power value, an antenna transceiver candidate combination as the adopted antenna transceiver combination mode.
  • the calculating a system transmit power value of an antenna transceiver combination in a full-duplex transmission mode includes:
  • S is a complete set of all matrix partitioning modes of the channel matrix of the system or a channel matrix obtained by channel matrix transformation of the system, or is a channel matrix of the system or transformed by a channel matrix of the system
  • Each of the matrix partitioning modes of the channel matrix of the system corresponds to one antenna receiving and receiving candidate combination, or each of the S matrix partitioning modes of the channel matrix obtained by the channel matrix transformation of the system.
  • the matrix division method corresponds to an antenna transceiver candidate combination, S type matrix division
  • the mode corresponds to the different types of antenna transmission and reception candidate combinations. It should be noted that the matrix to be used herein may be the original channel matrix or the changed channel matrix.
  • S is an integer greater than or equal to 1.
  • the communication device operates in the half-duplex mode. If communication between two full-duplex multi-antenna devices is used, all antennas select transmit mode or receive mode, then the system works in half-duplex mode. Therefore, when the system implementation difference between the half-duplex and full-duplex antenna transceiver combinations is not considered, the half-duplex mode can be used as a combination of the antenna transceiver combination and the transceiver module in the full-duplex mode for the calculation system.
  • the performance evaluation value from which the mode corresponding to the optimal or superior performance (may be half-duplex, or a full-duplex combination of antenna transmission and reception) is used for data transmission.
  • the half-duplex mode does not transform and divide the matrix, and the unidirectional transmission performance calculated by the channel matrix represents the system performance.
  • the system performance evaluation value wherein the plurality of antenna transceiver candidate combinations are a complete set of antenna transceiver candidate combinations in a full-duplex transmission mode, or a third of a complete set of antenna transceiver candidate combinations in a full-duplex transmission mode a subset; selecting an optimal performance evaluation value from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations, or selecting a system superiority value from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations a target performance evaluation value of the performance threshold; determining an antenna transmission/reception candidate combination corresponding to the optimal performance evaluation value or the target performance evaluation value as a adopted antenna transmission and reception combination manner; in other words, operating in a multi-antenna system in a full-duplex transmission mode Under the current channel conditions, determine full duplex based on criteria for better or better performance evaluation values. The best or better antenna combination in the mode, so that the system performance is better or better under the current channel conditions of the system.
  • the transmission mode selection method of the present invention will be described below in conjunction with specific embodiments.
  • the channel between two communication devices is a Rayleigh gh fading complex Gaussian channel.
  • the self-interference channel is a K-large Rician channel (K. is the reference of the Rice channel). Number), that is, a complex Gaussian channel with a large mean value.
  • a communication device having two antennas is exemplified. It should be understood that those skilled in the art can generalize to the case where the number of antennas on the communication device is greater than two according to the embodiment described below.
  • half-duplex transmission can be used to transmit two data streams by one-way space division multiplexing; one antenna can be used to transmit another antenna for full-duplex communication.
  • Each communication device receives one data stream at the same time and transmits one data stream, which adds up to two data streams.
  • 4 is a schematic diagram of two transmission modes between a local communication device having two antennas and a peer communication device having two antennas. The following analysis of the typical complex Gaussian channel conditions, how to determine which transmission mode system capacity is higher according to the channel matrix. In order to analyze the system capacity, the channel after the interference cancellation of the full-duplex communication device is first modeled. Suppose self-interference channel of the channel response is h t, the channel between two communication devices in response to the transmitted signal of the local communication device is .r, the peer communication device transmitting signals to 6.5, then the local communication device receiving antenna The received signal is expressed as
  • the self-interference deletion step is that the communication device estimates the self-interference channel response and determines the signal transmitted by itself: r, so that the self-interference signal / ⁇ at the receiving antenna can be reconstructed, and then the self-interference signal is subtracted from the received signal.
  • / 1 ⁇ 2 be the equivalent self-interference channel response after self-interference cancellation, u, then the received signal after self-interference deletion is TM h x x + + n
  • the residual self-interference power after self-interference deletion is ⁇ .
  • the residual self-interference signal is a zero-mean cyclic symmetric Gaussian random variable.
  • the channel response changes slowly with time.
  • the reference signal can be transmitted to another communication device through one communication device to estimate the channel response.
  • the estimated channel response is then used as the channel response for a subsequent period of time.
  • the process of channel estimation can also be centralized through channel reciprocity.
  • the choice of ⁇ in the 3-capacity formula corresponds to two different antenna transceiving combinations between the two devices; as shown in FIG. 5, between the local communication device having two antennas and the opposite communication device having two antennas
  • a schematic diagram of different antenna transmission and reception combinations Two different types of antenna transmission and reception combinations are indicated by two different line types in FIG. 5, respectively, antenna 1 of communication device 1 is used for transmission, and antenna 2 of communication device 1 is used for Receiving, the antenna 1 of the communication device 2 is for transmission, the antenna 1 of the communication device 2 is for reception; the antenna 1 of the communication device 1 is for transmission, the antenna 2 of the communication device 1 is for reception, and the antenna 1 of the communication device 2 is for receiving Receiving, the antenna 1 of the communication device 2 is used for transmission.
  • the communication device knows the half-duplex of the channel matrix, the capacity of the ⁇ 0 system is injected by power and then transmitted on the corresponding characteristic channel, and the channel capacity is expressed as CHD - log 1 +
  • the maximum system transmit power of the entire system is ⁇ in both transmission modes.
  • the capacity-based transmission mode selection method As below, if >C' F . (i), select the half-duplex transmission mode; if C iW (H) ⁇ C FD ( ⁇ i,, select the full-duplex transmission mode.
  • C iW (H) ⁇ C FD ( ⁇ i, select the full-duplex transmission mode.
  • C iW (H) ⁇ C FD ( ⁇ i, select the full-duplex transmission mode.
  • the capacity optimal criterion of the transmission mode can be binned. It can be assumed that 1 ⁇ ⁇ « SNR , the system capacity in the two transmission modes can be expressed as:
  • a communication device also referred to as a 2-antenna communication device
  • a communication device also referred to as a multi-antenna communication device
  • the channel matrix ⁇ / is known, all possible antenna transmission and reception candidate combinations of the two communication devices can be considered, which is equivalent to dividing the channel matrix of the entire system or its changed matrix into four sub-matrices, and applying The two sub-matrices in a diagonal relationship are channel-transmitted.
  • a matrix transformation manner and a blocking manner in which the "mutual promotion" of the diagonal submatrix relationship is maximized in the channel matrix of the entire system can be selected.
  • the capacity gain of the full-duplex mode relative to the half-duplex transmission mode can be characterized by the difference between the capacity index of the matrix block optimization and the capacity index of the half-duplex communication of the entire system. Relative capacity gain): MPG - max )
  • 3 ⁇ 4 and 11 2 are diagonal sub-matrices after dividing the channel matrix H or its transformation matrix.
  • this relative capacity gain is temporarily referred to as a matrix block gain (MPG).
  • MPG matrix block gain
  • the capacity-based transmission mode selection criteria are: If M ⁇ log ir > (J, then use full-duplex mode for communication; if M ⁇ log IoT ⁇ (J, then use Communication is performed in the half-duplex transmission mode. Assuming that two communication devices have ⁇ ⁇ antenna and N antennas respectively, in order to search for the largest matrix block gain, it is necessary to traverse all the antenna transmission and reception candidate combinations, a common combination. You can also use the optimization algorithm to solve one
  • H is a matrix of 4 x 4 matrices. If full-duplex communication is performed, one antenna can be used as the receiving antenna for each communication device, and the other three antennas serve as the transmitting antenna (the H matrix has reciprocity between the two communication devices. In this case, the scene is equivalent to using one antenna as the transmitting antenna and the remaining three antennas as the receiving antennas; or two antennas are used as receiving antennas, and the other two antennas are used as transmitting antennas. As shown in FIG.
  • the local communication device having four antennas and the peer communication device having four antennas are used as an example to introduce the matrix partitioning of all the transmit/receive antenna candidate combinations in the full duplex transmission mode.
  • the elements in H are generated independently by the standard cyclic symmetry complex Gaussian variable, and then all the matrices are divided.
  • the block may be substituted into the capacity formula of the most primitive full-duplex transmission mode and half-duplex transmission mode;
  • Fig. 7 is a schematic diagram of the comparison of the cumulative distribution functions of the two transmission capacities (Cumula t ive Di str ibut ion Func t ion , CDF ), wherein the thin line indicates the full duplex transmission mode The data, the thick line indicates the data in the half-duplex transmission mode.
  • the average capacity of the optimal antenna transceiver combination in the full-duplex transmission mode is half-duplex transmission after matrix block optimization.
  • All antennas in the mode are used to transmit signals or the antenna transmission and reception combination of all antennas for receiving signals is increased by 40%. It should be noted that, in this embodiment, all antenna transmission and reception combinations are traversed, so that the average valley of the optimal antenna transmission and reception combination in the full duplex transmission mode is obtained.
  • the communication device of the cellular system is used as an example. It should be understood that those skilled in the art can extend to the communication device of other communication systems according to the embodiments described below.
  • Calculating the system transmit power in the half-duplex transmission mode can be calculated using the prior art.
  • the channel matrix H between the two communication devices and the matrix obtained by the change of the channel matrix H are divided by S different sub-matrix division methods to obtain four sub-matrices.
  • ⁇ 2 respectively on the main diagonal or two sub-matrices on the sub-diagonal line calculate the system transmit power corresponding to the two sub-matrices on the main diagonal, and calculate the system emission corresponding to the sub-matrix on the sub-diagonal Power, which is the smaller of the two as the system transmit power of the full-duplex mode under the matrix row and column variation and partition conditions.
  • the number of matrix transformations used to calculate the transmit power of the system and the number S of sub-matrix partitions are determined by the compromise between the performance of the actual system and the complexity of the technology.
  • the smallest system transmit power of all calculated full-duplex antenna transceiver candidates is used as a full double System mode transmit power.
  • the antenna transmit/receive combination corresponding to the minimum system transmit power calculated in the full-duplex mode is used for transmission; if the half is calculated The duplex system transmit power is less than the minimum system transmit power calculated in full-duplex mode, then the half-duplex mode is used for transmission.
  • the selection of the transmission mode is based on the following two optimization goals:
  • the minimum system transmit power in half-duplex mode and the minimum system transmit in different antennas in full-duplex mode can be calculated as follows. Power:
  • the signal-to-interference ratio (SINR) and the QoS requirements of the transmission may include delay requirements, frame error rate requirements, such as the long-term evolution system).
  • the frame error rate of the Physical Down 1 Ink Share Channel (PDSCH) of the Long Term Evolution (LTE) is less than 10. /. Etc.) Calculate the modulation coding method used for transmission (Modulat ion and Coding Scheme, MCS).
  • MCS Modulat ion and Coding Scheme
  • an embodiment of the present invention provides a transmission mode selection apparatus 1200, which may include: a first system capacity value acquisition unit 1201, a second system capacity value acquisition unit 1202, and a first transmission mode selection unit 1203. among them:
  • the first system capacity value obtaining unit 1201 is configured to obtain a first system capacity value in a half duplex transmission mode
  • the second system capacity value obtaining unit 1202 is configured to obtain a second system capacity value in a full duplex transmission mode, where the second system capacity value is a complete set of antenna transceiver candidate combinations in a full duplex transmission mode. a maximum of the system capacity values, or a maximum of the system capacity values under the first subset of the antenna transceiver candidate combinations in full-duplex transmission mode, or the system with the second system capacity value exceeding the system capacity threshold Capacity value
  • the first transmission mode selection unit 1203 is configured to select a target according to a comparison result between the first system capacity value output by the first system capacity value acquisition unit and the second system capacity value output by the second system capacity value acquisition unit. a transmission mode, wherein the target transmission mode is a transmission mode corresponding to a larger one of the first system capacity value and the second system capacity value.
  • the first transmission mode selecting unit 1203 is specifically configured to: if the second system capacity value obtained by the second system capacity value acquiring unit is greater than the first system output by the first system capacity value acquiring unit a capacity value, then selecting a full-duplex transmission mode; if the second system capacity value output by the second system capacity value acquisition unit is smaller than the first system capacity value output by the first system capacity value acquisition unit, selecting half Duplex transmission mode.
  • the transmission mode selection apparatus 1200 of the embodiment of the present invention further includes:
  • the transmission unit 1204 is configured to perform full-duplex data transmission based on the antenna transmission and reception combination corresponding to the second system capacity value, where the antenna transmission and reception combination corresponding to the second system capacity value indicates: transmitting using a full-duplex transmission mode And a transmission mode of each of the M antennas on the first communication device, and a transmission mode of each of the N antennas on the second communication device, wherein the transmission mode of the antenna is a received signal or a transmitted signal.
  • the transmission mode of the antennas of the M antennas on the first communication device is the received signal
  • the transmission mode of the antennas is the transmission signal.
  • the capacity value of the second system corresponds to
  • the antenna transceiver candidate combination indicates that the transmission mode of some of the M antennas on the first communication device is a received signal, and the transmission mode of the other antenna is a transmission signal, but it should be understood that, in an extreme case, it may also be represented.
  • the transmission modes of all the antennas of the M antennas on the first communication device are all received signals, and it is also determined that the transmission modes of all the antennas of the M antennas on the first communication device are transmission signals.
  • the second communication device including the N antennas is a single communication device, or a collection of a plurality of communication devices.
  • the target transmission mode is a half-duplex transmission mode, as shown in FIG. 12B, in the transmission mode selection device 1200 of the embodiment of the present invention:
  • the transmission unit 1204 is further configured to perform half-duplex data transmission based on the antenna transmission and reception combination corresponding to the first system capacity value, where the antenna transmission and reception candidate combination corresponding to the first system capacity value indicates that the transmission is performed by using a half-duplex transmission mode.
  • the transmission mode of each of the M antennas on the first communication device is a received signal, and the transmission modes of each of the N antennas on the second communication device are transmission signals; or, on the first communication device
  • the transmission modes of each of the M antennas are transmission signals and the transmission modes of the respective antennas of the N antennas on the second communication device are received signals. It should be understood that, according to the channel reciprocity, in the case of a half-duplex transmission mode, the two communication devices are transposed and transposed, and the channel capacity is unchanged.
  • the device further includes:
  • the system capacity value calculation unit 1205 is configured to calculate a system capacity value corresponding to all antenna transceiver candidate combinations in the full-duplex transmission mode; wherein, all antenna transceiver candidate combinations in the full-duplex transmission mode constitute the complete set; or Calculating, in a first computing time threshold, a system capacity value corresponding to multiple antenna transceiver candidate combinations in a full-duplex transmission mode; wherein, the full-duplex transmission is performed on the system capacity value calculation in the first calculation time threshold A plurality of antenna transceiving candidate combinations in a mode constitute the first subset.
  • system capacity value calculation unit 1205 is specifically configured to:
  • S is a complete set of all matrix partitioning modes of the channel matrix of the system or a channel matrix obtained by channel matrix transformation of the system, or is a channel matrix of the system or transformed by a channel matrix of the system The first subset of the complete set of all matrix partitioning modes of the channel matrix;
  • Each of the matrix partitioning modes of the channel matrix of the system corresponds to one antenna receiving and receiving candidate combination, or each of the S matrix partitioning modes of the channel matrix obtained by the channel matrix transformation of the system.
  • the matrix division mode corresponds to one antenna transmission and reception candidate combination, and the S type matrix division manner corresponds to S different antenna transmission and reception candidate combinations.
  • the matrix for the matrix may be the original channel matrix or the changed channel matrix;
  • S is an integer greater than or equal to 1.
  • the first system capacity value in the half duplex transmission mode is obtained for the communication device that can flexibly switch the transceiver channel at the antenna; and the second system in the full duplex transmission mode is obtained.
  • a capacity value, the second system capacity value is an antenna transceiver in a full duplex transmission mode Selecting the maximum of the system capacity values under the ensemble of the combination, or the maximum of the system capacity values under the first subset of the antenna transceiver candidate combinations in the full-duplex transmission mode, or the second system capacity value a system capacity value exceeding a system capacity threshold; selecting a target transmission mode according to a comparison result between the first system capacity value and the second system capacity value, wherein the target transmission mode is in the first system capacity value and the second system capacity value a transmission mode corresponding to a larger value; in other words, under the current channel condition in which the multi-antenna system operates, a transmission mode that maximizes or maximizes the system capacity is selected according to a criterion that the system
  • another embodiment of the present invention provides another transmission mode selection apparatus 1300, which may include: a first system transmission power value acquisition unit 1301, a second system transmission power value acquisition unit 1302, and a second transmission mode selection. Unit 1303, wherein:
  • a first system transmit power value obtaining unit 1301, configured to acquire a first system transmit power value in a half duplex transmission mode
  • the second system transmit power value obtaining unit 1302 is configured to obtain a second system transmit power value in a full duplex transmission mode, where the second system transmit power value is an antenna transmit/receive candidate combination in a full duplex transmission mode.
  • the minimum of the system transmit power values in the full set, or the minimum of the system transmit power values in the second subset of the antenna transmit and receive candidate combinations in the full duplex transmission mode, or the second system transmit power value a system transmit power value that is less than a system transmit power threshold;
  • a second transmission mode selection unit 1303, configured to compare a first system transmit power value output by the first system transmit power value acquisition unit with a second system transmit power output by the second system transmit power value acquisition unit And selecting a target transmission mode, where the target transmission mode is a transmission mode corresponding to a smaller one of the first system transmission power value and the second system transmission power value.
  • the second transmission mode selecting unit 1303 is specifically configured to: if the second system transmit power value obtained by the second system transmit power value acquiring unit is smaller than the output of the first system transmit power value acquiring unit The first system transmits the power value, and then selects the full-duplex transmission mode; if the second system transmit power value obtaining unit outputs the second system transmit power value that is greater than the first system transmit power value acquisition unit output System transmit power value, select half-duplex transmission mode Style.
  • the second system transmit power value is equal to the first system transmit power value, then one of the transmission modes can be randomly selected, or other factors can be further considered to determine which transmission mode to select.
  • the transmission mode selection apparatus 1300 of the embodiment of the present invention further includes:
  • the transmitting unit 1304 is configured to perform full-duplex data transmission according to the antenna transceiver combination corresponding to the second system transmit power value, where the antenna transmit/receive combination corresponding to the second system transmit power value indicates: using a full-duplex transmission mode a transmission mode of each of the M antennas on the first communication device when transmitting, and a transmission mode of each of the N antennas on the second communication device, wherein the transmission mode of the antenna is a received signal or a transmitted signal.
  • the second communication device including the N antennas is a single communication device, or a collection of a plurality of communication devices.
  • the target transmission mode is a half-duplex transmission mode, as shown in FIG. 13B, in the transmission mode selection device 1300 of the embodiment of the present invention:
  • the transmitting unit 1304 is further configured to perform half-duplex data transmission based on the antenna transceiver combination corresponding to the first system transmit power value, where the antenna transmit/receive candidate combination corresponding to the first system transmit power value indicates a half duplex transmission mode
  • the transmission modes of the antennas of the M antennas on the first communication device are all received signals, and the transmission modes of the antennas of the N antennas on the second communication device are all transmitting signals; or, the first communication
  • the transmission modes of each of the M antennas on the device are transmission signals, and the transmission modes of each of the N antennas on the second communication device are received signals.
  • the transmission mode selection device 1300 of the embodiment of the present invention further includes:
  • the system transmit power value calculation unit 1305 is configured to calculate a system transmit power value corresponding to all antenna transmit/receive candidate combinations in the full duplex transmission mode; wherein, all antenna transmit and receive candidate combinations in the full duplex transmission mode constitute the complete set; Or, within the second calculation time threshold, calculate a full duplex transmission mode a system transmit power value corresponding to a plurality of antenna transceiving candidate combinations; wherein, in the second computing time threshold, a plurality of antenna transceiving candidate combinations in a full-duplex transmission mode for performing system transmit power value calculation The second subset is described.
  • the system transmit power value calculation unit 1305 is specifically configured to: divide the channel matrix of the system into four sub-matrices according to each matrix division manner in the S-type matrix division manner of the channel matrix of the system. Or, the channel matrix obtained by the channel matrix transformation of the system is divided into four sub-matrices according to each matrix division manner of the S-type matrix division manner of the channel matrix obtained by the channel matrix transformation of the system;
  • S is a complete set of all matrix partitioning modes of the channel matrix of the system or a channel matrix obtained by channel matrix transformation of the system, or is a channel matrix of the system or transformed by a channel matrix of the system The second subset of the complete set of all matrix partitioning modes of the channel matrix;
  • Each of the matrix partitioning modes of the channel matrix of the system corresponds to one antenna receiving and receiving candidate combination, or each of the S matrix partitioning modes of the channel matrix obtained by the channel matrix transformation of the system.
  • the matrix division mode corresponds to one antenna transmission and reception candidate combination, and the S type matrix division manner corresponds to S different antenna transmission and reception candidate combinations.
  • the matrix for the matrix may be the original channel matrix or the changed channel matrix;
  • S is an integer greater than or equal to 1.
  • the matrix transformation manner of the channel matrix obtained by the channel matrix transformation of the system mentioned in the embodiment of the present invention refers to the order of the row vectors in the switching matrix and/or the order of the column vectors in the exchange matrix in the channel matrix.
  • the communication device that can flexibly switch between the transceiver channel and the antenna can obtain the first system transmit power value in the half-duplex transmission mode; and obtain the second in the full-duplex transmission mode.
  • System transmit power value, the second system transmit power value is in full duplex transmission mode a minimum of the system transmit power values in the corpus of the antenna transmit and receive candidate combinations, or a minimum of the system transmit power values in the second subset of the antenna transmit and receive candidate combinations in the full duplex transmission mode, or the The system transmit power value is smaller than the system transmit power threshold; and the target transmission mode is selected according to a comparison result between the first system transmit power value and the second system transmit power, where the target transmission mode is the first system transmit a transmission mode corresponding to a smaller value of the second system transmit power value; in other words, under the current channel condition of the multi-antenna system operation, selecting a system transmit power according to a criterion that the system transmit power is reduced or minimized A reduced or minimized
  • an embodiment of the present invention provides an antenna transceiver combination determining apparatus 1400 in a full-duplex transmission mode, which may include: a system performance evaluation value obtaining unit 1401, a selecting unit 1402, and a determining unit 1403, where :
  • the system performance evaluation value obtaining unit 1401 is configured to obtain a system performance evaluation value corresponding to multiple antenna transceiver candidate combinations in a full-duplex transmission mode, where the multiple antenna transceiver candidate combinations are in full-duplex transmission mode. a complete set of antenna transmit/receive candidate combinations, or a third subset of a complete set of antenna transmit and receive candidate combinations in a full duplex transmission mode;
  • the selecting unit 1402 is configured to select an optimal performance evaluation value from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations acquired by the system performance evaluation value acquiring unit, or obtain the system performance evaluation value from the system performance evaluation value. Determining, by the unit, the target performance evaluation value that is superior to the system performance threshold in the system performance evaluation value of the plurality of antenna transceiving combinations corresponding to the plurality of antenna transceiving candidate combinations; determining unit 1403, configured to determine the optimal performance The antenna transmission/reception candidate combination corresponding to the evaluation value or the target performance evaluation value is the adopted antenna transmission/reception combination.
  • system performance evaluation indicator may be system capacity or system transmission power or other indicators. Accordingly, it should be understood that the system performance evaluation value herein may be system capacity value, system transmission. Various indicators such as power values that can evaluate system performance.
  • the system performance evaluation value obtaining unit 1401 is a system capacity value calculation unit, where the system capacity value calculation unit is configured to: calculate a system capacity value corresponding to all antenna transceiver candidate combinations in the full duplex transmission mode.
  • all antenna transceiver candidate combinations in the full-duplex transmission mode constitute the ensemble; or, within the first calculation time threshold, calculate a system capacity value corresponding to multiple antenna transceiver candidate combinations in the full-duplex transmission mode
  • the plurality of antenna transceiver candidate combinations in the full-duplex transmission mode in which the system capacity value is calculated in the first calculation time threshold constitutes the third subset
  • the selecting unit 1402 is specifically configured to: select a maximum system capacity value from the system capacity values corresponding to the plurality of antenna transceiver candidate combinations, or from the system capacity values corresponding to the plurality of antenna transceiver candidate combinations Select a target system capacity value that exceeds the system capacity threshold;
  • the determining unit 1403 is specifically configured to: determine the antenna receiving and receiving candidate combination corresponding to the maximum system capacity value or the target system capacity value as the adopted antenna transceiver combination mode.
  • the system capacity value calculation unit is specifically configured to: divide each channel matrix of the system into four sub-substrates based on each of the matrix partitioning modes of the S matrix matrix of the channel matrix of the system a matrix, or a channel matrix obtained by transforming the channel matrix of the system into four sub-matrices according to each of the matrix partitioning modes of the S-type matrix division manner of the channel matrix obtained by the channel matrix transformation of the system;
  • S is a complete set of all matrix partitioning modes of the channel matrix of the system or a channel matrix obtained by channel matrix transformation of the system, or is a channel matrix of the system or transformed by a channel matrix of the system
  • Each of the matrix partitioning modes of the channel matrix of the system corresponds to one antenna receiving and receiving candidate combination, or each of the S matrix partitioning modes of the channel matrix obtained by the channel matrix transformation of the system.
  • the matrix division method corresponds to an antenna transceiver candidate combination, S type matrix division
  • the mode corresponds to the different types of antenna transmission and reception candidate combinations. It should be noted that the matrix to be used herein may be the original channel matrix or the changed channel matrix.
  • S is an integer greater than or equal to 1.
  • the system performance evaluation value obtaining unit 1401 is a system transmission power value calculation unit, where the system transmission power value calculation unit is configured to: calculate a total duplex transmission mode corresponding to all antenna transmission and reception candidate combinations. a system transmit power value; wherein, all antenna transmit/receive candidate combinations in the full-duplex transmission mode constitute the ensemble; or, in a second calculation time threshold, calculate a plurality of antenna transmit/receive candidate combinations in the full-duplex transmission mode a system transmit power value; wherein, the plurality of antenna transceiver candidate combinations in the full duplex transmission mode for calculating the system transmit power value in the second calculated time threshold constitute the third subset;
  • the selecting unit 1402 is specifically configured to: select a minimum system transmit power value from the system transmit power values corresponding to the multiple antenna transmit/receive candidate combinations, or from the multiple antenna answering and receiving candidate combinations Selecting a target system transmit power value that is less than a system transmit power threshold from the system transmit power values;
  • the determining unit 1403 is specifically configured to: determine an antenna receiving and receiving candidate combination corresponding to the minimum system transmit power value or the target system transmit power value as the adopted antenna transceiver combination mode.
  • the system transmit power value calculation unit is specifically configured to: divide each channel matrix of the system into four according to each matrix division manner of the S matrix partitioning manner of the channel matrix of the system. a sub-matrix, or a channel matrix obtained by transforming the channel matrix of the system into four sub-matrices based on each of the matrix partitioning manners of the S-type matrix division manner of the channel matrix obtained by the channel matrix transformation of the system;
  • S is a complete set of all matrix partitioning modes of the channel matrix of the system or a channel matrix obtained by channel matrix transformation of the system, or is a channel matrix of the system or transformed by a channel matrix of the system.
  • Each of the matrix partitioning modes of the channel matrix of the system corresponds to one antenna receiving and receiving candidate combination, or each of the S matrix partitioning modes of the channel matrix obtained by the channel matrix transformation of the system.
  • the matrix division mode corresponds to one antenna transmission and reception candidate combination, and the S type matrix division manner corresponds to S different antenna transmission and reception candidate combinations.
  • the matrix for the matrix may be the original channel matrix or the changed channel matrix;
  • S is an integer greater than or equal to 1.
  • the system performance evaluation value wherein the plurality of antenna transceiver candidate combinations are a complete set of antenna transceiver candidate combinations in a full-duplex transmission mode, or a third of a complete set of antenna transceiver candidate combinations in a full-duplex transmission mode a subset; selecting an optimal performance evaluation value from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations, or selecting a system superiority value from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations a target performance evaluation value of the performance threshold; determining an antenna transmission/reception candidate combination corresponding to the optimal performance evaluation value or the target performance evaluation value as a adopted antenna transmission and reception combination manner; in other words, operating in a multi-antenna system in a full-duplex transmission mode Under the current channel conditions, determine full duplex based on criteria for better or better performance evaluation values. The best or better antenna combination in the mode, so that the system performance is better or optimal under the current channel conditions.
  • a communications device 1500 includes: a plurality of antennas 1502 . . . 150N, and a first transmission mode coupled to the plurality of antennas 1502 . . . 150N.
  • the module 1501 is selected, and the first transmission mode selection module 1501 is the transmission mode selection device described in the first embodiment of the device.
  • the first transmission mode selection module 1501 is the transmission mode selection device described in the first embodiment of the device.
  • the first system capacity value in the half duplex transmission mode is obtained for the communication device that can flexibly switch the transceiver channel at the antenna; and the second system in the full duplex transmission mode is obtained.
  • a capacity value, the second system capacity value is an antenna transceiver in a full duplex transmission mode Selecting the maximum of the system capacity values under the ensemble of the combination, or the maximum of the system capacity values under the first subset of the antenna transceiver candidate combinations in the full-duplex transmission mode, or the second system capacity value a system capacity value exceeding a system capacity threshold; selecting a target transmission mode according to a comparison result between the first system capacity value and the second system capacity value, wherein the target transmission mode is in the first system capacity value and the second system capacity value a transmission mode corresponding to a larger value; in other words, under the current channel condition in which the multi-antenna system operates, a transmission mode that maximizes or maximizes the system capacity is selected according to a criterion that the system
  • an embodiment of the present invention provides a communication device 1600, where the communication device 1600 includes: a plurality of antennas 1602...160N, and a second transmission mode coupled to the plurality of antennas 1602...160N.
  • the selection module 1601 is the transmission mode selection device described in the second embodiment of the device. For other detailed implementation details, please refer to the foregoing method and device embodiment, and details are not described herein.
  • the communication device that can flexibly switch between the transceiver channel and the antenna can obtain the first system transmit power value in the half-duplex transmission mode; and obtain the second in the full-duplex transmission mode.
  • a system transmit power value where the second system transmit power value is a minimum value of a system transmit power value in a full set of antenna transmit/receive candidate combinations in a full duplex transmission mode, or an antenna transmit and receive candidate in a full duplex transmission mode a minimum of the system transmit power values under the second subset of the combination, or the second system transmit power value being a system transmit power value less than a system transmit power threshold; transmitting according to the first system transmit power value and the second system As a result of the comparison of the powers, the target transmission mode is selected, wherein the target transmission mode is a transmission mode corresponding to a smaller one of the first system transmission power value and the second system transmission power value; in other words, the current channel operating in the multi-antenna system Under the condition, according
  • a communication device 1700 is provided.
  • the communication device 1700 includes: a plurality of antennas 1702...170N, and an antenna transceiver combination coupled with the plurality of antennas 1702...170N.
  • the module 1701, the antenna transceiver combination determining module 1701 is the antenna transceiver combination determining device in the full duplex transmission mode described in the third embodiment of the device.
  • the foregoing method and device embodiment and details are not described herein again.
  • the system performance evaluation value wherein the plurality of antenna transceiver candidate combinations are a complete set of antenna transceiver candidate combinations in a full-duplex transmission mode, or a third of a complete set of antenna transceiver candidate combinations in a full-duplex transmission mode a subset; selecting an optimal performance evaluation value from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations, or selecting a system superiority value from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations a target performance evaluation value of the performance threshold; determining an antenna transmission/reception candidate combination corresponding to the optimal performance evaluation value or the target performance evaluation value as a adopted antenna transmission and reception combination manner; in other words, operating in a multi-antenna system in a full-duplex transmission mode Under the current channel conditions, determine full duplex based on criteria for better or better performance evaluation values. The best or better antenna combination in the mode, so that the system performance is better or optimal under the current channel conditions.
  • an embodiment of the present invention further provides a wireless communication system 1800, which may include: a first communication device 1801 and a second communication device 1802, where:
  • the first communication device 1801 is configured to: when a data transmission with the second communication device is required, acquire a first system capacity value in a half-duplex transmission mode; and acquire a second system capacity value in a full-duplex transmission mode,
  • the second system capacity value is a maximum value of system capacity values in a full set of antenna transceiver candidate combinations in a full duplex transmission mode, or a first subset of antenna transceiver candidate combinations in a full duplex transmission mode a maximum value of the system capacity value, or the second system capacity value is a system capacity value exceeding a system capacity threshold; and selecting a target transmission mode according to a comparison result between the first system capacity value and the second system capacity value, wherein
  • the target transmission mode is a transmission mode corresponding to a larger one of the first system capacity value and the second system capacity value; and, configured to perform data transmission with the second communication device based on the target transmission mode;
  • the first communication device 1801 has multiple antennas.
  • the second communication device 1802 is configured to: receive data sent by the first communication device based on the target transmission mode, and/or transmit data to the first communication device.
  • the second communication device 1802 may be a communication device having multiple antennas, or a set of multiple communication devices, where, if it belongs to the latter, each of the plurality of communication devices
  • the communication devices may have multiple antennas or have a single antenna.
  • the first communication device 1801 is specifically configured to perform full-duplex data transmission with the second communication device based on the antenna transceiver combination corresponding to the second system capacity value, where the second system capacity value corresponds to an antenna
  • the transceiver combination represents a transmission mode of each of the M antennas on the first communication device when transmitting using the full duplex transmission mode, and a transmission mode of each of the N antennas on the second communication device, wherein the antenna
  • the transmission mode is selectively a received signal or a transmitted signal.
  • the adopted antenna transmission and reception candidate combination determined from the plurality of antenna transmission and reception candidate combinations can be directly described as the antenna transmission and reception combination.
  • the first system capacity value in the half duplex transmission mode is obtained for the communication device that can flexibly switch the transceiver channel at the antenna; and the second system in the full duplex transmission mode is obtained.
  • a capacity value, the second system capacity value being a maximum value of system capacity values in a full set of antenna transceiver candidate combinations in a full duplex transmission mode, or a first antenna answering candidate combination in a full duplex transmission mode
  • the maximum value of the system capacity values under the subset, or the second system capacity value is a system capacity value exceeding a system capacity threshold; selecting a target transmission mode according to a comparison result between the first system capacity value and the second system capacity value
  • the target transmission mode is a transmission mode corresponding to a larger one of the first system capacity value and the second system capacity value; in other words, under the current channel condition of the multi-antenna system operation, according to the system capacity is larger or larger
  • a full-duplex transmission mode for a communication device that can flexibly switch between the transceiver channel and the antenna, if a full-duplex transmission mode is adopted, a candidate for a plurality of antenna transmission and reception candidate combinations in a full-duplex transmission mode is obtained.
  • System performance evaluation value wherein the plurality of antenna transceiver candidate combinations are full double a complete set of antenna transceiving candidate combinations in a transmission mode, or a third subset of a complete set of antenna transceiving candidate combinations in a full-duplex transmission mode; system performance evaluation from the plurality of antenna transceiving candidate combinations Selecting an optimal performance evaluation value from the values, or selecting a target performance evaluation value that is superior to the system performance threshold from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations; determining the optimal performance evaluation value or target
  • the antenna transmission and reception candidate combination corresponding to the performance evaluation value is the adopted antenna transmission and reception combination mode; in other words, under the current channel condition that the multi-antenna system operates in the full-duplex transmission mode, according to the criterion that the performance evaluation value is optimized or optimized, Determine the best or better antenna transceiver combination in full-duplex mode to achieve better or optimal system performance under current channel conditions.
  • an embodiment of the present invention further provides a wireless communication system, which may include: a third communication device 1901 and a fourth communication device 1902, where:
  • the third communication device 1901 is configured to: acquire a first system transmit power value in a half duplex transmission mode when data transmission with the second communication device is required; and acquire a second system transmit power in a full duplex transmission mode a value, the second system transmit power value is a minimum value of a system transmit power value in a full set of antenna transmit/receive candidate combinations in a full-duplex transmission mode, or an antenna transmit/receive candidate combination in a full-duplex transmission mode a minimum of the system transmit power values under the two subsets, or the second system transmit power value being a system transmit power value less than a system transmit power threshold; comparing the transmit power values of the first system with the transmit power of the second system As a result, the target transmission mode is selected, wherein the target transmission mode is a transmission mode corresponding to a smaller one of the first system transmission power value and the second system transmission power value; and, for the target transmission mode,
  • the fourth communication device performs data transmission; it should be noted that the third communication device 1901 has a plurality of
  • the fourth communication device 1902 is configured to: receive data sent by the first communication device based on the target transmission mode, and/or transmit data to the first communication device.
  • the fourth communication device 1902 may be a communication device having multiple antennas, or a collection of multiple communication devices, where each of the plurality of communication devices may have multiple antennas. , or have a single antenna.
  • the third communication device 1901 is specifically configured to: receive, according to the second system, a transmit power value corresponding to an antenna And transmitting, in combination with the fourth communication device, full-duplex data transmission, where the antenna transmission and reception combination corresponding to the second system transmission power value indicates that the transmission is performed on the third communication device when using the full-duplex transmission mode a transmission mode of each of the M antennas, and a transmission mode of each of the N antennas on the fourth communication device, wherein the transmission mode of the antenna is a received signal or a transmitted signal.
  • the communication device that can flexibly switch between the transceiver channel and the antenna can obtain the first system transmit power value in the half-duplex transmission mode; and obtain the second in the full-duplex transmission mode.
  • a system transmit power value where the second system transmit power value is a minimum value of a system transmit power value in a full set of antenna transmit/receive candidate combinations in a full duplex transmission mode, or an antenna transmit and receive candidate in a full duplex transmission mode a minimum of the system transmit power values under the second subset of the combination, or the second system transmit power value being a system transmit power value less than a system transmit power threshold; transmitting according to the first system transmit power value and the second system a result of comparing the power values, the target transmission mode is selected, wherein the target transmission mode is a transmission mode corresponding to a smaller one of the first system transmission power value and the second system transmission power value; in other words, the current operation of the multi-antenna system Under channel conditions, according to the
  • the communication device capable of flexibly switching at the antenna for the transceiver channel is adopted.
  • a system performance evaluation value corresponding to a plurality of antenna transceiver candidate combinations in a full-duplex transmission mode is obtained, wherein the plurality of antenna transceiver candidate combinations are antennas in a full-duplex transmission mode Transmitting a complete set of candidate combinations, or a third subset of a complete set of antenna transceiving candidate combinations in a full-duplex transmission mode; selecting an optimal performance evaluation from the system performance evaluation values corresponding to the plurality of antenna transceiving candidate combinations And selecting, from the system performance evaluation values corresponding to the plurality of antenna transceiver candidate combinations, a target performance evaluation value that is superior to the system performance threshold; determining an antenna performance corresponding to the optimal performance evaluation value or the target performance evaluation value.
  • the candidate combination is the combined antenna transmission and reception mode; in other words, the full-duplex transmission in the multi-antenna system Under the current channel conditions of the mode operation, the best or better antenna transceiver combination in full-duplex mode is determined according to the criterion that the performance evaluation value is optimized or optimized, so that the system performance is better under the current channel conditions or Optimal.
  • the above system embodiment is represented by the communication device A.
  • the first communication device or the third communication device in the middle, and the second communication device or the fourth communication device in the above system embodiment are represented by the communication device B to implement the architecture of the system of the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a system architecture for selecting a transmission mode between a local communication device A and a peer communication device B according to an embodiment of the present invention; it should be understood that the foregoing embodiment of the present invention is used.
  • Solution it can be determined whether the communication mode between the communication device A and the communication device B is a full-duplex transmission mode or a half-duplex transmission mode; and, by adopting the scheme introduced by the foregoing embodiment of the present invention, when using a full double
  • the mode is transmitted, it can be determined whether the transmission mode of each antenna on the communication device A and the communication device B is a reception signal or a transmission signal.
  • FIG. 9 another system architecture diagram of a local communication device A and a plurality of communication devices B1, B2, . . . Bn performing bidirectional transmission on overlapping time-frequency resources according to an embodiment of the present invention
  • A has full-duplex transmission capability
  • communication equipment B1...: Bn can be a full-duplex device or a half-duplex device.
  • full-duplex transmission capability means that the communication device can perform self-interference deletion, meaning that the communication device cannot For self-interference deletion, the antennas on the same device cannot transmit and receive on the same time-frequency resources.
  • the set of communication devices ⁇ 1.. ⁇ n corresponds to the second communication device or the fourth communication device in the foregoing embodiment.
  • the full-duplex transmission capability means that the communication device can perform self-interference deletion, and the antenna on the same device can transmit and receive on the same time-frequency resource;
  • the half-duplex transmission capability refers to the communication device cannot perform self-interference deletion. Antennas on the same device cannot transmit and receive on the same time-frequency resource.
  • the communication mode between the communication device and the communication device ⁇ composed of the set of communication devices ⁇ 1 ... ⁇ is a full-duplex transmission mode. Or a half-duplex transmission mode; and, by adopting the scheme introduced by the foregoing embodiment of the present invention, when transmitting in the full-duplex mode, it is possible to determine the communication device ⁇ and the communication constituted by the set of communication devices B1 to Bn
  • the transmission mode of each antenna on device B is a received signal or a transmitted signal.
  • the communication device 1 or the communication device 3 or the communication device A in the embodiment of the present invention may be the multi-antenna base station with full-duplex transmission capability in FIG.
  • the communication device 2 or the communication device 4 or the communication device B in the embodiment of the present invention may be the terminal 3 in FIG. 10, or the device set constituting the communication device B may include Terminal 1, terminal 2 and terminal 3 in FIG.
  • the system performance optimization index such as system capacity and system transmission power can be compared to compare the half-duplex transmission mode.
  • the system performance evaluation value in the full-duplex transmission mode based on the comparison result, the transmission mode corresponding to the optimal or better system performance evaluation value is the target transmission mode, and the data between the two is based on the target transmission mode. transmission.
  • For the full-duplex transmission mode calculate the system performance evaluation value corresponding to all or part of the antenna transceiver combination, and then select the antenna transmission and reception combination corresponding to the optimal or better system performance evaluation value for transmission.
  • the channel matrix or the changed channel matrix is divided, and the two sub-matrices at the main diagonal/subdiagonal position are used as channel matrices in two opposite transmission directions to calculate corresponding System performance evaluation values under the combination of antenna transceivers.
  • a multi-antenna base station with full-duplex transmission capability can also perform uplink and downlink transmissions on the same time-frequency resource with multiple terminals 1, 2, and 3 at the same time.
  • each terminal is not required to have full-duplex transmission. Transmission capacity.
  • the multi-antenna base station with full-duplex transmission capability performs uplink transmission with the terminal 1, performs downlink transmission with the terminal 2, and performs uplink and downlink transmission simultaneously with the terminal 3.
  • the uplink and downlink terminal selection and/or the antenna transceiver combination selection of the full-duplex terminal When selecting the uplink and downlink terminal selection and/or the antenna transceiver combination selection of the full-duplex terminal, consider different terminal component sets, regard their antennas as being on the same virtual device, and then according to the base station antenna and the terminals 1, 2, 3 Joint channel matrix between antennas, through different matrix transformations and sub-matrix partitioning
  • the system performance evaluation value corresponding to the uplink and downlink terminal selection mode and/or the full duplex terminal antenna transceiver combination mode is calculated.
  • the data transmission is performed according to the uplink and downlink terminal selection mode and/or the full duplex terminal antenna transceiver combination mode corresponding to the optimal or better evaluation value.
  • the mode selection method in the embodiment of the present invention may also be used for selecting a communication mode between a multi-antenna full-duplex terminal and other full-duplex terminals in a cellular network, or may also be used for a multi-antenna full-duplex terminal in a cellular network.
  • Communication mode selection with other half-duplex terminals or it can also be used for communication mode selection between multi-antenna full-duplex terminals and other full-duplex terminals and other half-duplex terminals, or
  • the multi-antenna full-duplex terminal simultaneously communicates with the base station and other terminals on the same time-frequency resource.
  • the implementation manner is the same as that in the foregoing embodiment, and details are not described herein again.
  • Application scenario 2 Wireless LAN
  • the communication device 1 or the communication device 3 or the communication device A in the embodiment of the present invention may be a multi-antenna connection with full-duplex transmission capability in FIG.
  • the access point (AP) may be, for example, a WLAN AP or a wireless router.
  • the communication device 2 or the communication device 4 or the communication device B in the embodiment of the present invention may be an access device 3 having full-duplex transmission capability.
  • the device set constituting the communication device B may be the access devices 1, 2, 3 in FIG.
  • system performance optimization indicators such as system capacity and system transmit power can be compared to compare half-duplex
  • the transmission mode and the system performance evaluation value in the full-duplex transmission mode based on the comparison result, if the system performance evaluation value is optimal or superior, the corresponding transmission mode is the target transmission mode, and based on the target transmission mode, both Data transfer between.
  • For the full-duplex transmission mode calculate the system performance evaluation value corresponding to all or part of the antenna transmission and reception combination, and then select the antenna transmission and reception combination corresponding to the optimal or better system performance evaluation value for transmission.
  • the channel matrix or the transformed channel matrix is divided, and the two sub-matrices at the main diagonal/subdiagonal position are used as channel matrices in two opposite transmission directions to calculate corresponding System performance evaluation value under the combination of antenna transceiver.
  • a multi-antenna access point with full-duplex transmission capability can also perform uplink and downlink transmissions on the same time-frequency resource with multiple access devices 1, 2, 3 at the same time, and does not require that each access device has full-duplex transmission. Transmission ability. As shown in FIG. 11, on the same time-frequency resource, the multi-antenna access point performs uplink transmission with the access device 1, performs downlink transmission with the access device 2, and performs uplink and downlink transmission simultaneously with the device 3.
  • the uplink and downlink access device selection and/or the antenna transceiver combination selection of the full-duplex access device consider the different access device component sets, regard their antennas as being on the same virtual device, and then according to the access point antenna.
  • the joint channel matrix between the access device antennas, and the system performance evaluation values in the corresponding uplink and downlink terminal selection mode and/or the full duplex terminal antenna transceiver combination mode are calculated through different matrix transformation and sub-matrix division. Data transmission is performed according to the uplink and downlink access device selection mode and/or the full duplex access device antenna transceiver combination mode corresponding to the optimal or better evaluation value.
  • the mode selection method in the embodiment of the present invention can also be used for selecting a communication mode between a multi-antenna full-duplex access device and other full-duplex access devices in a wireless local area network, and can also be used for multiple antennas in a wireless local area network.
  • the communication mode selection between the worker access device and other half-duplex access devices can also be used for multi-antenna full-duplex access devices and other full-duplex access devices and other half-duplex access devices in the wireless local area network.
  • the communication mode selection between the two may be used for communication between the multi-antenna full-duplex access device and the access point and other access devices on the same time-frequency resource.
  • the basic method is the same as that in the embodiment, and will not be described here.
  • the various thresholds used in the foregoing embodiments may be flexibly set based on an empirical value or an application scenario, which is not limited by the embodiment of the present invention.

Abstract

本发明实施例公开了一种传输模式选择方法、天线收发组合确定方法、装置及系统,其中该传输模式选择方法包括:获取半双工的传输模式下的第一系统容量值;获取全双工的传输模式下的第二系统容量值,所述第二系统容量值是全双工的传输模式下的天线收发候选组合的全集下的系统容量值中的最大值,或者全双工传输模式下的天线收发候选组合的第一子集下的系统容量值中的最大值,或者所述第二系统容量值为超过系统容量阈值的系统容量值;根据第一系统容量值与第二系统容量值的比较结果,选择目标传输模式,其中所述目标传输模式为第一系统容量值与第二系统容量值中的较大值对应的传输模式。换言之,在多天线系统运行的当前信道条件下,根据系统容量较大化或最大化的准则,选择使得系统容量较大化或最大化的传输模式,从而实现在系统的当前信道条件下,使得系统性能较优或最优。

Description

传输模式选择方法、 天线收发組合确定方法、 装置及系统 技术领域
本发明涉及通信技术领域, 具体涉及传输模式选择方法、天线收发组合确 定方法、 装置及系统。 背景技术
在无线通信网中频谱资源成为越来越稀缺的资源,但是随着各种电子设备 的普及和高数据率传输业务的增加,对无线空口的吞吐量的要求也呈指数性的 增加。 提高系统的频谱利用率成为不增加频谱而提高空口吞吐量的有效手段。
其中一种增加频谱利用率的方式就是使用多天线来利用空间自由度,从而 增加时频资源上可传输的数据流数。之前考虑到收发隔离的困难, 多天线系统 主要通过半双工的 MIMO ( multiple-input multiple-output, 多输入多输出)空分 复用技术,现在随着同一通信设备上收发天线隔离技术的日趋成熟,全双工技 术也逐渐被应用到多天线无线通信中。当发射和接收通道可以灵活切换的情况 下, 通信设备中的一部分天线被用来进行发射, 其余天线被用来进行接收, 发 射和接收在相同的时频资源上进行, 这样也可以提高频谱利用率。
目前的全双工技术对同一天线在相同时频资源上的同发同收效果还不好, 因为目前的环形器只有 20-30dB的隔离度, 无法满足全双工通信的信号隔离要 求。所以现有的全双工系统都是收发使用不同的天线,通过天线的位置隔离先 实现 30-40dB的隔离度, 然后在通过模拟和数字信号处理的方式来进一步删除 自干扰信号。
鉴于多天线系统中在半双工的传输模式和全双工的传输模式中都可以使 用空分复用, 这两者又都可以提高系统的频谱利用率, 面对这种情况, 业界迫 切需要一种传输模式的选择方案,以使得在系统的当前信道条件下的系统性能 较优, 以及在多天线的通信设备使用全双工的传输模式时,如何确定天线的收 发模式来获得较优的系统性能。 发明内容
本发明实施例提供传输模式选择方法、全双工的传输模式下的天线收发组 合确定方法、 装置及系统, 以实现在系统的当前信道条件下, 使得系统性能较 优或最优。
本发明实施例提供以下技术方案:
一方面, 本发明实施例提供一种传输模式选择方法, 包括:
获取半双工的传输模式下的第一系统容量值;
获取全双工的传输模式下的第二系统容量值,所述第二系统容量值是全双 工的传输模式下的天线收发候选组合的全集下的系统容量值中的最大值,或者 全双工传输模式下的天线收发候选组合的第一子集下的系统容量值中的最大 值, 或者所述第二系统容量值为超过系统容量阈值的系统容量值;
根据第一系统容量值与第二系统容量值的比较结果, 选择目标传输模式, 其中所述目标传输模式为第一系统容量值与第二系统容量值中的较大值对应 的传输模式。
以及, 本发明实施例提供一种传输模式选择装置, 包括:
第一系统容量值获取单元,用于获取半双工的传输模式下的第一系统容量 值;
第二系统容量值获取单元,用于获取全双工的传输模式下的第二系统容量 值,所述第二系统容量值是全双工的传输模式下的天线收发候选组合的全集下 的系统容量值中的最大值,或者全双工传输模式下的天线收发候选组合的第一 子集下的系统容量值中的最大值,或者所述第二系统容量值为超过系统容量阈 值的系统容量值;
第一传输模式选择单元,用于根据所述第一系统容量值获取单元输出的第 一系统容量值与所述第二系统容量值获取单元输出的第二系统容量值的比较 结果,选择目标传输模式, 其中所述目标传输模式为所述第一系统容量值与第 二系统容量值中的较大值对应的传输模式。
以及, 本发明实施例提供一种通信设备, 所述通信设备包括: 多个天线, 以及, 与所述多个天线耦合的第一传输模式选择模块,所述第一传输模式选择 模块为前述的传输模式选择装置。 以及, 本发明实施例提供一种无线通信系统,包括第一通信设备和第二通 信设备,其中:
第一通信设备用于:当需要与第二通信设备进行数据传输时, 获取半双工 的传输模式下的第一系统容量值; 获取全双工的传输模式下的第二系统容量 值,所述第二系统容量值是全双工的传输模式下的天线收发候选组合的全集下 的系统容量值中的最大值,或者全双工传输模式下的天线收发候选组合的第一 子集下的系统容量值中的最大值,或者所述第二系统容量值为超过系统容量阈 值的系统容量值;根据第一系统容量值与第二系统容量值的比较结果,选择目 标传输模式,其中所述目标传输模式为第一系统容量值与第二系统容量值中的 较大值对应的传输模式; 以及, 用于基于所述目标传输模式, 与第二通信设备 进行数据传输;
第二通信设备用于:接收所述第一通信设备基于所述目标传输模式发送过 来的数据, 和 /或, 向所述第一通信设备发送数据。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备, 获取半双工的传输模式下的第一系统容量值; 获取全双工的传输模式下 的第二系统容量值,所述第二系统容量值是全双工的传输模式下的天线收发候 选组合的全集下的系统容量值中的最大值,或者全双工传输模式下的天线收发 候选组合的第一子集下的系统容量值中的最大值,或者所述第二系统容量值为 超过系统容量阈值的系统容量值;根据第一系统容量值与第二系统容量值的比 较结果,选择目标传输模式, 其中所述目标传输模式为第一系统容量值与第二 系统容量值中的较大值对应的传输模式; 换言之,在多天线系统运行的当前信 道条件下,根据系统容量较大化或最大化的准则,选择使得系统容量较大化或 最大化的传输模式,从而实现在系统的当前信道条件下,使得系统性能较优或 最优;
另一方面, 本发明实施例提供另一种传输模式选择方法, 包括: 获取半双工的传输模式下的第一系统发射功率值;
获取全双工的传输模式下的第二系统发射功率值,所述第二系统发射功率 值是全双工的传输模式下的天线收发候选组合的全集下的系统发射功率值中 的最小值,或者全双工传输模式下的天线收发候选组合的第二子集下的系统发 射功率值中的最小值,或者所述第二系统发射功率值为小于系统发射功率阈值 的系统发射功率值;
根据第一系统发射功率值与第二系统发射功率值的比较结果,选择目标传 输模式,其中所述目标传输模式为第一系统发射功率值与第二系统发射功率值 中的较小值对应的传输模式。
以及, 本发明实施例提供另一种传输模式选择装置, 包括:
第一系统发射功率值获取单元,用于获取半双工的传输模式下的第一系统 发射功率值;
第二系统发射功率值获取单元,用于获取全双工的传输模式下的第二系统 发射功率值,所述第二系统发射功率值是全双工的传输模式下的天线收发候选 组合的全集下的系统发射功率值中的最小值,或者全双工传输模式下的天线收 发候选组合的第二子集下的系统发射功率值中的最小值,或者所述第二系统发 射功率值为小于系统发射功率阈值的系统发射功率值;
第二传输模式选择单元,用于根据所述第一系统发射功率值获取单元输出 的第一系统发射功率值与所述第二系统发射功率值获取单元输出的第二系统 发射功率的比较结果,选择目标传输模式, 其中所述目标传输模式为第一系统 发射功率值与第二系统发射功率值中的较小值对应的传输模式。
以及, 本发明实施例提供一种通信设备, 所述通信设备包括: 多个天线, 以及, 与所述多个天线耦合的第二传输模式选择模块,所述第二传输模式选择 模块为前述的传输模式选择装置。
以及, 本发明实施例提供一种无线通信系统,包括第三通信设备和第四通 信设备,其中:
第三通信设备用于:当需要与第二通信设备进行数据传输时, 获取半双工 的传输模式下的第一系统发射功率值;获取全双工的传输模式下的第二系统发 射功率值,所述第二系统发射功率值是全双工的传输模式下的天线收发候选组 合的全集下的系统发射功率值中的最小值,或者全双工传输模式下的天线收发 候选组合的第二子集下的系统发射功率值中的最小值,或者所述第二系统发射 功率值为小于系统发射功率阈值的系统发射功率值;根据第一系统发射功率值 与第二系统发射功率的比较结果,选择目标传输模式,其中所述目标传输模式 为第一系统发射功率值与第二系统发射功率值中的较小值对应的传输模式;以 及, 用于基于所述目标传输模式, 与第四通信设备进行数据传输;
第四通信设备用于:接收所述第三通信设备基于所述目标传输模式发送过 来的数据, 和 /或, 向所述第三通信设备发送数据。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备, 获取半双工的传输模式下的第一系统发射功率值; 获取全双工的传输模 式下的第二系统发射功率值,所述第二系统发射功率值是全双工的传输模式下 的天线收发候选组合的全集下的系统发射功率值中的最小值,或者全双工传输 模式下的天线收发候选组合的第二子集下的系统发射功率值中的最小值,或者 所述第二系统发射功率值为小于系统发射功率阈值的系统发射功率值;根据第 一系统发射功率值与第二系统发射功率的比较结果,选择目标传输模式, 其中 所述目标传输模式为第一系统发射功率值与第二系统发射功率值中的较小值 对应的传输模式; 换言之, 在多天线系统运行的当前信道条件下, 根据系统发 射功率较小化或最小化的准则,选择使得系统发射功率较小化或最小化的传输 模式, 从而实现在系统的当前信道条件下, 使得系统性能较优或最优;
再一方面,本发明实施例提供另一种全双工的传输模式下的天线收发组合 确定方法, 包括:
获取全双工的传输模式下的对应于多种天线收发候选组合的系统性能评 估值,其中所述多种天线收发候选组合为全双工的传输模式下的天线收发候选 组合的全集,或者为全双工的传输模式下的天线收发候选组合的全集的第三子 集;
从所述对应于多种天线收发候选组合的系统性能评估值中选择最优性能 评估值, 或者,从所述对应于多种天线收发候选组合的系统性能评估值中选择 优于系统性能阈值的目标性能评估值;
确定所述最优性能评估值或目标性能评估值对应的天线收发候选组合为 被采用的天线收发组合方式。
以及,本发明实施例提供一种全双工的传输模式下的天线收发组合确定装 置, 包括:
系统性能评估值获取单元,用于获取全双工的传输模式下的对应于多种天 线收发候选组合的系统性能评估值,其中所述多种天线收发候选组合为全双工 的传输模式下的天线收发候选组合的全集,或者为全双工的传输模式下的天线 收发候选组合的全集的第三子集;
选择单元,用于从所述系统性能评估值获取单元获取的所述对应于多种天 线收发候选组合的系统性能评估值中选择最优性能评估值, 或者,从所述系统 性能评估值获取单元获取的所述对应于多种天线收发候选组合的系统性能评 估值中选择优于系统性能阈值的目标性能评估值;
确定单元,用于确定所述最优性能评估值或目标性能评估值对应的天线收 发候选组合为被采用的天线收发组合方式。
以及, 本发明实施例提供一种通信设备, 所述通信设备包括: 多个天线, 以及, 与所述多个天线耦合的天线收发组合确定模块,所述天线收发组合确定 模块为前述的全双工的传输模式下的天线收发组合确定装置。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备,如果采用全双工的传输模式时, 获取全双工的传输模式下的对应于多种 天线收发候选组合的系统性能评估值,其中所述多种天线收发候选组合为全双 工的传输模式下的天线收发候选组合的全集,或者为全双工的传输模式下的天 线收发候选组合的全集的第三子集;从所述对应于多种天线收发候选组合的系 统性能评估值中选择最优性能评估值, 或者,从所述对应于多种天线收发候选 组合的系统性能评估值中选择优于系统性能阈值的目标性能评估值;确定所述 最优性能评估值或目标性能评估值对应的天线收发候选组合为被采用的天线 收发组合方式; 换言之,在多天线系统以全双工的传输模式运行的当前信道条 件下,根据性能评估值较优化或最优化的准则,确定全双工模式下的最佳或较 佳天线收发组合,从而实现在系统的当前信道条件下,使得系统性能较优或最 优。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 1 A是一种全双工传输模式下的自干扰示意图;
图 1B是本发明实施例提供的一种传输模式选择方法的流程示意图; 图 1C是本发明实施例提供的另一种传输模式选择方法的流程示意图; 图 2A是本发明实施例提供的另一种传输模式选择方法的流程示意图; 图 2B是本发明实施例提供的另一种传输模式选择方法的流程示意图; 图 3是本发明实施例提供的一种全双工的传输模式下的天线收发组合确定 方法的流程示意图;
图 4是具有两个天线的本端通信设备与具有两个天线的对端通信设备之间 的两种传输模式的示意图;
图 5是具有两个天线的本端通信设备与具有两个天线的对端通信设备之间 的不同天线收发组合的示意图; 线的对端通信设备为例介绍全双工的传输模式下的所有的收发天线候选组合 的矩阵分块的示意图;
图 7是以具有四个天线的本端通信设备与具有四个天线的对端通信设备为 例介绍半双工 MIMO的系统容量值与全双工传输模式下的最优收发天线组合 下的系统容量值的对比示意图;
图 8是本发明实施例提供的本端通信设备 A与对端通信设备 B之间传输模 式的选择的一种系统架构示意图;
图 9是本发明实施例一个本端通信设备 A与多个通信设备 Bl , B2...Bn在重 叠的时频资源上进行双向传输的的另一种系统架构示意图;
图 10是本发明实施例应用于蜂窝网的场景示意图;
图 11是本发明实施例应用于无线局域网的场景示意图;
图 12A是本发明实施例提供的一种传输模式选择装置的结构示意图; 图 12B是本发明实施例提供的一种传输模式选择装置的结构示意图; 图 13A是本发明实施例提供的另一种传输模式选择装置的结构示意图; 图 13B是本发明实施例提供的另一种传输模式选择装置的结构示意图; 图 14是本发明实施例提供的一种全双工的传输模式下的天线收发组合确 定装置的结构示意图;
图 15是本发明实施例提供一种通信设备的结构示意图;
图 16是本发明实施例提供一种通信设备的结构示意图;
图 17是本发明实施例提供一种通信设备的结构示意图;
图 18是本发明实施例还提供一种无线通信系统的结构示意图;
图 19是本发明实施例还提供一种无线通信系统的结构示意图。 具体实施方式
本发明实施例提供虚拟化处理方法及相关装置和计算机系统,以期优化虚 拟化系统的性能和兼容性。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施 例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所 描述的实施例仅仅是本发明一部分的实施例, 而不是全部的实施例。基于本发 明中的实施例 ,本领域普通技术人员在没有做出创造性劳动前提下所获得的所 有其他实施例, 都应当属于本发明保护的范围。
为了方便理解本发明实施例,首先在此介绍本发明实施例描述中会引入的 几个要素;
半双工 MIMO传输技术:
MIMO既可以用于全双工系统也可以用于半双工系统。对于半双工的传输 全双工的输出模式下,通信设备上的部分天线用于发射,通信设备上的另一部 分天线用于接收。 应当理解的是, 由于全双工传输模式下, 需要确定天线的收 发组合,所以全双工传输模式下的单向的收发天线数目小于半双工的传输模式 下的单向的收发天线数目。
MIMO通过在收发两端都引入多根天线, 实现空分复用 ( Spatial Multiplexing ) 的效果, 由此引入了空间维度上的自由度。 如果收发端都已知 信道信息, 那么最优的 MIMO系统是基于奇异值分解的预编码方案。
通过对 MIMO信道矩阵的奇异值分解11 = UAV* , 可以将 MIMO信道转换为 k个 并行信道,其中 k为信道矩阵的秩。对发送向量用 V进行酉变换(Precoding ) , 然后通过 k个并行信道进行功率缩放, 加上复高斯噪声后到达接收端。 接收端 通过另一个酉变化 IT得到 k个独立信号, 最后进行分别解调。 这样 MIM0系统的 容量就是将总系统发射功率在各个并行信道上进行注水方式( water-f i l l ing, if = (/·, §), ∑i ! = P )分配得到的。 这相当于在 k个独立流上进行传输(k 维的空间自由度) , 由此获得的自由度增益为 k。 全双工技术:
双工方式是指双向通信链路的区分方式,例如运营商移动网络中的上行通 信链路和下行通信链路的区分方式。 在运营商的移动网络, 基站( Basestation, BS ) 与覆盖范围内的多个用户终端 (User Equipment, UE)进行通信。 基站与终 端之间的通信是双向的,基站向终端发送信号的过程叫做下行通信, 终端向基 站发送信号的过程叫做上行通信。
目前的通信方式可以分为单工, 半双工, 全双工。 单工是指通信是单方向 的, 发射机只能用于发射信号, 接收机只能用于接收信号, 信号只能由发射机 发送给接收机。半双工是指通信是双向的,但是在同一传输资源上只有上行和 下行传输; 传输双方既可以发射信号也可以接收信号,但是同一收发通信设备 的发射和接收在不同的传输资源(时间、 频率、 正交码)上进行。 全双工是指 在收发通信设备在相同传输资源上进行双向传输。
具体到蜂窝网,基站与终端之间的通信是双向的, 目前现有的蜂窝通信系 统都是半双工的。根据上行链路和下行链路在传输资源上不同的划分方式,蜂 窝网可以分为时分双工( Frequency Division Duplexing, FDD )系统和频分双工 ( Time Division Duplexing, TDD ) 系统两大类。 时分双工系统指上下行链路使 用不同的时隙加以区分, 比如长期演进 ( Long Term Evolution, LTE ) 系统中, 将一个帧分为上行子帧和下行子帧分别用于上下行传输。一般为了避免上下行 之间的干扰, 时分双工系统中在下行子帧转上行子帧时需要加入保护子帧(上 行子帧转下行子帧可以不加入保护子帧, 因为基站可以控制转换的时间), 以 及保持全网同步。频分双工指上下行链路使用不同的频谱进行区分, 一般为了 避免上下行之间的干扰,频分双工系统的上行频谱和下行频谱之间会留有保护 频带。 全双工技术在相同时频资源上实现上下行的同时传输,它可以大幅度提升 频谱效率。目前大部分的全双工技术收发通信设备的发射和接收还是使用不同 的天线和射频通道,因为使用相同天线或射频通道可以到达要求收发隔离效果 还不清楚。全双工技术需要解决的问题是如何处理同一收发通信设备的发射信 号对接收信号的干扰,可以把本端通信设备的发射信号对接收信号的干扰称为 自干扰 ( self-interference )。
由于发射信号离接收信号的距离很近(一般不超过 10cm ), 所以接收信号 处收到自己发射信号的功率很大,这个很强的自干扰必须在模拟前端就进行操 作, 否则会造成模拟前端阻塞(超出接收功放的线性范围和使得接收信号小于 模数转换器( Analog-to-Digital Convenor, ADC ) 的量化精度)。 全双工传输模 式下的 自干扰如图 1A所示。 以 目 前的宏基站的路损模型为例, L=128.1+37.61oglO(R), R的单位是千米, 距离宏基站 200m的终端到宏基站的 路损为 102dB , 而同一收发通信设备的发射信号到接收信号之间的路损一般为 40dB。 可见, 即使在终端和基站系统发射功率相同的情况下, 基站的自干扰 都会比上行的接收信号强 62dB。 目前的自干扰的删除方法包括天线、 模拟和 数字三个方面。
基于天线的干扰删除又包括天线干扰抵消和基于向量空间的干扰避免。天 线干扰抵消最筒单的模型是一个收发通信设备上有两根发射信号和一根接收 信号。相同波形的发射信号在两根发射天线上发射, 这两根发射天线到接收天 线的距离差为半个波长(按载频计算), 那么两根发射天线的信号到达接收天 线处的相位差为 π , 所以信号反相抵消。这里需要对两路发射信号的幅度进行 调节,保证两路发射信号到达接收天线处的幅度相等。 天线干扰删除只适用于 窄带信号, 因为不同频段的相位差不同, 宽带信号不能严格在全频段上相位对 齐。 此外, 干扰信号的抵消结果对收到的两路发射信号幅度和相位敏感, 而幅 度和相位在实际中又不能绝对理想对齐。基于向量空间的干扰避免是使得在接 收天线(阵列)处, 干扰信号空间与接收信号空间互为零空间 (null space )。 这个要求发射天线的数目不小于本端通信设备接收天线的数目与另一个通信 设备 (亦可称为收发通信设备 Transceiver )接收天线数目之和, 例如假设发射 天线数目为 2M, 本地和对端通信设备的接收天线数目都是 M。 本地发射天线 到本地接收天线的信道矩阵为 H i, 那么根据零空间映射的性质, 本地发射的 预编码矩阵为 Pu, 需要满足条件: HuPu CL
模拟干扰删除方法是将发射通道形成的模拟信号通过线圈等器件耦合回 本地接收模块的模拟前端之前,用于在模拟域减去接收信号中的本地自干扰信 号。 为了获得好的模拟域干扰删除效果,要求估计本地发射信号到接收信号的 信道系数和延迟,因为从发射前端耦合到的模拟信号需要经过与信道系数一致 的衰减器和信道延迟一致的延迟器。
数字干扰删除方法是接收信号通过模数转换器 ( Analog-to-Digital Convertor,ADC )后, 用数字滤波器进一步删除残余的自干扰信号。 纯数字域 干扰删除的缺点就是只能处理线性干扰, 对放大器造成的分线性干扰无能为 力。
在实际全双工系统中由于自干扰的功率很大,会阻塞接收端的低噪放, 所 以模拟前端的天线干扰删除或模拟域的干扰删除是是必不可少的。因为自干扰 的功率和接收信号的功率相差一般都在 60dB以上, 所以通过一种方法往往不 能达到很好的干扰消除效果, 所以常常把天线干扰删除、模拟干扰删除和数字 干扰删除三种方法结合以来。 下面将结合附图介绍本发明实施例;
参见图 1B , 为本发明实施例提供的一种传输模式选择方法, 需要说明的 是, 本发明实施例的方法的执行主体是通信设备, 亦可称为收发通信设备, 应 当理解的是,如下实施例中提到的系统容量指所述通信设备双向容量之和, 该 方法可以包括:
101、 获取半双工的传输模式下的第一系统容量值;
102、 获取全双工的传输模式下的第二系统容量值, 所述第二系统容量值 是全双工的传输模式下的天线收发候选组合的全集下的系统容量值中的最大 值,或者全双工传输模式下的天线收发候选组合的第一子集下的系统容量值中 的最大值, 或者所述第二系统容量值为超过系统容量阈值的系统容量值;
在不同的实现方式下, 所述系统容量阈值为第一系统容量值, 或者所述系 统容量阈值为第一系统容量值与调整值的和值, 或者, 所述系统容量阈值为历 史时钟周期下的, 全双工的传输模式下的平均系统容量值或最高系统容量值, 或者, 所述系统容量阈值为历史时钟周期下的, 半双工的传输模式下的平均系 统容量值或最高系统容量值。应当理解的是, 这里的系统容量阈值可以是根据 实际的应用场景灵活设置的。
应当理解的是, 本发明实施例中的天线收发候选组合, 顾名思义即表示: 具有多天线的本端通信设备与具有多天线对端通信设备中,本端通信设备的哪 些天线用于发射信号和哪些天线用于接收信号,以及对端通信设备的哪些天线 用于发射信号和哪些天线用于接收信号的一种组合方式;
103、 根据第一系统容量值与第二系统容量值的比较结果, 选择目标传输 模式,其中所述目标传输模式为第一系统容量值与第二系统容量值中的较大值 对应的传输模式。
在一种实现方式下, 步骤 103可以包括:
如果第二系统容量值大于第一系统容量值, 则选择全双工的传输模式; 如果第二系统容量值小于第一系统容量值, 则选择半双工的传输模式。 应当理解的是,如果第二系统容量值等于第一系统容量值, 则可以随机的 选择一种传输模式, 或者进一步考虑其他因素来决定选择哪一种传输模式。
该方法应用于包括 M根天线的第一通信设备和包括 N根天线的第二通信 设备的无线通信系统中, M和 N为大于 1的整数, 如果第二系统容量值较大, 则 目标传输模式为全双工的传输模式, 如图 1C所示, 所述方法进一步包括: 104、 基于第二系统容量值对应的天线收发组合进行全双工的数据传输, 其中,所述第二系统容量值对应的天线收发组合表示使用全双工的传输模式进 行传输时第一通信设备上的 M根天线中各个天线的传输模式,及第二通信设备 上的 N根天线中各个天线的传输模式, 其中所述天线的传输模式选择性地为接 收信号或发射信号, 其中所述包括 N根天线的第二通信设备是单一的通信设 备, 或者是多个通信设备的集合。
如果第一系统容量值较大,则目标传输模式为半双工的传输模式,如图 1C 所示, 所述方法进一步包括:
105、 基于第一系统容量值对应的天线收发组合进行半双工的数据传输。 应当理解的是,从多个天线收发候选组合中确定出的被采用的天线收发候 选组合, 可以直接描述为天线收发组合。 较优的, 为了在系统性能与数据计算代价上取得平衡, 所述方法还包括: 于第一计算时间阈值内,计算全双工传输模式下的对应于多种天线收发候 选组合的系统容量值;
其中, 所述第一计算时间阈值内进行系统容量值计算的、全双工传输模式 下的多种天线收发候选组合构成所述第一子集。
应当理解的是, 如果不考虑计算代价, 所述方法还包括: 计算全双工传输 模式下的对应于所有天线收发候选组合的系统容量值。
较优的,所述全双工的传输模式下的一种天线收发组合的系统容量值是通 过如下方法计算得到的:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统容量候选值,基于副对角线上的两个子矩阵计 算第二系统容量候选值;
确定第一系统容量候选值与第二系统容量候选值中的较大值为对应于所 述当前矩阵划分方式下的系统容量值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第一子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合, S种矩阵划分 方式对应 S种不同的天线收发候选组合, 需要说明的是, 这里针对的矩阵可以 是原信道矩阵, 也可以是变化后的信道矩阵; 其中, S为大于或等于 1的整数。 需要说明的是,关于本发明实施例中提到的由所述系统的信道矩阵变换得 到的信道矩阵, 其矩阵变换的方法可以是在矩阵中, 交换矩阵中行向量的顺序 和 /或交换矩阵中列向量的顺序。
以及, 本发明实施例中, 该方法应用于第二通信设备和包括 M根天线的第 一通信设备的无线通信系统中,
如果第二通信设备为一个包括 N根天线的通信设备, 则所述系统的信道矩 阵表示: 包括 M根天线的第一通信设备中的每根天线与包括 N根天线的第二通 信设备中的每根天线之间的信道响应构成的 M N的信道矩阵, 其中第 i行第 j 列的元素表示第一通信设备中的第 i根天线与第二通信设备的第 j根天线之间的 信道响应;
如果所述第二通信设备为多个通信设备的集合,且所述多个通信设备的集 合包括 N根天线, 则所述系统的信道矩阵表示: 包括 M根天线的第一通信设备 中的每根天线与所述多个通信设备的集合包括的 N根天线中的每根天线之间 的信道响应构成的 M N的信道矩阵, 其中第 i行第 j列的元素表示第一通信设 备中的第 i根天线与所述多个通信设备的集合中的第 j根天线之间的信道响应; 其中, M和 N为大于 1的正整数。
换言之,对于第二通信设备是一组设备集合的情况, 系统的信道矩阵是将 所有设备二中的天线看作一个整体对应的信道矩阵, 也就是一个联合信道矩 阵。
当考虑两个多天线通信设备之间的模式选择时,所述信道矩阵为所述两个 设备之间的信道矩阵;当考虑单一多天线通信设备从多个通信设备中选择与之 通信的设备时,所述信道矩阵为所述单一通信设备到所述多个通信设备之间的 联合信道矩阵。所述联合信道矩阵是将所述多个通信设备的天线看作一个整体 通信设备, 所述多个通信设备中的每个通信设备可以有一根天线或者多根天 线。 由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备, 获取半双工的传输模式下的第一系统容量值; 获取全双工的传输模式下 的第二系统容量值,所述第二系统容量值是全双工的传输模式下的天线收发候 选组合的全集下的系统容量值中的最大值,或者全双工传输模式下的天线收发 候选组合的第一子集下的系统容量值中的最大值,或者所述第二系统容量值为 超过系统容量阈值的系统容量值;根据第一系统容量值与第二系统容量值的比 较结果,选择目标传输模式, 其中所述目标传输模式为第一系统容量值与第二 系统容量值中的较大值对应的传输模式; 换言之,在多天线系统运行的当前信 道条件下,根据系统容量较大化或最大化的准则,选择使得系统容量较大化或 最大化的传输模式,从而实现在系统的当前信道条件下,使得系统性能较优或 最优。
参见图 2A, 本发明实施例提供的另一种传输模式选择方法, 可应用于通 信设备, 亦可称为收发通信设备, 应当理解的是, 本发明实施例下文提到的系 统发射功率指的是所述通信设备的发射功率之和; 该方法可包括:
201、 获取半双工的传输模式下的第一系统发射功率值;
202、 获取全双工的传输模式下的第二系统发射功率值, 所述第二系统发 射功率值是全双工的传输模式下的天线收发候选组合的全集下的系统发射功 率值中的最小值,或者全双工传输模式下的天线收发候选组合的第二子集下的 系统发射功率值中的最小值,或者所述第二系统发射功率值为小于系统发射功 率阈值的系统发射功率值;
在不同的实现方式下, 所述系统发射功率阈值为第一系统发射功率值,或 者所述系统发射功率阈值为第一系统发射功率值与调整值的差值, 或者, 所述 系统发射功率阈值为历史时钟周期下的,全双工的传输模式下的平均系统发射 功率值或最低系统发射功率值, 或者, 所述系统发射功率阈值为历史时钟周期 下的, 半双工的传输模式下的平均系统发射功率值或最低系统发射功率值。
应当理解的是,这里的系统发射功率阈值可以是根据实际的应用场景灵活 设置的。
应当理解的是, 本发明实施例中的天线收发候选组合, 顾名思义即表示: 具有多天线的本端通信设备与具有多天线对端通信设备中,本端通信设备的哪 些天线用于发射信号和哪些天线用于接收信号,以及对端通信设备的哪些天线 用于发射信号和哪些天线用于接收信号的;
203、 根据第一系统发射功率值与第二系统发射功率的比较结果, 选择目 标传输模式,其中所述目标传输模式为第一系统发射功率值与第二系统发射功 率值中的较小值对应的传输模式。
在一种实现方式下, 步骤 203可以包括:
如果第二系统发射功率值小于第一系统发射功率值,则选择全双工的传输 模式;
如果第二系统发射功率值大于第一系统发射功率值,则选择半双工的传输 模式。
应当理解的是,如果第二系统发射功率值等于第一系统发射功率值, 则可 以随机的选择一种传输模式,或者进一步考虑其他因素来决定选择哪一种传输 模式。
如果应用于包括 M根天线的第一通信设备和包括 N根天线的第二通信设备 的无线通信系统中, M和 N为大于 1的整数, 如图 2B所示, 如果第二系统发射 功率值较小, 则目标传输模式为全双工的传输模式, 所述方法进一步包括:
204、 基于第二系统发射功率值对应的天线收发组合进行全双工的数据传 输, 其中, 所述第二系统发射功率值对应的天线收发组合表示: 使用全双工的 传输模式进行传输时第一通信设备上的 M根天线中各个天线的传输模式,及第 二通信设备上的 N根天线中各个天线的传输模式, 其中所述天线的传输模式选 择性地为接收信号或发射信号, 其中所述包括 N根天线的第二通信设备是单一 的通信设备, 或者是多个通信设备的集合。
如果第一系统发射功率值较小, 则目标传输模式为半双工的传输模式, 所 述方法进一步包括:
205、 基于第一系统发射功率值对应的天线收发组合进行半双工的数据传 输。
较优的, 为了在系统性能与数据计算代价上取得平衡, 所述方法还包括: 于第二计算时间阈值内,计算全双工传输模式下的对应于多种天线收发候 选组合的系统发射功率值;
其中, 所述第二计算时间阈值内进行系统发射功率值计算的、全双工传输 模式下的多种天线收发候选组合构成所述第二子集。
应当理解的是, 如果不考虑计算代价, 所述方法还包括: 计算全双工传输 模式下的对应于所有天线收发候选组合的系统发射功率值。
较优的,在一种实现方式下, 所述全双工的传输模式下的一种天线收发组 合的系统发射功率值是通过如下方法计算得到的:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统发射功率候选值,基于副对角线上的两个子矩 阵计算第二系统发射功率候选值;
确定第一系统发射功率候选值与第二系统发射功率候选值中的较小值为 对应于所述当前矩阵划分方式下的系统发射功率值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第二子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合, S种矩阵划分 方式对应 S种不同的天线收发候选组合, 需要说明的是, 这里针对的矩阵可以 是原信道矩阵, 也可以是变化后的信道矩阵;
其中, S为大于或等于 1的整数。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备, 获取半双工的传输模式下的第一系统发射功率值; 获取全双工的传输模 式下的第二系统发射功率值,所述第二系统发射功率值是全双工的传输模式下 的天线收发候选组合的全集下的系统发射功率值中的最小值,或者全双工传输 模式下的天线收发候选组合的第二子集下的系统发射功率值中的最小值,或者 所述第二系统发射功率值为小于系统发射功率阈值的系统发射功率值;根据第 一系统发射功率值与第二系统发射功率的比较结果,选择目标传输模式, 其中 所述目标传输模式为第一系统发射功率值与第二系统发射功率值中的较小值 对应的传输模式; 换言之, 在多天线系统运行的当前信道条件下, 根据系统发 射功率较小化或最小化的准则,选择使得系统发射功率较小化或最小化的传输 模式, 从而实现在当前信道条件下, 使得系统性能较优或最优。 参见图 3 , 本发明实施例提供的一种全双工的传输模式下的天线收发组合 确定方法, 可应用于通信设备, 该方法可包括:
301、 获取全双工的传输模式下的对应于多种天线收发候选组合的系统性 能评估值,其中所述多种天线收发候选组合为全双工的传输模式下的天线收发 候选组合的全集,或者为全双工的传输模式下的天线收发候选组合的全集的第 三子集;
302、 从所述对应于多种天线候选收发组合的系统性能评估值中选择最优 性能评估值, 或者,从所述对应于多种天线收发候选组合的系统性能评估值中 选择优于系统性能阈值的目标性能评估值;
应当理解的是: 在不同的实现方式下, 系统性能评估指标可以是系统容量 或者系统发射功率或其他指标, 相应的, 应当理解的是, 这里的系统性能评估 值可以是系统容量值、 系统发射功率值等各种能评价系统性能的指标。
相应的, 步骤 302中的 "优" 对于不同的性能评估指标而言可以是取最大 或较大或大于目标性能评估值(比如系统容量 ), 或者最小或较小或小于目标 性能评估值(比如系统发射功率)。
303、 确定所述最优性能评估值或目标性能评估值对应的天线收发候选组 合为被采用的天线收发组合方式。
在一种实现方式下, 步骤 301可以包括: 计算全双工传输模式下的对应于 所有天线收发候选组合的系统容量值; 其中,全双工传输模式下的所有天线收 发候选组合构成所述全集; 或者, 在第一计算时间阈值内, 计算全双工传输模 式下的对应于多种天线收发候选组合的系统容量值; 其中, 所述第一计算时间 阈值内进行系统容量值计算的、全双工传输模式下的多种天线收发候选组合构 成所述第三子集;
相应的, 步骤 302可以包括: 从所述对应于多种天线收发候选组合的系统 容量值中选择最大系统容量值, 或者,从所述对应于多种天线收发候选组合的 系统容量值中选择超过系统容量阈值的目标系统容量值;
相应的, 步骤 303可以包括: 确定所述最大系统容量值或目标系统容量值 对应的天线收发候选组合为被采用的天线收发组合方式。
具体的,在一种实现方式下, 所述计算全双工传输模式下的一种天线收发 组合下的系统容量值, 包括:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统容量候选值,基于副对角线上的两个子矩阵计 算第二系统容量候选值;
确定第一系统容量候选值与第二系统容量候选值中的较大值为对应于所 述当前矩阵划分方式下的系统容量值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第三子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合, S种矩阵划分 方式对应 S种不同的天线收发候选组合, 需要说明的是, 这里针对的矩阵可以 是原信道矩阵, 也可以是变化后的信道矩阵;
其中, S为大于或等于 1的整数。
在另一种实现方式下, 步骤 301可以包括: 计算全双工传输模式下的对应 于所有天线收发候选组合的系统发射功率值; 其中,全双工传输模式下的所有 天线收发候选组合构成所述全集; 或者, 在第二计算时间阈值内, 计算全双工 传输模式下的对应于多种天线收发候选组合的系统发射功率值; 其中,所述第 二计算时间阈值内进行系统发射功率值计算的、全双工传输模式下的多种天线 收发候选组合构成所述第三子集; 应当理解的是, 第二计算时间阈值可以根据 实际的应用场景灵活设置。
相应的, 步骤 302可以包括: 从所述对应于多种天线收发候选组合的系统 发射功率值中选择最小系统发射功率值, 或者,从所述对应于多种天线收发候 选组合的系统发射功率值中选择小于系统发射功率阈值的目标系统发射功率 值; 应当理解的是, 系统发射功率阈值可以根据实际的应用场景灵活设置。
相应的, 步骤 303可以包括: 确定所述最小系统发射功率值或目标系统发 射功率值对应的天线收发候选组合为被采用的天线收发组合方式。
具体的,在一种实现方式下, 所述计算全双工传输模式下的一种天线收发 组合下的系统发射功率值, 包括:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统发射功率候选值,基于副对角线上的两个子矩 阵计算第二系统发射功率候选值;
确定第一系统发射功率候选值与第二系统发射功率候选值中的较小值为 对应于所述当前矩阵划分方式下的系统发射功率值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第三子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合, S种矩阵划分 方式对应 S种不同的天线收发候选组合, 需要说明的是, 这里针对的矩阵可以 是原信道矩阵, 也可以是变化后的信道矩阵;
其中, S为大于或等于 1的整数。
需要说明的是,如果通信设备的全部天线都选择为发射模式, 或者通信设 备的全部天线都选择为接收模式, 那么该通信设备就工作在半双工模式。如果 两个全双工多天线设备之间通信时, 全部天线都选择发射模式或者接收模式, 那么系统就工作在半双工模式。所以在不考虑半双工和全双工的天线收发组合 之间系统实现差异的时候,可以将半双工模式作为一种天线收发组合与全双工 模式下的收发天线组合一起用于计算系统性能评估值,从中确定最优或较优性 能对应的模式(可能是半双工, 或者全双工的一种天线收发组合)用于数据传 输。 计算系统性能评估值时, 半双工模式不对矩阵进行变换和划分, 由信道矩 阵计算出的单方向传输性能就代表系统性能。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备,如果采用全双工的传输模式时, 获取全双工的传输模式下的对应于多种 天线收发候选组合的系统性能评估值,其中所述多种天线收发候选组合为全双 工的传输模式下的天线收发候选组合的全集,或者为全双工的传输模式下的天 线收发候选组合的全集的第三子集;从所述对应于多种天线收发候选组合的系 统性能评估值中选择最优性能评估值, 或者,从所述对应于多种天线收发候选 组合的系统性能评估值中选择优于系统性能阈值的目标性能评估值;确定所述 最优性能评估值或目标性能评估值对应的天线收发候选组合为被采用的天线 收发组合方式; 换言之,在多天线系统以全双工的传输模式运行的当前信道条 件下,根据性能评估值较优化或最优化的准则,确定全双工模式下的最佳或较 佳天线收发组合,从而实现在系统的当前信道条件下,使得系统性能较优或最 优。
下面将结合具体的实施例来介绍本发明的传输模式选择方法,为了便于描 述, 下文实施例中将假设两个通信设备之间的信道是瑞利(Raylei gh )衰落的 复高斯信道。 自干扰信道是 K很大的莱斯(Ric ian )信道(K.为莱斯信道的参 数), 即均值很大的复高斯信道。
1 )基于系统容量优化的传输模式选择方法:
本发明实施例中,以具有两个天线的通信设备来举例说明,应当理解的是, 本领域技术人员根据如下介绍的实施方式能推广到通信设备上的天线数量大 于两根的情况。
对于具有两个天线的通信设备, 可以使用做半双工传输,通过单方向的空 分复用发送两个数据流;也可以用一根天线发射另一个天线接收进行全双工通 信, 此时每个通信设备同时接收一个数据流并发射一个数据流, 这样加起来也 是两个数据流。 图 4为具有两个天线的本端通信设备与具有两个天线的对端通信设备之间 的两种传输模式的示意图。 下面分析一下典型复高斯信道条件下,如何根据信 道矩阵判断哪一种传输方式的系统容量较高。 为了分析系统容量, 首先对全双工通信设备干扰删除后的信道进行建模。 假设自干扰信道的信道响应为 ht , 两个通信设备之间的信道响应为 , 本端通 信设备的发射信号为 .r , 对端通信设备发射信号为 6· , 那么本端通信设备接收天 线的接收信号表示为
?;.™ htx + h、、s 4- n 其中 为加性复高斯噪声。 是一个均值很大的循环对称复高斯随机变量, 对 应 很大的莱斯信道; /½是一个均值为零的循环对称复高斯随机变量, 对应一 个瑞利信道; n也是一个均值为零的循环对称复高斯随机变量。 自干扰删除的步骤是通信设备估计出自干扰信道响应 , 确定自身发射的 信号: r , 这样就可以重构出接收天线处的自干扰信号/^ , 然后从接收信号中减 去自干扰信号。 令/½为自干扰删除后的等效自干扰信道响应, u , 那么自干扰删除后的接收信号为 ™ hxx + + n
^ h s + nf
其中„' = }lxx + n, 是干扰删除后的残留干扰和噪声。 设 ~£^(μ,σ ) (即, 服从均值为 方差为 的循环对称复高斯随机变 量, 下同) , 因为现在信道估计算法都是无偏估计, 那么信道响应的估计值 〜 ΟΛΤ(μ,σ 。 自干扰删除之后的等效自干扰信道响应 〜 0/V((K。 注意, 因 为 和 / ^不是统计独立的, 所以 ^不等于 σ + σ§。 o的具体数值取决与实际使用 的信道估计算法, 如果是使用的最小均分误差(Mini謹画 Mean Square Error, 匪 SE) 算法, 那么可以计算得到 其中 是本端通信设备的发射信
Figure imgf000025_0001
号功率。 由此可以看出, 自干扰删除后的残留自干扰功率为 σ , 当系统发射功率 緩慢变化时, 残留自干扰信号是一个零均值的循环对称高斯随机变量。 结论: 自干扰删除后两个全双工通信设备之间的信道仍然是一个加性高斯白噪声信 道 (Additive White Gaussian Noise channel, AWGN channel ) 。 这样自干扰删除后两个全双工通信设备之间的等效信道可以表示为
Figure imgf000025_0002
其中 n' = / : +ft为残留自干扰加上噪声, 且 n'〜 ) ,σ^十^) , ^是原始噪声 的方差。 假设对于通信设备而言, 两个通信设备之间的信道矩阵是已知的, 这在实 际中是合理的。 对于两个通信设备慢速运动, 信道响应随时间的变化很慢, 这 里可以通过一个通信设备向另一个通信设备发射参考信号来估计信道响应,然 后用估计出来的信道响应作为后续一段时间内的信道响应。 当然,还可以通过 信道互易性来筒化信道估计的过程。 令 为对端通信设备的发射信号《的功率; SNR - 为没有自干扰情况下 的信噪比 ( S igna l-to-Noi se Rat io, SNR ) ; ./。T = + ))/^为自干扰删 除后残留干扰和噪声的功率之和与原始噪声的比值,表征残留自干扰将原有噪 声门限抬高了多少倍。 这样两天线的点对点全双工信道的总容量为
Οΐη
Figure imgf000026_0001
其中 3— 容量公式中 Ϊ的选择对应两设备之间两种不同的天线收发组合; 如图 5所示,为具有两个天线的本端通信设备与具有两个天线的对端通信 设备之间的不同天线收发组合的示意图,图 5中用两种不同的线型表明了这两 种不同的天线收发组合方式, 分别为通信设备 1的天线 1用于发射,通信设备 1的天线 2用于接收, 通信设备 2的天线 1用于发射, 通信设备 2的天线 1用 于接收; 通信设备 1的天线 1用于发射, 通信设备 1的天线 2用于接收, 通信 设备 2的天线 1用于接收, 通信设备 2的天线 1用于发射。 在通信设备知道信道矩阵的半双工情况下, ΜΙΜ0系统的容量是通过功率注 水, 然后在对应的特征信道上进行传输, 其信道容量表示为 CHD - log 1 +
Figure imgf000027_0001
其中 λ,: ( 1、2) , 是信道矩阵的奇异值, (Λ,:)对应第?:个特征信道上的系统发 射功率, 其满足下面的方程组(其中 μ根据方程组确定, Ρ 是通信设备总的发 射功率) :
Figure imgf000027_0002
从上面的解出 Ρ*(Λ,)的表达式, 代入 ΜΙΜ0的容量公式得到
C u ^ log ( ) + ioS
- !。 + * + ¾)) +l。g (碧 + #(*— *))
为了做公平比较, 令全双工的传输模式时每个通信设备的最大系统发射功 率为半双工传输模式时发射通信设备功率的一半, 即, ΡΆ = ΡΙ2。 这时, 两种 传输模式下, 整个系统的最大系统发射功率都是 Ρ。 在半双工容量公式中, 令 SNR Pi'2al Ρ σ 相当于平均每个数据流的 SNR, 这样容量公式可以表示为
CHD - log { > SNR + ^ (— + + k ^SNR + -†
2 V λ XIJ ' 。 2 VA A:
因为 limSA-K→ CFD/ log SNR = limSA'K CHD/ log SNR - 2,可见全双工传输模 式下和半双工传输模式下具有相同的自由度,也就是都最多只能传输 1个数据
所以在系统的信道矩阵 / /是已知的情况下, 基于容量的传输模式选择方法 如下, 如果 > C'F。( i) , 则选择半双工传输模式; 如 CiW(H) < CFD(}i、, 则选择全双工传输模式。 在高信噪比情况下, 且对于全双工的自干扰删除后残留的干扰相对于接收 信号的功率很小时, 可以筒化传输模式的容量最优准则。 可假设 1 < ΙοΤ « SNR , 这样两种传输模式下的系统容量可以表示为:
C' 0 = 2 log SNR + 2 max log 一 2 log ΙοΤ
Cm = 2 log SNR十 2 log |A;t j |A, | = 2 log SNR十 2 log | det(ff) | 当残留自干扰 4艮小时,包括具有 1天线的本端通信设备和具有 1天线的对端通 信设备的系统的全双工容量完全取决于信道矩阵主对角线和副对角线上元素 乘积的绝对值中的较大值, 半双工容量完全取决于信道矩阵的行列式的绝对 值。 接下来进一步给出高 SNR, 低 IoT ( Interference over Therma l , 干扰噪 声比 )场景下基于容量的传输模式选择方法的一个直观解释。 此时的信道矩阵 是一个 2 x 2 的矩阵。 其中包括了两条点对点链路, 其 链路响应分别对应主对角线上的元素和副对角线上的元素。这两条链路分别称 为直接链路和交叉链路, 如图 5所示。 全双工通信选择直接链路和交叉链路中的一条进行传输,而半双工通信同 时利用直接链路和交叉链路进行传输。那么如果这两条链路是"互相促进"的, 那么半双工的效果就会好于全双工; 如果两条链路是 "互相抵触" 的, 那么全 双工效果就会好于半双工。 本发明实施例中,在此通过一个实际 2 X 2的 if矩阵来说明两条链路的 "相 互促进" 和 "相互抵触" 的效果。 如果信道矩阵为11 = ( 3, 直接链路传
—1 2 /
输两个数据流的信道增益为 6 , 交叉链路传输两个数据流的信道增益为 1 , 所 以全双工的容量指标为 6。 如果进行半双工传输, 可以通过高斯消元法除去一 个数据流对另一个数据流的干扰, Η = ( {), ), 总的两数据流的增益为 7 ,
一 ί ∑ )
也就是行列式的绝对值。这样的信道矩阵条件下, 两条链路是"相互促进"的。 如果信道矩阵为 Η = ( ), 直接链路传输两个数据流的信道增益为 6 , 交叉链路传输两个数据流的信道增益为 1 , 所以全双工的容量指标为 6。 如果 进行半双工传输, 可以通过高斯消元法除去一个数据流对另一个数据流的干 扰, Η = (? ~5 ), 总的两数据流的增益为 5 , 也就是行列式的绝对值。 这样
\ .1. )
的信道矩阵条件下, 两条链路是 "相互抵触" 的。 应当理解的是, 本发明实施例中, 可以将具有两个天线的通信设备(亦可 称为 2天线通信设备)推广到具有多个天线的通信设备(亦可称为多天线通信 设备)之间的点对点通信。 在信道矩阵 ί/已知的情况下, 可以考虑两个通信设 备的所有可能的天线收发候选组合,这样相当于将整个系统的信道矩阵或者其 变化后的矩阵划分为 4个子矩阵,而应用其中的处于对角关系的两个子矩阵进 行信道传输。本实施例中, 可以挑选整个系统的信道矩阵中的使得对角子矩阵 关系的 "相互促进" 最大化的矩阵变换方式和分块方式。 本实施例中, 可以 用矩阵分块优化后的容量指标相对于整个系统进行半双工通信的容量指标之 差来表征全双工模式相对于半双工的传输模式下的容量增益(筒称相对容量增 益 ): MPG - max
Figure imgf000030_0001
)| | detfHaHi' )!― | det(HH" )|
a H
C G avifi i¾ .ι·ΐ? diganal iulvmar icirrs
其中, ¾和112是对信道矩阵 H或者其变换矩阵进行划分后的对角子矩阵。 本发明实施例中暂且将这个相对容量增益称为矩阵分块增益 ( Matr ix Par t i t ioning Ga in, MPG )。 这样的话, 对于高 SNR、 低 IoT的场景, 基于容量的传输模式选择准则为: 如果 M ― log i r > (J , 则使用全双工模式进行通信; 如果 M ― log IoT < (J , 则使用半双工的传输模式下进行通信。 假设两个通信设备分别有 Λί根天线和 N根天线, 为了搜索出最大的矩阵分 块增 益 , 需 要遍历 所有 的 天 线 收发候选组合 , 一共有 种组合。 当然也可以利用优化算法求解出一个
Figure imgf000030_0002
局部最优解, 以获得性能和计算复杂度之间的有效折中。 下面举个 4天线通信设备的例子说明矩阵分块增益的计算。此时 H是一个 4 X 4矩阵的矩阵。 如果进行全双工通信, 对于每个通信设备而言, 都可以用其 中的一根天线作为接收天线, 另 3根天线作为发射天线(在 H矩阵在两个通信 设备之间具有互易性的时候, 这个场景等效于用 1根天线作为发射天线,其余 3根天线作为接收天线); 或者, 2根天线作为接收天线, 另外 2根天线作为发 射天线。如图 6所示, 以具有四个天线的本端通信设备与具有四个天线的对端 通信设备为例介绍全双工的传输模式下的所有的收发天线候选组合的矩阵分 块的情况。 按标准循环对称复高斯变量独立生成 H中的元素, 然后将其所有的矩阵分 块可能代入最原始的全双工传输模式下和半双工传输模式下的容量公式;如图
7所示, 以具有四个天线的本端通信设备与具有四个天线的对端通信设备为例 介绍半双工 MIM0的系统容量值与全双工传输模式下的最优收发天线组合下的 系统容量值的对比效果, 换言之, 图 7 为两种传输容量的累计分布函数 ( Cumula t ive Di s t r ibut ion Func t ion , CDF )对比的示意图, 其中, 细线表 示全双工的传输模式下的数据, 粗线表示半双工的传输模式下的数据, 由图 7 可知, 进行矩阵分块优化后,全双工的传输模式下的最优天线收发组合的平均 容量比半双工的传输模式下的所有天线用于发射信号或所有天线用于接收信 号的天线收发组合的容量提升 40%。 需要说明的是, 本实施例中, 遍历了所有 的天线收发组合情况,故得到全双工的传输模式下的最优天线收发组合的平均 谷里。
2 )基于系统发射功率优化的传输模式选择方法:
本发明实施例中, 以蜂窝系统的通信设备来举例说明, 应当理解的是, 本 领域技术人员根据如下介绍的实施方式能推广到其他通信系统的通信设备的 情况。
计算半双工的传输模式下系统发射功率, 可以采用现有技术来计算得到。 对于全双工的传输模式, 通过 S种不同的子矩阵划分办法将两个通信设备 之间的信道矩阵 H , 以及由信道矩阵 H变化得到的矩阵进行划分, 得到 4个子 矩阵。 Η^ΡΗ2分别为主对角线上或者副对角线上的两个子矩阵, 计算主对角 线上两个子矩阵对应的系统发射功率,计算副对角线上的子矩阵对应的系统发 射功率,将两者中较小的作为该矩阵行列变化和划分条件下的全双工模式的系 统发射功率。
计算用于系统发射功率的矩阵变换的个数和子矩阵划分的个数 S , 通过实 际中系统的性能和技术的复杂度折中进行确定。
将所有计算的全双工天线收发候选组合中最小的系统发射功率作为全双 工模式的系统发射功率。
如果计算出的全双工模式的最小系统发射功率小于半双工模式的系统发 射功率,则使用全双工模式中计算出的最小的系统发射功率对应的天线收发组 合进行传输;如果计算出半双工的系统发射功率小于全双工模式中计算出的最 小的系统发射功率, 那么就使用半双工模式进行传输。具体细节可参考前述实 施例, 这里不再赘述。
综上所述, 基于如下两个优化目标进行传输模式的选择:
A、 系统容量
容量计算方法:
1.低 SNR, 或自干扰删除后残留自干扰比有用信号大, 或者中同一数量级 范围内的场景, 使用传统的香农公式, 或者 MIMO容量进行计算不同天线收发 组合的系统容量。
2.高 SINR, 和自干扰删除后残留自干扰比有用信号小得多的场景, 使用 矩阵分块准则进行筒化容量评估。
B、 系统发射功率
系统发射功率的计算方法:
对于正交频分复用 ( Orthogonal Frequency Division Multiplexing , OFDM) 系统,可以通过如下方式计算半双工模式下的最小系统发射功率的和全双工模 式下的不同天线收发组合情况下的最小系统发射功率:
1、根据用户需要传输的数据量和在资源块(Resource Block, RB, 指几个 OFDM 符号和子载波共同组成的传输资源)上的信道条件,使用现有的资源调度算法 ( t匕: ¾口匕 1 "列公平算法 PFS, Proportional Fair Schedul ing )进行资源分酉己。
2、 根据信道矩阵(半双工模式下使用信道矩阵 H, 全双工模式下使用对角线 上的子矩阵 和1¾)确定分配传输资源上的预编码矩阵, 据此计算出各数据 流上的信道增益。
3、 才艮据信干噪比( Signal_to_Interference_plus_Noise Ratio, SINR )和传 输的 QoS要求(这里的 QoS可以包括时延要求、 误帧率要求, 比如长期演进系统
( Long Term Evolution, LTE )的物理下行共享信道 ( Physical Down 1 ink Share Channel, PDSCH )的误帧率要求小于 10。/。等)计算出传输使用的调制编码方式 ( Modulat ion and Coding Scheme, MCS ) 。
4、 不同系统都有不同 MCS对应的 SIM要求, 然后我们由步骤 2和 3中确定的信道 增益、噪声门限, 以及全双工模式下的残留自干扰功率确定通信设备的最小系 统发射功率。
装置实施例一 参见图 12A、 本发明实施例提供一种传输模式选择装置 1200, 可包括: 第 一系统容量值获取单元 1201、第二系统容量值获取单元 1202和第一传输模式选 择单元 1203 , 其中:
第一系统容量值获取单元 1201 ,用于获取半双工的传输模式下的第一系统 容量值;
第二系统容量值获取单元 1202,用于获取全双工的传输模式下的第二系统 容量值,所述第二系统容量值是全双工的传输模式下的天线收发候选组合的全 集下的系统容量值中的最大值,或者全双工传输模式下的天线收发候选组合的 第一子集下的系统容量值中的最大值,或者所述第二系统容量值为超过系统容 量阈值的系统容量值;
第一传输模式选择单元 1203 ,用于根据所述第一系统容量值获取单元输出 的第一系统容量值与所述第二系统容量值获取单元输出的第二系统容量值的 比较结果,选择目标传输模式, 其中所述目标传输模式为所述第一系统容量值 与第二系统容量值中的较大值对应的传输模式。
在一种实现方式下, 第一传输模式选择单元 1203具体用于: 如果所述第二 系统容量值获取单元输出的第二系统容量值大于所述第一系统容量值获取单 元输出的第一系统容量值, 则选择全双工的传输模式; 如果所述第二系统容量 值获取单元输出的第二系统容量值小于所述第一系统容量值获取单元输出的 第一系统容量值, 则选择半双工的传输模式。
应当理解的是,如果第二系统容量值等于第一系统容量值, 则可以随机的 选择一种传输模式, 或者进一步考虑其他因素来决定选择哪一种传输模式。 如果应用于包括 M根天线的第一通信设备和包括 N根天线的第二通信设 备的无线通信系统中, M和 N为大于 1的整数, 如果第二系统容量值较大, 则目 标传输模式为全双工的传输模式, 如图 12B所示, 本发明实施例的传输模式选 择装置 1200进一步包括:
传输单元 1204,用于基于第二系统容量值对应的天线收发组合进行全双工 的数据传输, 其中, 所述第二系统容量值对应的天线收发组合表示: 使用全双 工的传输模式进行传输时第一通信设备上的 M根天线中各个天线的传输模式, 及第二通信设备上的 N根天线中各个天线的传输模式, 其中所述天线的传输模 式为接收信号或发射信号。 换言之, 即第一通信设备上的 M根天线中哪些天线 的传输模式为接收信号, 而哪些天线的传输模式为发射信号, 应当理解的是, 本发明实施例中,第二系统容量值对应的天线收发候选组合表示第一通信设备 上的 M根天线中部分天线的传输模式为接收信号, 而另一部分天线的传输模式 为发射信号, 但应当理解的是, 在极端的情况下, 也可能表示第一通信设备上 的 M根天线中所有天线的传输模式都是接收信号,也可能确定出第一通信设备 上的 M根天线中所有天线的传输模式都是发射信号。
以及, 所述包括 N根天线的第二通信设备是单一的通信设备, 或者是多个 通信设备的集合。
或者, 如果第一系统容量值较大, 则目标传输模式为半双工的传输模式, 如图 12B所示, 本发明实施例的传输模式选择装置 1200中:
传输单元 1204还用于基于第一系统容量值对应的天线收发组合进行半双 工的数据传输, 其中, 所述第一系统容量值对应的天线收发候选组合表示使用 半双工的传输模式进行传输时第一通信设备上的 M根天线中各个天线的传输 模式均为接收信号, 及第二通信设备上的 N根天线中各个天线的传输模式均为 发射信号; 或者, 第一通信设备上的 M根天线中各个天线的传输模式均为发射 信号及第二通信设备上的 N根天线中各个天线的传输模式均为接收信号。 应当 理解的是, 根据信道互易性, 采用半双工的传输模式的情况下, 两个通信设备 的收发对调, 信道容量不变。
以及, 本发明实施例中, 所述装置进一步包括: 系统容量值计算单元 1205 ,用于计算全双工传输模式下的对应于所有天线 收发候选组合的系统容量值; 其中,全双工传输模式下的所有天线收发候选组 合构成所述全集; 或者, 在第一计算时间阈值内, 计算全双工传输模式下的对 应于多种天线收发候选组合的系统容量值; 其中, 所述第一计算时间阈值内进 行系统容量值计算的、全双工传输模式下的多种天线收发候选组合构成所述第 一子集。
在一种具体实现方式下, 系统容量值计算单元 1205具体用于:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统容量候选值,基于副对角线上的两个子矩阵计 算第二系统容量候选值;
确定第一系统容量候选值与第二系统容量候选值中的较大值为对应于所 述当前矩阵划分方式下的系统容量值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第一子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合, S种矩阵划分 方式对应 S种不同的天线收发候选组合, 需要说明的是, 这里针对的矩阵可以 是原信道矩阵, 也可以是变化后的信道矩阵;
其中, S为大于或等于 1的整数。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备, 获取半双工的传输模式下的第一系统容量值; 获取全双工的传输模式下 的第二系统容量值,所述第二系统容量值是全双工的传输模式下的天线收发候 选组合的全集下的系统容量值中的最大值,或者全双工传输模式下的天线收发 候选组合的第一子集下的系统容量值中的最大值,或者所述第二系统容量值为 超过系统容量阈值的系统容量值;根据第一系统容量值与第二系统容量值的比 较结果,选择目标传输模式, 其中所述目标传输模式为第一系统容量值与第二 系统容量值中的较大值对应的传输模式; 换言之,在多天线系统运行的当前信 道条件下,根据系统容量较大化或最大化的准则,选择使得系统容量较大化或 最大化的传输模式,从而实现在系统的当前信道条件下,使得系统性能较优或 最优。 装置实施例二 参见图 13A、 本发明实施例提供另一种传输模式选择装置 1300, 可包括: 第一系统发射功率值获取单元 1301、第二系统发射功率值获取单元 1302和第二 传输模式选择单元 1303 , 其中:
第一系统发射功率值获取单元 1301 ,用于获取半双工的传输模式下的第一 系统发射功率值;
第二系统发射功率值获取单元 1302,用于获取全双工的传输模式下的第二 系统发射功率值,所述第二系统发射功率值是全双工的传输模式下的天线收发 候选组合的全集下的系统发射功率值中的最小值,或者全双工传输模式下的天 线收发候选组合的第二子集下的系统发射功率值中的最小值,或者所述第二系 统发射功率值为小于系统发射功率阈值的系统发射功率值;
第二传输模式选择单元 1303 ,用于根据所述第一系统发射功率值获取单元 输出的第一系统发射功率值与所述第二系统发射功率值获取单元输出的第二 系统发射功率的比较结果,选择目标传输模式, 其中所述目标传输模式为第一 系统发射功率值与第二系统发射功率值中的较小值对应的传输模式。
在一种实现方式下, 第二传输模式选择单元 1303具体用于: 如果所述第二 系统发射功率值获取单元输出的第二系统发射功率值小于所述第一系统发射 功率值获取单元输出的第一系统发射功率值, 则选择全双工的传输模式; 如果 所述第二系统发射功率值获取单元输出的第二系统发射功率值大于所述第一 系统发射功率值获取单元输出的第一系统发射功率值,则选择半双工的传输模 式。
应当理解的是,如果第二系统发射功率值等于第一系统发射功率值, 则可 以随机的选择一种传输模式,或者进一步考虑其他因素来决定选择哪一种传输 模式。
如果应用于包括 M根天线的第一通信设备和包括 N根天线的第二通信设 备的无线通信系统中, M和 N为大于 1的整数, 如果第二系统发射功率值较小, 则目标传输模式为全双工的传输模式, 如图 13B所示, 本发明实施例的传输模 式选择装置 1300进一步包括:
传输单元 1304,用于基于第二系统发射功率值对应的天线收发组合进行全 双工的数据传输, 其中, 所述第二系统发射功率值对应的天线收发组合表示: 使用全双工的传输模式进行传输时第一通信设备上的 M根天线中各个天线的 传输模式, 及第二通信设备上的 N根天线中各个天线的传输模式, 其中所述天 线的传输模式为接收信号或发射信号。
以及, 所述包括 N根天线的第二通信设备是单一的通信设备, 或者是多个 通信设备的集合。
或者,如果第一系统发射功率值较小, 则目标传输模式为半双工的传输模 式, 如图 13B所示, 本发明实施例的传输模式选择装置 1300中:
传输单元 1304还用于基于第一系统发射功率值对应的天线收发组合进行 半双工的数据传输, 其中, 所述第一系统发射功率值对应的天线收发候选组合 表示使用半双工的传输模式进行传输时,第一通信设备上的 M根天线中各个天 线的传输模式均为接收信号, 及第二通信设备上的 N根天线中各个天线的传输 模式均为发射信号; 或者, 第一通信设备上的 M根天线中各个天线的传输模式 均为发射信号, 及第二通信设备上的 N根天线中各个天线的传输模式均为接收 信号。 应当理解的是, 根据信道互易性, 采用半双工的传输模式的情况下, 两 个通信设备的收发对调, 系统发射功率的计算结果不变。
以及, 本发明实施例的传输模式选择装置 1300进一步包括:
系统发射功率值计算单元 1305,用于计算全双工传输模式下的对应于所有 天线收发候选组合的系统发射功率值; 其中,全双工传输模式下的所有天线收 发候选组合构成所述全集; 或者, 在第二计算时间阈值内, 计算全双工传输模 式下的对应于多种天线收发候选组合的系统发射功率值; 其中, 所述第二计算 时间阈值内进行系统发射功率值计算的、全双工传输模式下的多种天线收发候 选组合构成所述第二子集。
在一种具体实现方式下, 系统发射功率值计算单元 1305具体用于: 基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统发射功率候选值,基于副对角线上的两个子矩 阵计算第二系统发射功率候选值;
确定第一系统发射功率候选值与第二系统发射功率候选值中的较小值为 对应于所述当前矩阵划分方式下的系统发射功率值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第二子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合, S种矩阵划分 方式对应 S种不同的天线收发候选组合, 需要说明的是, 这里针对的矩阵可以 是原信道矩阵, 也可以是变化后的信道矩阵;
其中, S为大于或等于 1的整数。
其中,本发明实施例中提到的由所述系统的信道矩阵变换得到信道矩阵的 矩阵变换方式是指在信道矩阵中, 交换矩阵中行向量的顺序和 /或交换矩阵中 列向量的顺序。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备, 获取半双工的传输模式下的第一系统发射功率值; 获取全双工的传输模 式下的第二系统发射功率值,所述第二系统发射功率值是全双工的传输模式下 的天线收发候选组合的全集下的系统发射功率值中的最小值,或者全双工传输 模式下的天线收发候选组合的第二子集下的系统发射功率值中的最小值,或者 所述第二系统发射功率值为小于系统发射功率阈值的系统发射功率值;根据第 一系统发射功率值与第二系统发射功率的比较结果,选择目标传输模式, 其中 所述目标传输模式为第一系统发射功率值与第二系统发射功率值中的较小值 对应的传输模式; 换言之, 在多天线系统运行的当前信道条件下, 根据系统发 射功率较小化或最小化的准则,选择使得系统发射功率较小化或最小化的传输 模式, 从而实现在系统的当前信道条件下, 使得系统性能较优或最优。 装置实施例三 参见图 14、本发明实施例提供一种全双工的传输模式下的天线收发组合确 定装置 1400, 可包括: 系统性能评估值获取单元 1401、 选择单元 1402和确定单 元 1403, 其中:
系统性能评估值获取单元 1401 ,用于获取全双工的传输模式下的对应于多 种天线收发候选组合的系统性能评估值,其中所述多种天线收发候选组合为全 双工的传输模式下的天线收发候选组合的全集,或者为全双工的传输模式下的 天线收发候选组合的全集的第三子集;
选择单元 1402,用于从所述系统性能评估值获取单元获取的所述对应于多 种天线收发候选组合的系统性能评估值中选择最优性能评估值, 或者,从所述 系统性能评估值获取单元获取的所述对应于多种天线收发候选组合的多种天 线收发组合下的系统性能评估值中选择优于系统性能阈值的目标性能评估值; 确定单元 1403,用于确定所述最优性能评估值或目标性能评估值对应的天 线收发候选组合为被采用的天线收发组合方式。
应当理解的是,在不同的实现方式下, 系统性能评估指标可以是系统容量 或者系统发射功率或其他指标, 相应的, 应当理解的是, 这里的系统性能评估 值可以是系统容量值、 系统发射功率值等各种能评价系统性能的指标。
相应的, 本发明实施例中, "优" 对于不同的性能评估指标而言可以是取 最大或较大或大于目标性能评估值(比如系统容量), 或者取最小或较小或小 于目标性能评估值(比如系统发射功率)。 在一种实现方式下, 系统性能评估值获取单元 1401为系统容量值计算单 元, 所述系统容量值计算单元用于: 计算全双工传输模式下的对应于所有天线 收发候选组合的系统容量值; 其中,全双工传输模式下的所有天线收发候选组 合构成所述全集; 或者, 在第一计算时间阈值内, 计算全双工传输模式下的对 应于多种天线收发候选组合的系统容量值; 其中, 所述第一计算时间阈值内进 行系统容量值计算的、全双工传输模式下的多种天线收发候选组合构成所述第 三子集;
相应的,选择单元 1402具体用于: 从所述对应于多种天线收发候选组合的 系统容量值中选择最大系统容量值, 或者,从所述对应于多种天线收发候选组 合的系统容量值中选择超过系统容量阈值的目标系统容量值;
相应的,确定单元 1403具体用于: 确定所述最大系统容量值或目标系统容 量值对应的天线收发候选组合为被采用的天线收发组合方式。
进一步的, 在一种具体实现方式下, 系统容量值计算单元具体用于: 基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统容量候选值,基于副对角线上的两个子矩阵计 算第二系统容量候选值;
确定第一系统容量候选值与第二系统容量候选值中的较大值为对应于所 述当前矩阵划分方式下的系统容量值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第三子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合, S种矩阵划分 方式对应 S种不同的天线收发候选组合, 需要说明的是, 这里针对的矩阵可以 是原信道矩阵, 也可以是变化后的信道矩阵;
其中, S为大于或等于 1的整数。
在另一种实现方式下,系统性能评估值获取单元 1401为系统发射功率值计 算单元, 所述系统发射功率值计算单元用于: 计算全双工传输模式下的对应于 所有天线收发候选组合的系统发射功率值; 其中,全双工传输模式下的所有天 线收发候选组合构成所述全集; 或者, 在第二计算时间阈值内, 计算全双工传 输模式下的对应于多种天线收发候选组合的系统发射功率值; 其中, 所述第二 计算时间阈值内进行系统发射功率值计算的、全双工传输模式下的多种天线收 发候选组合构成所述第三子集;
相应的, 所述选择单元 1402具体用于: 从所述对应于多种天线收发候选组 合的系统发射功率值中选择最小系统发射功率值, 或者,从所述对应于多种天 线收发候选组合的系统发射功率值中选择小于系统发射功率阈值的目标系统 发射功率值;
相应的, 所述确定单元 1403具体用于: 确定所述最小系统发射功率值或目 标系统发射功率值对应的天线收发候选组合为被采用的天线收发组合方式。
进一步的, 在一种具体实现方式下, 系统发射功率值计算单元具体用于: 基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统发射功率候选值,基于副对角线上的两个子矩 阵计算第二系统发射功率候选值;
确定第一系统发射功率候选值与第二系统发射功率候选值中的较小值为 对应于所述当前矩阵划分方式下的系统发射功率值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第三子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合, S种矩阵划分 方式对应 S种不同的天线收发候选组合, 需要说明的是, 这里针对的矩阵可以 是原信道矩阵, 也可以是变化后的信道矩阵;
其中, S为大于或等于 1的整数。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备,如果采用全双工的传输模式时, 获取全双工的传输模式下的对应于多种 天线收发候选组合的系统性能评估值,其中所述多种天线收发候选组合为全双 工的传输模式下的天线收发候选组合的全集,或者为全双工的传输模式下的天 线收发候选组合的全集的第三子集;从所述对应于多种天线收发候选组合的系 统性能评估值中选择最优性能评估值, 或者,从所述对应于多种天线收发候选 组合的系统性能评估值中选择优于系统性能阈值的目标性能评估值;确定所述 最优性能评估值或目标性能评估值对应的天线收发候选组合为被采用的天线 收发组合方式; 换言之,在多天线系统以全双工的传输模式运行的当前信道条 件下,根据性能评估值较优化或最优化的准则,确定全双工模式下的最佳或较 佳天线收发组合, 从而实现在当前信道条件下, 使得系统性能较优或最优。
装置实施例四
参见图 15、本发明实施例提供一种通信设备 1500,所述通信设备 1500包括: 多个天线 1502...150N, 以及, 与所述多个天线 1502...150N耦合的第一传输模 式选择模块 1501 ,所述第一传输模式选择模块 1501为上述装置实施例一所述的 传输模式选择装置。其他详细实现细节请参考前述方法和装置实施例, 这里不 再赘述。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备, 获取半双工的传输模式下的第一系统容量值; 获取全双工的传输模式下 的第二系统容量值,所述第二系统容量值是全双工的传输模式下的天线收发候 选组合的全集下的系统容量值中的最大值,或者全双工传输模式下的天线收发 候选组合的第一子集下的系统容量值中的最大值,或者所述第二系统容量值为 超过系统容量阈值的系统容量值;根据第一系统容量值与第二系统容量值的比 较结果,选择目标传输模式, 其中所述目标传输模式为第一系统容量值与第二 系统容量值中的较大值对应的传输模式; 换言之,在多天线系统运行的当前信 道条件下,根据系统容量较大化或最大化的准则,选择使得系统容量较大化或 最大化的传输模式,从而实现在系统的当前信道条件下,使得系统性能较优或 最优。
装置实施例五
参见图 16、本发明实施例提供一种通信设备 1600,所述通信设备 1600包括: 多个天线 1602...160N, 以及, 与所述多个天线 1602...160N耦合的第二传输模 式选择模块 1601 ,所述第二传输模式选择模块 1601为上述装置实施例二所述的 传输模式选择装置。其他详细实现细节请参考前述方法和装置实施例, 这里不 再赘述。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备, 获取半双工的传输模式下的第一系统发射功率值; 获取全双工的传输模 式下的第二系统发射功率值,所述第二系统发射功率值是全双工的传输模式下 的天线收发候选组合的全集下的系统发射功率值中的最小值,或者全双工传输 模式下的天线收发候选组合的第二子集下的系统发射功率值中的最小值,或者 所述第二系统发射功率值为小于系统发射功率阈值的系统发射功率值;根据第 一系统发射功率值与第二系统发射功率的比较结果,选择目标传输模式, 其中 所述目标传输模式为第一系统发射功率值与第二系统发射功率值中的较小值 对应的传输模式; 换言之, 在多天线系统运行的当前信道条件下, 根据系统发 射功率较小化或最小化的准则,选择使得系统发射功率较小化或最小化的传输 模式, 从而实现在系统的当前信道条件下, 使得系统性能较优或最优。 装置实施例六 参见图 17、本发明实施例提供一种通信设备 1700,所述通信设备 1700包括: 多个天线 1702...170N, 以及, 与所述多个天线 1702...170N耦合的天线收发组 合确定模块 1701 ,所述天线收发组合确定模块 1701为上述装置实施例三所述的 全双工的传输模式下的天线收发组合确定装置。其他详细实现细节请参考前述 方法和装置实施例, 这里不再赘述。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备,如果采用全双工的传输模式时, 获取全双工的传输模式下的对应于多种 天线收发候选组合的系统性能评估值,其中所述多种天线收发候选组合为全双 工的传输模式下的天线收发候选组合的全集,或者为全双工的传输模式下的天 线收发候选组合的全集的第三子集;从所述对应于多种天线收发候选组合的系 统性能评估值中选择最优性能评估值, 或者,从所述对应于多种天线收发候选 组合的系统性能评估值中选择优于系统性能阈值的目标性能评估值;确定所述 最优性能评估值或目标性能评估值对应的天线收发候选组合为被采用的天线 收发组合方式; 换言之,在多天线系统以全双工的传输模式运行的当前信道条 件下,根据性能评估值较优化或最优化的准则,确定全双工模式下的最佳或较 佳天线收发组合, 从而实现在当前信道条件下, 使得系统性能较优或最优。
参见图 18, 本发明实施例还提供一种无线通信系统 1800, 可包括: 第一通 信设备 1801和第二通信设备 1802, 其中:
第一通信设备 1801用于:当需要与第二通信设备进行数据传输时, 获取半 双工的传输模式下的第一系统容量值;获取全双工的传输模式下的第二系统容 量值,所述第二系统容量值是全双工的传输模式下的天线收发候选组合的全集 下的系统容量值中的最大值,或者全双工传输模式下的天线收发候选组合的第 一子集下的系统容量值中的最大值,或者所述第二系统容量值为超过系统容量 阈值的系统容量值; 根据第一系统容量值与第二系统容量值的比较结果,选择 目标传输模式,其中所述目标传输模式为第一系统容量值与第二系统容量值中 的较大值对应的传输模式; 以及, 用于基于所述目标传输模式, 与第二通信设 备进行数据传输; 需要说明的是, 第一通信设备 1801具有多个天线。
第二通信设备 1802用于:接收所述第一通信设备基于所述目标传输模式发 送过来的数据, 和 /或, 向所述第一通信设备发送数据。
需要说明的是, 第二通信设备 1802可以是一个具有多个天线的通信设备, 或者多个通信设备的集合, 其中, 如果属于后者的情况下, 所述多个通信设备 的集合中的每个通信设备可以是具有多个天线, 或者具有单个天线。
以及, 如果所述目标传输模式为全双工的传输模式, 贝 |J :
第一通信设备 1801具体用于:基于所述第二系统容量值对应的天线收发组 合, 与所述第二通信设备进行全双工的数据传输, 其中, 所述第二系统容量值 对应的天线收发组合表示使用全双工的传输模式进行传输时第一通信设备上 的 M根天线中各个天线的传输模式, 及第二通信设备上的 N根天线中各个天线 的传输模式, 其中所述天线的传输模式选择性地为接收信号或发射信号。
应当理解的是,从多个天线收发候选组合中确定出的被采用的天线收发候 选组合, 可以直接描述为天线收发组合。
其他详细实现细节请参考前述方法和装置实施例, 这里不再赘述。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备, 获取半双工的传输模式下的第一系统容量值; 获取全双工的传输模式下 的第二系统容量值,所述第二系统容量值是全双工的传输模式下的天线收发候 选组合的全集下的系统容量值中的最大值,或者全双工传输模式下的天线收发 候选组合的第一子集下的系统容量值中的最大值,或者所述第二系统容量值为 超过系统容量阈值的系统容量值;根据第一系统容量值与第二系统容量值的比 较结果,选择目标传输模式, 其中所述目标传输模式为第一系统容量值与第二 系统容量值中的较大值对应的传输模式; 换言之,在多天线系统运行的当前信 道条件下,根据系统容量较大化或最大化的准则,选择使得系统容量较大化或 最大化的传输模式,从而实现在系统的当前信道条件下,使得系统性能较优或 最优;
进一步的, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备,如果采用全双工的传输模式时, 获取全双工的传输模式下的对应于多种 天线收发候选组合的系统性能评估值,其中所述多种天线收发候选组合为全双 工的传输模式下的天线收发候选组合的全集,或者为全双工的传输模式下的天 线收发候选组合的全集的第三子集;从所述对应于多种天线收发候选组合的系 统性能评估值中选择最优性能评估值, 或者,从所述对应于多种天线收发候选 组合的系统性能评估值中选择优于系统性能阈值的目标性能评估值;确定所述 最优性能评估值或目标性能评估值对应的天线收发候选组合为被采用的天线 收发组合方式; 换言之,在多天线系统以全双工的传输模式运行的当前信道条 件下,根据性能评估值较优化或最优化的准则,确定全双工模式下的最佳或较 佳天线收发组合, 从而实现在当前信道条件下, 使得系统性能较优或最优。
参见图 19, 本发明实施例还提供一种无线通信系统, 可包括: 第三通信设 备 1901和第四通信设备 1902, 其中:
第三通信设备 1901用于:当需要与第二通信设备进行数据传输时, 获取半 双工的传输模式下的第一系统发射功率值;获取全双工的传输模式下的第二系 统发射功率值,所述第二系统发射功率值是全双工的传输模式下的天线收发候 选组合的全集下的系统发射功率值中的最小值,或者全双工传输模式下的天线 收发候选组合的第二子集下的系统发射功率值中的最小值,或者所述第二系统 发射功率值为小于系统发射功率阈值的系统发射功率值;根据第一系统发射功 率值与第二系统发射功率的比较结果,选择目标传输模式, 其中所述目标传输 模式为第一系统发射功率值与第二系统发射功率值中的较小值对应的传输模 式; 以及, 用于基于所述目标传输模式, 与第四通信设备进行数据传输; 需要说明的是, 第三通信设备 1901具有多个天线。
第四通信设备 1902用于:接收所述第一通信设备基于所述目标传输模式发 送过来的数据, 和 /或, 向所述第一通信设备发送数据。
需要说明的是, 第四通信设备 1902可以是一个具有多个天线的通信设备, 或者多个通信设备的集合, 其中,所述多个通信设备的集合中的每个通信设备 可以具有多个天线, 或者具有单个天线。
以及, 如果所述目标传输模式为全双工的传输模式, 贝 |J :
第三通信设备 1901具体用于:基于所述第二系统发射功率值对应的天线收 发组合, 与所述第四通信设备进行全双工的数据传输, 其中, 所述第二系统发 射功率值对应的天线收发组合表示使用全双工的传输模式进行传输时第三通 信设备上的 M根天线中各个天线的传输模式, 及第四通信设备上的 N根天线中 各个天线的传输模式, 其中所述天线的传输模式为接收信号或发射信号。
其他详细实现细节请参考前述方法和装置实施例, 这里不再赘述。
由上可见, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备, 获取半双工的传输模式下的第一系统发射功率值; 获取全双工的传输模 式下的第二系统发射功率值,所述第二系统发射功率值是全双工的传输模式下 的天线收发候选组合的全集下的系统发射功率值中的最小值,或者全双工传输 模式下的天线收发候选组合的第二子集下的系统发射功率值中的最小值,或者 所述第二系统发射功率值为小于系统发射功率阈值的系统发射功率值;根据第 一系统发射功率值与第二系统发射功率值的比较结果,选择目标传输模式, 其 中所述目标传输模式为第一系统发射功率值与第二系统发射功率值中的较小 值对应的传输模式; 换言之, 在多天线系统运行的当前信道条件下, 根据系统 发射功率较小化或最小化的准则,选择使得系统发射功率较小化或最小化的传 输模式, 从而实现在系统的当前信道条件下, 使得系统性能较优或最优; 进一步的, 本发明实施例中,对于收发通道可以在天线处灵活切换的通信 设备,如果采用全双工的传输模式时, 获取全双工的传输模式下的对应于多种 天线收发候选组合的系统性能评估值,其中所述多种天线收发候选组合为全双 工的传输模式下的天线收发候选组合的全集,或者为全双工的传输模式下的天 线收发候选组合的全集的第三子集;从所述对应于多种天线收发候选组合的系 统性能评估值中选择最优性能评估值, 或者,从所述对应于多种天线收发候选 组合的系统性能评估值中选择优于系统性能阈值的目标性能评估值;确定所述 最优性能评估值或目标性能评估值对应的天线收发候选组合为被采用的天线 收发组合方式; 换言之,在多天线系统以全双工的传输模式运行的当前信道条 件下,根据性能评估值较优化或最优化的准则,确定全双工模式下的最佳或较 佳天线收发组合, 从而实现在当前信道条件下, 使得系统性能较优或最优。 为了进一步的理解本发明实施例, 下面以通信设备 A表示上述系统实施例 中的第一通信设备或第三通信设备, 和, 以通信设备 B表示上述系统实施例中 的第二通信设备或第四通信设备来筒介本发明实施例的系统的架构。
如图 8所示,为本发明实施例提供的本端通信设备 A与对端通信设备 B之间 传输模式的选择的一种系统架构示意图; 应当理解的是,通过采用本发明前述 实施例介绍的方案, 可以确定通信设备 A与通信设备 B之间的通信模式是使用 全双工的传输模式还是半双工的传输模式; 以及,通过采用本发明前述实施例 介绍的方案, 当采用全双工模式进行传输时, 可以确定通信设备 A和通信设备 B上的每个天线的传输模式是接收信号还是发射信号。
如图 9所示, 本发明实施例一个本端通信设备 A与多个通信设备 Bl、 B2...Bn在重叠的时频资源上进行双向传输的的另一种系统架构示意图; 其中 通信设备 A具有全双工传输能力,通信设备 B1…: Bn可以是全双工设备也可以半 双工设备, 需要说明的是, 全双工传输能力指通信设备可以进行自干扰删除, 指通信设备不能进行自干扰删除,同一设备上的天线不能在相同的时频资源上 进行发射和接收。 以及, 应当理解的是, 在本实施例中, 通信设备 Β1..·Βη的 集合对应于前述实施例中的第二通信设备或第四通信设备。
需要说明的是,全双工传输能力指通信设备可以进行自干扰删除, 同一设 备上的天线可以在相同的时频资源上进行发射和接收;半双工传输能力指通信 设备不能进行自干扰删除,同一设备上的天线不能在相同的时频资源上进行发 射和接收。
应当理解的是,通过采用本发明前述实施例介绍的方案, 可以确定通信设 备 Α与由通信设备 Β1 ...Βη的集合构成的通信设备 Β之间的通信模式是使用全 双工的传输模式还是半双工的传输模式; 以及,通过采用本发明前述实施例介 绍的方案, 当采用全双工模式进行传输时, 可以确定通信设备 Α和由通信设备 Bl ...Bn的集合构成的通信设备 B上的每个天线的传输模式是接收信号还是发 射信号。 具体的:
1、 从可选的通信设备 Β1..·Βη的集合中选择一个子集或全集, 以构成通信 设备 Β, 其中的通信设备 Β与通信设备 Α进行通信;
2、对于通信设备 A和 B中的具有全双工传输能力的通信设备, 确定所述通 信设备上的每根天线作为发射信号还是接收信号; 或者对于通信设备 A和 B中 4兆选出来的具有全双工传输能力的通信设备子集,确定所述通信设备子集上的 每根天线作为发射信号还是接收信号。其他技术细节参见其他实施例, 这里不 再赘述。 下面进一步介绍本发明实施例的两种应用场景;
应用场景一: 蜂窝网
如图 10所示,如果本发明实施例应用于蜂窝网, 则本发明实施例中的通信 设备一或通信设备三或通信设备 A可以是图 10中的具有全双工传输能力的多 天线基站, 例如可以是宏基站, 微基站和家庭基站等; 本发明实施例中的通信 设备二或通信设备四或通信设备 B可以是图 10中的终端 3,或者构成通信设备 B 的设备集合可以包括图 10中的终端 1、 终端 2和终端 3。
当具有全双工传输能力的多天线基站与另一个具有全双工传输能力的多 天线终端 3进行通信时, 可以根据系统容量和系统发射功率等系统性能优化指 标, 比较半双工的传输模式和全双工的传输模式下的系统性能评估值,基于比 较结果选择系统性能评估值最优或较优的情况对应的传输模式为目标传输模 式, 并基于目标传输模式进行两者之间的数据传输。 对于全双工传输模式, 计 算全部或者部分天线收发组合对应的系统性能评估值,然后选择最优或者较优 的系统性能评估值对应的天线收发组合进行传输。具体在计算系统性能评估值 时, 对信道矩阵或者变化后的信道矩阵进行划分, 把主对角线 /副对角线位置 上的两个子矩阵作为两个相反传输方向上的信道矩阵来计算对应天线收发组 合下的系统性能评估值。
具有全双工传输能力的多天线基站还可以同时与多个终端 1、 2、 3在相同 时频资源上进行上下行传输,在这种应用场景下, 不要求每个终端都具有全双 工传输能力。 如图 10所示, 在相同时频资源上, 具有全双工传输能力的多天线 基站与终端 1进行上行传输, 与终端 2进行下行传输, 与终端 3同时进行上下行 传输。 在上下行终端选择和 /或全双工终端的天线收发组合选择时, 考虑不同 终端组成集合,将它们的天线看作在同一个虚拟设备上, 然后根据基站天线与 终端 1、 2、 3的天线之间的联合信道矩阵, 通过不同的矩阵变换和子矩阵划分 来计算对应上下行终端选择模式和 /或全双工终端天线收发组合模式下的系统 性能评估值。 根据最优或者较优评估值对应的上下行终端选择模式和 /或全双 工终端天线收发组合模式来进行数据传输。
本发明实施例中的模式选择方法还可以用于蜂窝网中多天线全双工终端 与其它全双工终端之间的通信模式选择, 或者,还可以用于蜂窝网中多天线全 双工终端与其它半双工终端之间的通信模式选择, 或者,还可以用于多天线全 双工终端与其它全双工终端和其它半双工终端之间的通信模式选择, 或者,还 可以用于多天线全双工终端同时与基站和其他终端在相同时频资源上的通信。 实现方式与前述实施例中的相同, 此处不再赘述。 应用场景二: 无线局域网
如图 11所示, 如果本发明实施例应用于无线局域网, 则本发明实施例中的 通信设备一或通信设备三或通信设备 A可以是图 11中的具有全双工传输能力 的多天线接入点 ( Access Point, AP ), 例如可以是 WLAN AP或无线路由器等; 本发明实施例中的通信设备二或通信设备四或通信设备 B可以是具有全双工 传输能力的接入设备 3 , 或者构成通信设备 B的设备集合可以是图 11中的接入 设备 1、 2、 3。
当具有全双工传输能力的多天线接入点与另一个具有全双工能力多天线 的接入设备 3进行通信时, 可以根据系统容量和系统发射功率等系统性能优化 指标, 比较半双工的传输模式和全双工的传输模式下的系统性能评估值,基于 比较结果选择系统性能评估值最优或较优的情况下对应的传输模式为目标传 输模式,并基于目标传输模式进行两者之间的数据传输。对于全双工传输模式, 计算全部或者部分天线收发组合对应的系统性能评估值,然后选择最优或者较 优的系统性能评估值对应的天线收发组合进行传输。具体在计算系统性能评估 值时, 对信道矩阵或者变换后的信道矩阵进行划分, 把主对角线 /副对角线位 置上的两个子矩阵作为两个相反传输方向上的信道矩阵来计算对应天线收发 组合下系统性能评估值。
具有全双工传输能力的多天线接入点还可以同时与多个接入设备 1、 2、 3 在相同时频资源上进行上下行传输,并不要求每个接入设备都具有全双工传输 能力。 如图 11所示, 在相同时频资源上, 多天线接入点与接入设备 1进行上行 传输, 与接入设备 2进行下行传输, 与设备 3同时进行上下行传输。 在上下行接 入设备选择和 /或全双工接入设备的天线收发组合选择时, 考虑不同接入设备 组成集合,将它们的天线看作在同一个虚拟设备上, 然后根据接入点天线与这 些接入设备天线之间的联合信道矩阵,通过不同的矩阵变换和子矩阵划分来计 算对应上下行终端选择模式和 /或全双工终端天线收发组合模式下的系统性能 评估值。 根据最优或者较优评估值对应的上下行接入设备选择模式和 /或全双 工接入设备天线收发组合模式来进行数据传输。
本发明实施例中的模式选择方法还可以用于无线局域网中多天线全双工 接入设备与其它全双工接入设备之间的通信模式选择,还可以用于无线局域网 中多天线全双工接入设备与其它半双工接入设备之间的通信模式选择,还可以 用于无线局域网中多天线全双工接入设备与其它全双工接入设备和其它半双 工接入设备之间的通信模式选择, 或者,还可以用于多天线全双工接入设备同 时与接入点和其他接入设备在相同时频资源上的通信。基本方法与实施例中的 相同, 此处不再赘述。
需要说明的是, 前述实施例描述中所采用的第一、 第二、 第三、 第四的说 法, 没有限定顺序的意思, 仅为方便区分而已。
前述实施例所采用的各种阈值可以是基于经验值或应用场景来灵活设置 的, 本发明实施例对此不做限定。
需要说明的是, 对于前述的各方法实施例, 为了筒单描述, 故将其都表述 为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的 动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。 其次, 本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施 例, 所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重, 某个实施例中没有详 述的部分, 可以参见其他实施例的相关描述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读 存储介质中, 存储介质可以包括: 只读存储器、 随机存储器、 磁盘或光盘等。 述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围 上均会有改变之处, 综上, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种传输模式选择方法, 其特征在于, 该方法包括:
获取半双工的传输模式下的第一系统容量值;
获取全双工的传输模式下的第二系统容量值,所述第二系统容量值是全双 工的传输模式下的天线收发候选组合的全集下的系统容量值中的最大值,或者 全双工传输模式下的天线收发候选组合的第一子集下的系统容量值中的最大 值, 或者所述第二系统容量值为超过系统容量阈值的系统容量值;
根据第一系统容量值与第二系统容量值的比较结果, 选择目标传输模式, 其中所述目标传输模式为第一系统容量值与第二系统容量值中的较大值对应 的传输模式。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据第一系统容量值与 第二系统容量值的比较结果,选择目标传输模式, 其中所述目标传输模式为第 一系统容量值与第二系统容量值中的较大值对应的传输模式的步骤, 包括: 如果第二系统容量值大于第一系统容量值, 则选择全双工的传输模式; 如果第二系统容量值小于第一系统容量值, 则选择半双工的传输模式。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 该方法应用于包括 M根 天线的第一通信设备和包括 N根天线的第二通信设备的无线通信系统中, M和 N为大于 1的整数, 如果目标传输模式为全双工的传输模式, 所述方法进一步 包括:
基于第二系统容量值对应的天线收发组合进行全双工的数据传输, 其中, 所述第二系统容量值对应的天线收发组合表示使用全双工的传输模式进行传 输时第一通信设备上的 M根天线中各个天线的传输模式,及第二通信设备上的 N根天线中各个天线的传输模式, 其中所述天线的传输模式为接收信号或发射 信号, 其中所述包括 N根天线的第二通信设备是单一的通信设备, 或者是多个 通信设备的集合。
4、 根据权利要求 1所述的方法, 其特征在于, 所述系统容量阈值为第一系 统容量值, 或者所述系统容量阈值为第一系统容量值与调整值的和值, 或者, 所述系统容量阈值为历史时钟周期下的,全双工的传输模式下的平均系统容量 值或最高系统容量值, 或者, 所述系统容量阈值为历史时钟周期下的, 半双工 的传输模式下的平均系统容量值或最高系统容量值。
5、 根据权利要求 1至 4任一项所述的方法, 其特征在于, 所述方法还包括: 于第一计算时间阈值内,计算全双工传输模式下的对应于多种天线收发候 选组合的系统容量值;
其中, 所述第一计算时间阈值内进行系统容量值计算的、全双工传输模式 下的多种天线收发候选组合构成所述第一子集。
6、 根据权利要求 5所述的方法, 其特征在于, 所述全双工的传输模式下的 一种天线收发组合的系统容量值是通过如下方法计算得到的:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统容量候选值,基于副对角线上的两个子矩阵计 算第二系统容量候选值;
确定第一系统容量候选值与第二系统容量候选值中的较大值为对应于所 述当前矩阵划分方式下的系统容量值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第一子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合;
其中, S为大于或等于 1的整数。
7、 一种传输模式选择方法, 其特征在于, 该方法包括:
获取半双工的传输模式下的第一系统发射功率值;
获取全双工的传输模式下的第二系统发射功率值,所述第二系统发射功率 值是全双工的传输模式下的天线收发候选组合的全集下的系统发射功率值中 的最小值,或者全双工传输模式下的天线收发候选组合的第二子集下的系统发 射功率值中的最小值,或者所述第二系统发射功率值为小于系统发射功率阈值 的系统发射功率值;
根据第一系统发射功率值与第二系统发射功率值的比较结果,选择目标传 输模式,其中所述目标传输模式为第一系统发射功率值与第二系统发射功率值 中的较小值对应的传输模式。
8、 根据权利要求 7所述的方法, 其特征在于, 所述根据第一系统发射功率 值与第二系统发射功率的比较结果,选择目标传输模式, 其中所述目标传输模 式为第一系统发射功率值与第二系统发射功率值中的较小值对应的传输模式 的步骤, 包括:
如果第二系统发射功率值小于第一系统发射功率值,则选择全双工的传输 模式;
如果第二系统发射功率值大于第一系统发射功率值,则选择半双工的传输 模式。
9、 根据权利要求 7或 8所述的方法, 其特征在于, 应用于包括 M根天线的 第一通信设备和包括 N根天线的第二通信设备的无线通信系统中, M和 N为大 于 1的整数, 如果目标传输模式为全双工的传输模式, 所述方法进一步包括: 基于第二系统发射功率值对应的天线收发组合进行全双工的数据传输,其 中,所述第二系统发射功率值对应的天线收发组合表示使用全双工的传输模式 进行传输时, 第一通信设备上的 M根天线中各个天线的传输模式, 及, 第二通 信设备上的 N根天线中各个天线的传输模式, 其中所述天线的传输模式为接收 信号或发射信号, 其中所述包括 N根天线的第二通信设备是单一的通信设备, 或者是多个通信设备的集合。
10、 根据权利要求 7所述的方法, 其特征在于, 所述系统发射功率阈值为 第一系统发射功率值,或者所述系统发射功率阈值为第一系统发射功率值与调 整值的差值, 或者, 所述系统发射功率阈值为历史时钟周期下的, 全双工的传 输模式下的平均系统发射功率值或最低系统发射功率值, 或者, 所述系统发射 功率阈值为历史时钟周期下的,半双工的传输模式下的平均系统发射功率值或 最低系统发射功率值。
11、 根据权利要求 7至 10任一项所述的方法, 其特征在于, 所述方法还包 括:
于第二计算时间阈值内,计算全双工传输模式下的对应于多种天线收发候 选组合的系统发射功率值;
其中, 所述第二计算时间阈值内进行系统发射功率值计算的、全双工传输 模式下的多种天线收发候选组合构成所述第二子集。
12、 根据权利要求 11所述的方法, 其特征在于, 所述全双工的传输模式下 的一种天线收发组合的系统发射功率值是通过如下方法计算得到的:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统发射功率候选值,基于副对角线上的两个子矩 阵计算第二系统发射功率候选值;
确定第一系统发射功率候选值与第二系统发射功率候选值中的较小值为 对应于所述当前矩阵划分方式下的系统发射功率值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第二子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合;
其中, S为大于或等于 1的整数。
13、 一种全双工的传输模式下天线收发组合确定方法, 其特征在于, 该方 法包括:
获取全双工的传输模式下的对应于多种天线收发候选组合的系统性能评 估值,其中所述多种天线收发候选组合为全双工的传输模式下的天线收发候选 组合的全集,或者为全双工的传输模式下的天线收发候选组合的全集的第三子 集;
从所述对应于多种天线收发候选组合的系统性能评估值中选择最优性能 评估值, 或者,从所述对应于多种天线收发候选组合的系统性能评估值中选择 优于系统性能阈值的目标性能评估值;
确定所述最优性能评估值或目标性能评估值对应的天线收发候选组合为 被采用的天线收发组合方式。
14、 根据权利要求 13所述的方法, 其特征在于, 所述获取全双工的传输模 式下的对应于多种天线收发候选组合的系统性能评估值, 包括:
计算全双工传输模式下的对应于所有天线收发候选组合的系统容量值;其 中, 全双工传输模式下的所有天线收发候选组合构成所述全集; 或者, 在第一 计算时间阈值内,计算全双工传输模式下的对应于多种天线收发候选组合的系 统容量值; 其中, 所述第一计算时间阈值内进行系统容量值计算的、 全双工传 输模式下的多种天线收发候选组合构成所述第三子集;
所述从所述对应于多种天线收发候选组合的系统性能评估值中选择最优 性能评估值, 或者,从所述对应于多种天线收发候选组合的系统性能评估值中 选择优于系统性能阈值的目标性能评估值, 包括:
从所述对应于多种天线收发候选组合的系统容量值中选择最大系统容量 值, 或者,从所述对应于多种天线收发候选组合的系统容量值中选择超过系统 容量阈值的目标系统容量值;
所述确定所述最优性能评估值或目标性能评估值对应的天线收发候选组 合为被采用的天线收发组合方式, 包括:
确定所述最大系统容量值或目标系统容量值对应的天线收发候选组合为 被采用的天线收发组合方式。
15、 根据权利要求 14所述的方法, 其特征在于, 所述计算全双工传输模式 下的一种天线收发组合下的系统容量值, 包括:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统容量候选值,基于副对角线上的两个子矩阵计 算第二系统容量候选值;
确定第一系统容量候选值与第二系统容量候选值中的较大值为对应于所 述当前矩阵划分方式下的系统容量值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第三子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合;
其中, S为大于或等于 1的整数。
16、 根据权利要求 13所述的方法, 其特征在于, 所述获取全双工的传输模 式下的对应于多种天线收发候选组合的系统性能评估值, 包括:
计算全双工传输模式下的对应于所有天线收发候选组合的系统发射功率 值; 其中, 全双工传输模式下的所有天线收发候选组合构成所述全集; 或者, 在第二计算时间阈值内,计算全双工传输模式下的对应于多种天线收发候选组 合的系统发射功率值; 其中, 所述第二计算时间阈值内进行系统发射功率值计 算的、 全双工传输模式下的多种天线收发候选组合构成所述第三子集;
所述从所述对应于多种天线收发候选组合的系统性能评估值中选择最优 性能评估值, 或者,从所述对应于多种天线收发候选组合的系统性能评估值中 选择优于系统性能阈值的目标性能评估值, 包括: 从所述对应于多种天线收发 候选组合的系统发射功率值中选择最小系统发射功率值, 或者,从所述对应于 多种天线收发候选组合的系统发射功率值中选择小于系统发射功率阈值的目 标系统发射功率值;
所述确定所述最小性能评估值或目标性能评估值对应的天线收发候选组 合为被采用的天线收发组合方式, 包括: 确定所述最小系统发射功率值或目标系统发射功率值对应的天线收发候 选组合为被采用的天线收发组合方式。
17、 根据权利要求 16所述的方法, 其特征在于, 所述计算全双工传输模式 下的一种天线收发组合下的系统发射功率值, 包括:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,基于主对角线 上的两个子矩阵计算第一系统发射功率候选值,基于副对角线上的两个子矩阵 计算第二系统发射功率候选值;
确定第一系统发射功率候选值与第二系统发射功率候选值中的较小值为 对应于所述当前矩阵划分方式下的系统发射功率值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第三子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合;
其中, S为大于或等于 1的整数。
18、 一种传输模式选择装置, 其特征在于, 该方法包括:
第一系统容量值获取单元,用于获取半双工的传输模式下的第一系统容量 值;
第二系统容量值获取单元,用于获取全双工的传输模式下的第二系统容量 值,所述第二系统容量值是全双工的传输模式下的天线收发候选组合的全集下 的系统容量值中的最大值,或者全双工传输模式下的天线收发候选组合的第一 子集下的系统容量值中的最大值,或者所述第二系统容量值为超过系统容量阈 值的系统容量值; 第一传输模式选择单元,用于根据所述第一系统容量值获取单元输出的第 一系统容量值与所述第二系统容量值获取单元输出的第二系统容量值的比较 结果,选择目标传输模式, 其中所述目标传输模式为所述第一系统容量值与第 二系统容量值中的较大值对应的传输模式。
19、 根据权利要求 18所述的装置, 其特征在于, 所述第一传输模式选择单 元具体用于:如果所述第二系统容量值获取单元输出的第二系统容量值大于所 述第一系统容量值获取单元输出的第一系统容量值, 则选择全双工的传输模 式;如果所述第二系统容量值获取单元输出的第二系统容量值小于所述第一系 统容量值获取单元输出的第一系统容量值, 则选择半双工的传输模式。
20、 根据权利要求 18或 19所述的装置, 其特征在于, 应用于包括 M根天线 的第一通信设备和包括 N根天线的第二通信设备的无线通信系统中, M和 N为 大于 1的整数,如果目标传输模式为全双工的传输模式, 所述装置进一步包括: 传输单元,用于基于第二系统容量值对应的天线收发组合进行全双工的数 据传输, 其中, 所述第二系统容量值对应的天线收发组合表示使用全双工的传 输模式进行传输时第一通信设备上的 M根天线中各个天线的传输模式,及第二 通信设备上的 N根天线中各个天线的传输模式, 其中所述天线的传输模式为接 收信号或发射信号, 其中所述包括 N根天线的第二通信设备是单一的通信设 备, 或者是多个通信设备的集合。
21、 根据权利要求 18至 20任一项所述的装置, 其特征在于, 进一步包括: 系统容量值计算单元,用于计算全双工传输模式下的对应于所有天线收发 候选组合的系统容量值; 其中,全双工传输模式下的所有天线收发候选组合构 成所述全集; 或者, 在第一计算时间阈值内, 计算全双工传输模式下的对应于 多种天线收发候选组合的系统容量值; 其中, 所述第一计算时间阈值内进行系 统容量值计算的、全双工传输模式下的多种天线收发候选组合构成所述第一子 集。
22、 根据权利要求 21所述的装置, 其特征在于, 所述系统容量值计算单元 具体用于:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统容量候选值,基于副对角线上的两个子矩阵计 算第二系统容量候选值;
确定第一系统容量候选值与第二系统容量候选值中的较大值为对应于所 述当前矩阵划分方式下的系统容量值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第一子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合;
其中, S为大于或等于 1的整数。
23、 一种传输模式选择装置, 其特征在于, 包括:
第一系统发射功率值获取单元,用于获取半双工的传输模式下的第一系统 发射功率值;
第二系统发射功率值获取单元,用于获取全双工的传输模式下的第二系统 发射功率值,所述第二系统发射功率值是全双工的传输模式下的天线收发候选 组合的全集下的系统发射功率值中的最小值,或者全双工传输模式下的天线收 发候选组合的第二子集下的系统发射功率值中的最小值,或者所述第二系统发 射功率值为小于系统发射功率阈值的系统发射功率值;
第二传输模式选择单元,用于根据所述第一系统发射功率值获取单元输出 的第一系统发射功率值与所述第二系统发射功率值获取单元输出的第二系统 发射功率的比较结果,选择目标传输模式, 其中所述目标传输模式为第一系统 发射功率值与第二系统发射功率值中的较小值对应的传输模式。
24、 根据权利要求 23所述的装置, 其特征在于, 所述第二传输模式选择单 元具体用于:如果所述第二系统发射功率值获取单元输出的第二系统发射功率 值小于所述第一系统发射功率值获取单元输出的第一系统发射功率值,则选择 全双工的传输模式;如果所述第二系统发射功率值获取单元输出的第二系统发 射功率值大于所述第一系统发射功率值获取单元输出的第一系统发射功率值, 则选择半双工的传输模式。
25、 根据权利要求 23或 24所述的装置, 其特征在于, 应用于包括 M根天线 的第一通信设备和包括 N根天线的第二通信设备的无线通信系统中, M和 N为 大于 1的整数,如果目标传输模式为全双工的传输模式, 所述装置进一步包括: 传输单元,用于基于第二系统发射功率值对应的天线收发组合进行全双工 的数据传输, 其中,所述第二系统发射功率值对应的天线收发组合表示使用全 双工的传输模式进行传输时,第一通信设备上的 M根天线中各个天线的传输模 式, 及, 第二通信设备上的 N根天线中各个天线的传输模式, 其中所述天线的 传输模式为接收信号或发射信号, 其中所述包括 N根天线的第二通信设备是单 一的通信设备, 或者是多个通信设备的集合。
26、 根据权利要求 23至 25任一项所述的装置, 其特征在于, 所述装置还包 括:
系统发射功率值计算单元,用于计算全双工传输模式下的对应于所有天线 收发候选组合的系统发射功率值; 其中,全双工传输模式下的所有天线收发候 选组合构成所述全集; 或者, 在第二计算时间阈值内, 计算全双工传输模式下 的对应于多种天线收发候选组合的系统发射功率值; 其中, 所述第二计算时间 阈值内进行系统发射功率值计算的、全双工传输模式下的多种天线收发候选组 合构成所述第二子集。
27、 根据权利要求 26所述的装置, 其特征在于, 所述系统发射功率值计算 单元具体用于:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统发射功率候选值,基于副对角线上的两个子矩 阵计算第二系统发射功率候选值;
确定第一系统发射功率候选值与第二系统发射功率候选值中的较小值为 对应于所述当前矩阵划分方式下的系统发射功率值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第二子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合;
其中, S为大于或等于 1的整数。
28、 一种全双工的传输模式下的天线收发组合确定装置, 其特征在于, 包 括:
系统性能评估值获取单元,用于获取全双工的传输模式下的对应于多种天 线收发候选组合的系统性能评估值,其中所述多种天线收发候选组合为全双工 的传输模式下的天线收发候选组合的全集,或者为全双工的传输模式下的天线 收发候选组合的全集的第三子集;
选择单元,用于从所述系统性能评估值获取单元获取的所述对应于多种天 线收发候选组合的系统性能评估值中选择最优性能评估值, 或者,从所述系统 性能评估值获取单元获取的所述对应于多种天线收发候选组合的系统性能评 估值中选择优于系统性能阈值的目标性能评估值;
确定单元,用于确定所述最优性能评估值或目标性能评估值对应的天线收 发候选组合为被采用的天线收发组合方式。
29、 根据权利要求 28所述的装置, 其特征在于, 所述系统性能评估值获取 单元为系统容量值计算单元, 所述系统容量值计算单元用于: 计算全双工传输 模式下的对应于所有天线收发候选组合的系统容量值; 其中,全双工传输模式 下的所有天线收发候选组合构成所述全集; 或者, 在第一计算时间阈值内, 计 算全双工传输模式下的对应于多种天线收发候选组合的系统容量值; 其中, 所 述第一计算时间阈值内进行系统容量值计算的、全双工传输模式下的多种天线 收发候选组合构成所述第三子集;
其中, 所述选择单元具体用于: 从所述对应于多种天线收发候选组合的系 统容量值中选择最大系统容量值, 或者,从所述对应于多种天线收发候选组合 的系统容量值中选择超过系统容量阈值的目标系统容量值;
所述确定单元具体用于:确定所述最大系统容量值或目标系统容量值对应 的天线收发候选组合为被采用的天线收发组合方式。
30、 根据权利要求 29所述的装置, 其特征在于, 所述系统容量值计算单元 具体用于:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统容量候选值,基于副对角线上的两个子矩阵计 算第二系统容量候选值;
确定第一系统容量候选值与第二系统容量候选值中的较大值为对应于所 述当前矩阵划分方式下的系统容量值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第三子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合;
其中, S为大于或等于 1的整数。
31、 根据权利要求 28所述的装置, 其特征在于, 所述系统性能评估值获取 单元为系统发射功率值计算单元, 所述系统发射功率值计算单元用于: 计算全 双工传输模式下的对应于所有天线收发候选组合的系统发射功率值; 其中,全 双工传输模式下的所有天线收发候选组合构成所述全集; 或者,在第二计算时 间阈值内,计算全双工传输模式下的对应于多种天线收发候选组合的系统发射 功率值; 其中, 所述第二计算时间阈值内进行系统发射功率值计算的、 全双工 传输模式下的多种天线收发候选组合构成所述第三子集;
其中, 所述选择单元具体用于: 从所述对应于多种天线收发候选组合的系 统发射功率值中选择最小系统发射功率值, 或者,从所述对应于多种天线收发 候选组合的系统发射功率值中选择小于系统发射功率阈值的目标系统发射功 率值;
所述确定单元具体用于:确定所述最小系统发射功率值或目标系统发射功 率值对应的天线收发候选组合为被采用的天线收发组合方式。
32、 根据权利要求 31所述的装置, 其特征在于, 所述系统发射功率值计算 单元具体用于:
基于所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将 系统的信道矩阵划分为四个子矩阵, 或者,基于由所述系统的信道矩阵变换得 到的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式, 将由所述系统的信 道矩阵变换得到的信道矩阵划分为四个子矩阵;
选择主对角线上的两个子矩阵和副对角线上的两个子矩阵,并基于主对角 线上的两个子矩阵计算第一系统发射功率候选值,基于副对角线上的两个子矩 阵计算第二系统发射功率候选值;
确定第一系统发射功率候选值与第二系统发射功率候选值中的较小值为 对应于所述当前矩阵划分方式下的系统发射功率值;
其中, S为所述系统的信道矩阵或者由所述系统的信道矩阵变换得到的信 道矩阵的所有矩阵划分方式的全集,或者为所述系统的信道矩阵或者由所述系 统的信道矩阵变换得到的信道矩阵的所有矩阵划分方式的全集的所述第三子 集;
所述系统的信道矩阵的 S种矩阵划分方式中每一种矩阵划分方式对应一种 天线收发候选组合, 或者由所述系统的信道矩阵变换得到的信道矩阵的 S种矩 阵划分方式中每一种矩阵划分方式对应一种天线收发候选组合;
其中, S为大于或等于 1的整数。
33、 一种通信设备, 其特征在于, 所述通信设备包括: 多个天线, 以及, 与所述多个天线耦合的第一传输模式选择模块,所述第一传输模式选择模块为 如权利要求 18至 22任一项所述的传输模式选择装置。
34、 一种通信设备, 其特征在于, 所述通信设备包括: 多个天线, 以及, 与所述多个天线耦合的第二传输模式选择模块,所述第二传输模式选择模块为 如权利要求 23至 27任一项所述的传输模式选择装置。
35、 一种通信设备, 其特征在于, 所述通信设备包括: 多个天线, 以及, 与所述多个天线耦合的天线收发组合确定模块,所述天线收发组合确定模块为 如权利要求 28至 32任一项所述的全双工的传输模式下的天线收发组合确定装 置。
36、 一种无线通信系统,其特征在于, 包括第一通信设备和第二通信设备, 其中:
第一通信设备用于:当需要与第二通信设备进行数据传输时, 获取半双工 的传输模式下的第一系统容量值; 获取全双工的传输模式下的第二系统容量 值,所述第二系统容量值是全双工的传输模式下的天线收发候选组合的全集下 的系统容量值中的最大值,或者全双工传输模式下的天线收发候选组合的第一 子集下的系统容量值中的最大值,或者所述第二系统容量值为超过系统容量阈 值的系统容量值;根据第一系统容量值与第二系统容量值的比较结果,选择目 标传输模式,其中所述目标传输模式为第一系统容量值与第二系统容量值中的 较大值对应的传输模式; 以及, 用于基于所述目标传输模式, 与第二通信设备 进行数据传输;
第二通信设备用于:接收所述第一通信设备基于所述目标传输模式发送过 来的数据, 和 /或, 向所述第一通信设备发送数据。
37、 根据权利要求 36所述的系统, 其特征在于, 所述第二通信设备是一个 具有多个天线的通信设备, 或者多个通信设备的集合,其中所述多个通信设备 的集合中每个通信设备具有的一个或多个天线。
38、 根据权利要求 36或 37所述的系统, 其特征在于, 如果所述目标传输模 式为全双工的传输模式,
所述第一通信设备具体用于:基于所述第二系统容量值对应的天线收发组 合, 与所述第二通信设备进行全双工的数据传输, 其中, 所述第二系统容量值 对应的天线收发组合表示使用全双工的传输模式进行传输时,第一通信设备上 的 M根天线中各个天线的传输模式, 及, 第二通信设备上的 N根天线中各个天 线的传输模式, 其中所述天线的传输模式为接收信号或发射信号。
39、 一种无线通信系统,其特征在于, 包括第三通信设备和第四通信设备, 其中:
第三通信设备用于:当需要与第二通信设备进行数据传输时, 获取半双工 的传输模式下的第一系统发射功率值;获取全双工的传输模式下的第二系统发 射功率值,所述第二系统发射功率值是全双工的传输模式下的天线收发候选组 合的全集下的系统发射功率值中的最小值,或者全双工传输模式下的天线收发 候选组合的第二子集下的系统发射功率值中的最小值,或者所述第二系统发射 功率值为小于系统发射功率阈值的系统发射功率值;根据第一系统发射功率值 与第二系统发射功率的比较结果,选择目标传输模式,其中所述目标传输模式 为第一系统发射功率值与第二系统发射功率值中的较小值对应的传输模式;以 及, 用于基于所述目标传输模式, 与第四通信设备进行数据传输;
第四通信设备用于:接收所述第三通信设备基于所述目标传输模式发送过 来的数据, 和 /或, 向所述第三通信设备发送数据。
40、 根据权利要求 39所述的系统, 其特征在于, 所述第四通信设备是一个 具有多个天线的通信设备, 或者多个通信设备的集合,其中所述多个通信设备 中每个通信设备具有的一个或多个天线。
41、 根据权利要求 39或 40所述的系统, 其特征在于, 如果所述目标传输模 式为全双工的传输模式,
所述第三通信设备具体用于:基于所述第二系统发射功率值对应的天线收 发组合, 与所述第四通信设备进行全双工的数据传输, 其中, 所述第二系统发 射功率值对应的天线收发组合表示使用全双工的传输模式进行传输时第三通 信设备上的 M根天线中各个天线的传输模式, 及第四通信设备上的 N根天线中 各个天线的传输模式, 其中所述天线的传输模式为接收信号或发射信号。
PCT/CN2013/071160 2012-06-27 2013-01-30 传输模式选择方法、天线收发组合确定方法、装置及系统 WO2014000449A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13808975.0A EP2838293B1 (en) 2012-06-27 2013-01-30 Transmission mode selection method, method, device, and system for determining antenna transceiver combination
US14/539,718 US9516545B2 (en) 2012-06-27 2014-11-12 Transmission mode selecting method, antenna transmission/reception combination determining method, device and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210214899.8 2012-06-27
CN201210214899.8A CN103516407B (zh) 2012-06-27 2012-06-27 传输模式选择方法、天线收发组合确定方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/539,718 Continuation US9516545B2 (en) 2012-06-27 2014-11-12 Transmission mode selecting method, antenna transmission/reception combination determining method, device and system

Publications (1)

Publication Number Publication Date
WO2014000449A1 true WO2014000449A1 (zh) 2014-01-03

Family

ID=49782172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071160 WO2014000449A1 (zh) 2012-06-27 2013-01-30 传输模式选择方法、天线收发组合确定方法、装置及系统

Country Status (4)

Country Link
US (1) US9516545B2 (zh)
EP (1) EP2838293B1 (zh)
CN (1) CN103516407B (zh)
WO (1) WO2014000449A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871295B1 (ja) * 2015-08-31 2016-03-01 日本テクノ株式会社 電力消費上限目標値管理システム、電力消費上限目標値管理方法、電力消費上限目標値管理プログラム、記憶媒体
EP3097654A4 (en) * 2014-01-23 2017-10-11 Telefonaktiebolaget LM Ericsson (publ) Method for full duplex communications using array of antennas and associated full duplex wireless communication device
EP3197068A4 (en) * 2014-10-13 2018-01-24 Huawei Technologies Co., Ltd. Data interference removal method, sending end, receiving end, and system
CN108123772A (zh) * 2017-12-22 2018-06-05 南京航空航天大学 一种基于梯度投影的无人机时频资源分配方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2883321A1 (en) * 2012-08-09 2015-06-17 Telefonaktiebolaget L M Ericsson (Publ) Microwave link control
EP3008840B1 (en) * 2013-06-10 2018-04-11 LG Electronics Inc. Method of measuring self-interference channel and user equipment thereto
US20150029904A1 (en) * 2013-07-27 2015-01-29 Nec Laboratories America, Inc. Enabling full-duplex communication in legacy lte systems
US8976641B2 (en) * 2013-08-09 2015-03-10 Kumu Networks, Inc. Systems and methods for non-linear digital self-interference cancellation
CN105359473B (zh) * 2013-10-17 2018-11-06 华为技术有限公司 一种信道估计方法、装置及系统
CN105474571B (zh) * 2014-01-24 2020-02-14 华为技术有限公司 全双工通信方法及装置
CN104811971B (zh) * 2014-01-28 2018-09-28 华为技术有限公司 通信模式的切换方法和通信设备
CN103997361B (zh) * 2014-05-15 2017-07-21 西安电子科技大学 两天线无线移动中继的双工模式选择技术方法
US9985773B2 (en) * 2014-05-16 2018-05-29 Qualcomm Incorporated Techniques for performing half/full-duplex operations in wireless communications
US10313096B2 (en) 2015-03-09 2019-06-04 Lg Electronics Inc. Method for selecting HD mode or FD mode in wireless communication system supporting FDR scheme and apparatus therefor
US20160295596A1 (en) * 2015-03-31 2016-10-06 Huawei Technologies Canada Co., Ltd. Joint Radio-Frequency/Baseband Self-Interference Cancellation Methods and Systems
KR102126808B1 (ko) * 2015-04-15 2020-06-25 에스케이텔레콤 주식회사 단말장치 및 단말장치의 동작 방법
US10574313B2 (en) * 2015-04-24 2020-02-25 Skylark Wl Holdings, Llc Technique for full-duplex transmission in many-antenna MU-MIMO systems
CN106488578B (zh) * 2015-08-26 2019-11-29 华为技术有限公司 数据的传输方法、ap和用户节点
US20170170946A1 (en) * 2015-12-15 2017-06-15 Intel Corporation Selective participation on full-duplex communications
US10218487B2 (en) * 2015-12-21 2019-02-26 Intel Corporation Radio configuration optimization for full-duplex communications
CN105634541B (zh) * 2015-12-29 2018-11-27 北京邮电大学 全双工携能通信方法及节点
CN109792772A (zh) * 2016-08-09 2019-05-21 瑞典爱立信有限公司 传输活动的双向全双工知晓检测
CN106357377B (zh) * 2016-08-30 2020-06-12 上海交通大学 基于分集增益的全双工半双工混合中继实现方法
CN109792374B (zh) * 2016-09-30 2021-11-30 索尼移动通讯有限公司 控制全双工无线电传输的方法、无线电设备和系统
CN107959937B (zh) * 2016-10-17 2022-11-22 中兴通讯股份有限公司 传输模式的确定、数据传输方法及装置、通信系统
TWI631833B (zh) * 2016-12-14 2018-08-01 財團法人工業技術研究院 資料傳輸模式設定方法及應用其之基站裝置以及終端裝置
US10103774B1 (en) 2017-03-27 2018-10-16 Kumu Networks, Inc. Systems and methods for intelligently-tuned digital self-interference cancellation
US11258575B2 (en) * 2017-11-09 2022-02-22 Qualcomm Incorporated Duplexing modes based on beam configurations for wireless communications
US11063733B2 (en) 2017-11-09 2021-07-13 Qualcomm Incorporated Duplexing modes based on power configurations for transmissions
CN111211823B (zh) * 2018-11-22 2023-10-17 北京小米松果电子有限公司 切换发送天线的方法和装置,存储介质和电子设备
US11582017B2 (en) * 2020-02-28 2023-02-14 Qualcomm Incorporated Energy per resource element determination for sub-band full-duplex communication
US11770473B2 (en) * 2020-05-01 2023-09-26 Qualcomm Incorporated Avoid and react to sudden possibility of damage to receiver in self-interference measurement
CN113938936A (zh) * 2020-06-29 2022-01-14 中兴通讯股份有限公司 通信管理方法、装置、网络设备及存储介质
CN114142897A (zh) * 2020-09-04 2022-03-04 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
KR20230162103A (ko) * 2021-04-07 2023-11-28 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 전이중 무선 통신 시스템들에서 채널 상호성을 유지하기 위한 유연한 안테나 포트 매핑
CN115514399A (zh) * 2021-06-07 2022-12-23 华为技术有限公司 天线选择方法及装置
US11876755B2 (en) * 2021-07-19 2024-01-16 Qualcomm Incorporated Activation and periodicity indications for full duplex and half duplex transmissions of periodic communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805305A (zh) * 2005-01-13 2006-07-19 松下电器产业株式会社 采用天线选择执行自适应空时发送分集的方法和设备
CN101849380A (zh) * 2008-07-22 2010-09-29 松下电器产业株式会社 通信系统、通信装置及通信方法
CN101997565A (zh) * 2009-08-17 2011-03-30 索尼公司 用于无线电装置中自适应阻抗匹配的匹配电路
CN102025460A (zh) * 2010-12-06 2011-04-20 北京邮电大学 多输入输出通信系统的传输模式切换的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106378A1 (en) * 2005-04-07 2006-10-12 Nokia Corporation A terminal having a variable duplex capability
US7817641B1 (en) * 2005-10-20 2010-10-19 Amir Keyvan Khandani Methods for spatial multiplexing of wireless two-way channels
US7957702B2 (en) * 2006-12-22 2011-06-07 Jacobus Cornelis Haartsen Adaptive duplex modes in telecommunication equipment
US9369260B2 (en) 2010-04-09 2016-06-14 General Electric Company Division free duplexing networks
EP2438692B1 (en) 2010-05-25 2014-08-13 Telefonaktiebolaget L M Ericsson (publ) Method and arrangement in a wireless communication network
KR20140018977A (ko) * 2011-04-29 2014-02-13 인터디지탈 패튼 홀딩스, 인크 서브프레임 제한을 갖는 반송파들의 반송파 집성

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805305A (zh) * 2005-01-13 2006-07-19 松下电器产业株式会社 采用天线选择执行自适应空时发送分集的方法和设备
CN101849380A (zh) * 2008-07-22 2010-09-29 松下电器产业株式会社 通信系统、通信装置及通信方法
CN101997565A (zh) * 2009-08-17 2011-03-30 索尼公司 用于无线电装置中自适应阻抗匹配的匹配电路
CN102025460A (zh) * 2010-12-06 2011-04-20 北京邮电大学 多输入输出通信系统的传输模式切换的方法和装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3097654A4 (en) * 2014-01-23 2017-10-11 Telefonaktiebolaget LM Ericsson (publ) Method for full duplex communications using array of antennas and associated full duplex wireless communication device
EP3197068A4 (en) * 2014-10-13 2018-01-24 Huawei Technologies Co., Ltd. Data interference removal method, sending end, receiving end, and system
US10383108B2 (en) 2014-10-13 2019-08-13 Huawei Technologies Co., Ltd. Data interference cancellation method, transmit end, receive end, and system
JP5871295B1 (ja) * 2015-08-31 2016-03-01 日本テクノ株式会社 電力消費上限目標値管理システム、電力消費上限目標値管理方法、電力消費上限目標値管理プログラム、記憶媒体
CN108123772A (zh) * 2017-12-22 2018-06-05 南京航空航天大学 一种基于梯度投影的无人机时频资源分配方法
CN108123772B (zh) * 2017-12-22 2020-12-22 南京航空航天大学 一种基于梯度投影法的无人机时频资源分配方法

Also Published As

Publication number Publication date
EP2838293A1 (en) 2015-02-18
EP2838293B1 (en) 2018-07-11
US20150071062A1 (en) 2015-03-12
EP2838293A4 (en) 2015-06-03
US9516545B2 (en) 2016-12-06
CN103516407A (zh) 2014-01-15
CN103516407B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2014000449A1 (zh) 传输模式选择方法、天线收发组合确定方法、装置及系统
US11277175B2 (en) System and method for communications system training
US9813995B2 (en) Interference cancellation
Gesbert et al. Multi-cell MIMO cooperative networks: A new look at interference
KR102543091B1 (ko) 무선 통신 시스템에서 통합형 빔포밍을 위한 장치 및 방법
CN114642019B (zh) 一种信道信息获取的方法
CN112583501B (zh) 信道测量方法和通信装置
WO2014180449A1 (zh) 一种基于干扰对齐的预编码系统和方法
US11546041B2 (en) Method and apparatus for beamspace processing based on multiple beamspace bases
Interdonato Cell-free massive MIMO: Scalability, signal processing and power control
Oechtering et al. Optimal transmit strategies in multi-antenna bidirectional relaying
Maso et al. Channel estimation impact for LTE small cells based on MU-VFDM
Xie et al. Cross-cell DoF distribution: Combating channel hardening effect in multi-cell MU-MIMO networks
Xia et al. Bandwidth allocation in heterogeneous networks with wireless backhaul
Lozano et al. Spectral efficiency limits in pilot-assisted cooperative communications
Hoydis Massive MIMO and HetNets: Benefits and challenges
CN110785944A (zh) 下位无线基站、上位无线基站及无线基站系统
Nsengiyumva Is the cyclic prefix needed in massive MIMO?
WO2021081964A1 (zh) 一种下行参考信号的发送端口的配置方法和通信装置
Holfeld et al. Order-recursive precoding for cooperative multi-point transmission
Ahmad et al. Robust channel quality indicator reporting for multi-carrier and multi-user systems
EP3662586A1 (en) Improved block-diagnolization based beamforming
Gao et al. Distributed scheduling achieves the optimal multiuser diversity gain for MIMO-Y channel
Wan et al. Performance Analysis of Multi-UAV Aided Cell-Free Radio Access Network with Network-Assisted Full-Duplex for URLLC
Pradhan et al. Full-duplex transceiver for future cellular network: A smart antenna approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013808975

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE